
IJCSI International Journal of Computer Science Issues, Vol. 1, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

49

MESURE Tool to benchmark Java Card platforms

Samia Bouzefrane1, Julien Cordry1 and Pierre Paradinas2

1CEDRIC Laboratory, Conservatoire National des Arts et Métiers
292 rue Saint Martin, 75141, Paris Cédex 03, FRANCE

2INRIA, Domaine de Voluceau - Rocquencourt -B.P. 105, 78153
Le Chesnay Cedex, FRANCE.

Abstract
The advent of the Java Card standard has been a major turning
point in smart card technology. With the growing acceptance of
this standard, understanding the performance behavior of these
platforms is becoming crucial. To meet this need, we present in
this paper a novel benchmarking framework to test and evaluate
the performance of Java Card platforms. MESURE tool is the
first framework which accuracy and effectiveness are
independent from the particular Java Card platform tested and
CAD used.

Key words: Java Card platforms, software testing,
benchmarking, smart cards.

1. Introduction

With more than 5 billion copies in 2008 [2], smart
cards are an important device of today’s information
society. The development of the Java Card standard made
this device even more popular as it provides a secure,
vendor-independent, ubiquitous Java platforms for smart
cards. It shortens the time-to-market and enables
programmers to develop smart card applications for a wide
variety of vendors products. In this context, understanding
the performance behavior of Java Card platforms is
important to the Java Card community (users, smart card
manufacturers, card software providers, card users, card
integrators, etc.). Currently, there is no solution on the
market which makes it possible to evaluate the
performance of a smart card that implements Java Card
technology. In fact, the programs which realize this type
of evaluations are generally proprietary and not available
to the whole of the Java Card community. Hence, the only
existing and published benchmarks are used within
research laboratories (e.g., SCCB project from CEDRIC
laboratory [5] or IBM Research [12]). However,
benchmarks are important in the smart card area because
they contribute in discriminating companies products,

especially when the products are standardized. In this
paper, on one hand we propose a general benchmarking
solution through different steps that are essential for
measuring the performance of the Java Card platforms; on
the other hand we validate the obtained measurements
from statistical and precision CAD (Card Acceptance
Device) points of view.

The remainder of this paper is organised as follows.
In Section 2, we describe briefly some benchmarking
attempts in the smart card area. In Section 3, an overview
of the benchmarking framework is given. Section 4
analyses the obtained measurements using first a statistical
approach, and then a precision reader, before concluding
the paper in Section 5.

2. Java-Card Benchmarking State of the Art

Currently, there is no standard benchmark suite which can
be used to demonstrate the use of the Java Card Virtual
Machine (JCVM) and to provide metrics for comparing
Java Card platforms. In fact, even if numerous
benchmarks have been developed around the Java Virtual
Machine (JVM), there are few works that attempt to
evaluate the performance of smart cards. The first
interesting initiative has been done by Castellà et al. in [4]
where they study the performance of micro-payment for
Java Card platforms, i.e., without PKI (Public Key
Infrastructure). Even if they consider Java Card platforms
from distinct manufacturers, their tests are not complete as
they involve mainly computing some hash functions on a
given input, including the I/O operations. A more recent
and complete work has been undertaken by Erdmann in
[6]. This work mentions different application domains,
and makes the distinction between I/O, cryptographic
functions, JCRE (Java Card Run Time Execution) and
energy consumption. Infineon Technologies is the only
provider of the tested cards for the different application
domains, and the software itself is not available. The work

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

50

of Fischer in [7] compares the performance results given
by a Java Card applet with the results of the equivalent
native application. Another interesting work has been
carried out by the IBM BlueZ secure systems group and it
was detailed in a Master thesis [12]. JCOP framework has
been used to perform a series of tests to cover the
communication overhead, DES performance and reading
and writing operations into the card memory (RAM and
EEPROM). Markantonakis in [9] presents some
performance comparisons between the two most widely
used terminal APIs, namely PC/SC and OCF.
Comparatively to these works, our benchmarking
framework not only covers the different functionalities of
a Java Card platform but it also provided as a set of open
source code freely accessible on-line.

3. General benchmarking framework

3.1 Introduction

Our research work falls under the MESURE project
[10], a project funded by the French administration
(Agence Nationale de Recherche), which aims at
developing a set of open source tools to measure the
performance of Java Card platforms. These benchmarking
tools focus on Java Card 2.2 functionalities even if Java
Card 3.0 specifications have been published since March
2008 [1], principally because until now there is no Java
Card 3.0 platform in the market except for some
prototypes such as the one demonstrated by Gemalto
during the Java One Conference in June 2008. Since Java
Card 3.0 proposes two editions: connected (web oriented)
edition and classic edition, our measuring tools can be
reused to benchmark Java Card 3.0 classic edition
platforms.

3.2 Addressed issues

Only features related to the normal use phase of Java
Card applications will be considered here. Excluded
features include installing, personalizing or deleting an
application since they are of lesser importance from user’s
point of view and performed once.

Hence, the benchmark framework enables
performance evaluation at three levels:

– The VM level: to measure the execution time of the
various instructions of the virtual machine (basic
instructions), as well as subjacent mechanisms of the
virtual machine (e.g., reading and writing the memory).

– The API level: to evaluate the functioning of the
services proposed by the libraries available in the
embedded system (various methods of the API, namely
those of Java Card and GlobalPlatform).

– The JCRE (Java Card Runtime Execution) level: to
evaluate the non-functional services, such as the
transaction management, the method invocation in the
applets, etc.

We will not take care of features like the I/Os or the
power consumption because their measurability raises
some problems such as:

– For a given smart card, distinct card readers may
provide different I/Os measurements.

– Each part of an APDU is managed differently on a
smart card reader. The 5 bytes header is read first, and the
following data can be transmitted in several way: 1
acknowledge for each byte or not, delay or not before
noticing the status word, etc.

– The smart card driver used by the workstation
generally induces more delay on the measurement than the
smart card reader itself.

3.3 The benchmarking overview

The set of tests are supplied to benchmark Java Card
platforms available for anybody and supported by any card
reader. The various tests thus have to return accurate
results, even if they are not executed on precision readers.
We reach this goal by removing the potential card reader
weakness (in terms of delay, variance and predictability)
and by controlling the noise generated by measurement
equipment (the card reader and the workstation).
Removing the noise added to a specific measurement can
be done with the computation of an average value
extracted from multiple samples. As a consequence, it is
important on the one hand to perform each test several
times and to use basic statistical calculations to filter the
trustworthy results. On the other hand, it is necessary to
execute several times in each test the operation to be
measured in order to fix a minimal duration for the tests (>
1 second) and to expect getting precise results. We defined
a set of modules as part of the benchmarking framework.
The benchmarks have been developed under the Eclipse
environment based on JDK 1.6, with JSR268 [13] that
extends Java Standard Edition with a package that defines
methods within Java classes to interact with a smart card.
According to the ISO 7816 standard, since a smart card
has no internal clock, we are obliged to measure the time a
Java Card platform takes to answer to an APDU command,
and to use that measure to deduce the execution time of
some operations.

The benchmarking development tool covers two parts as
described in Figure 1: the script part and the applet part.
The script part, entirely written in Java, defines an abstract
class that is used as a template to derive test cases
characterized by relevant measuring parameters such as,

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

51

the operation type to measure, the number of loops, etc. A
method run() is executed in each script to interact with the
corresponding test case within the applet. Similarly, on the
card is defined an abstract class that defines three
methods:
– a method setUp() to perform any memory allocation
needed during the lifetime test case.
– a method run() used to launch the tests corresponding to
the test case of interest, and
– a method cleanUp() used after the test is done to
perform any clean-up.

Fig. 1 The script part and the Applet part

3.4 Modules

In this section, we describe the general benchmark
framework (see Figure 2) that has been designed to
achieve the MESURE goal. The methodology consists of
different steps. The objective of the first step is to find the
optimal parameters used to carry out correctly the tests.
The tests cover the Virtual Machine (VM) operations and
the API methods. The obtained results are filtered by
eliminating non-relevant measurements and values are
isolated by drawing aside measurement noise. A profiler
module is used to assign a mark to each benchmark type,
hence allowing us to establish a performance index for
each smart card profile used. In the following subsections,
we detail every module composing the framework.

The bulk of the benchmark consists in performing time
execution measurements when we send APDU commands
from the computer through the CAD to the card. Each test
(through the run method) is performed within the card a
certain number of times (Y) to ensure reliability of the
collected execution times, and within each run method,
we perform a certain number of loops (L). L is coded on
the byte P2 of the APDU commands which are sent to the
on-card applications. The size of the loop performed on

the card is L = (P2)2 since L is so great to be represented
with one byte.

The Calibrate Module: computes the optimal parameters
(such as the number of loops) needed to obtain
measurements of a given precision.

Fig. 2 Overall Architecture

Benchmarking the various different byte-codes and API
entries takes time. At the same time, it is necessary to be
precise enough when it comes to measuring those
execution times. Furthermore, the end user of such a
benchmark should be allowed to focus on a few key
elements with a higher degree of precision. It is therefore
necessary to devise a tool that let us decide what are the
most appropriate parameters for the measurement.

Figure 3 depicts the evolution of the raw measurement, as
well as its standard deviation, as we take 30 measurements
for each available loop size of a test applet. As we can see,
the measured execution time of an applet grows linearly
with the number of loops being performed on the card (L).
On the other hand, the perceived standard deviation on the
different measurements varies randomly as the loop size
increases, though with less and less peaks. Since a bigger
loop size means a relatively more stable standard
deviation, we use both the standard deviation and the
mean measured execution time as a basis to assess the
precision of the measurement.

To assess the reliability of the measurements, we compare
the value of the measurement with the standard deviation.
The end user will need to specify this ratio between the
average measurement and the standard deviation, as well
as an optional minimum accepted value, which is set at
one second by default. The ratio refers to the precision of
the tests while the minimal accepted value is the minimum

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

52

duration to perform each test. Hence, with both the ratio
and the minimal accepted value, as specified by the end
user, we can test and try different values for the loop size
to binary search and approach the ideal value.

Fig. 3 Raw measurements and Standard deviation

The Bench Module: For a number of cycles, defined by
the calibrate module, the bench module computes the
execution time for:

– The VM byte codes
– The API methods
– The JCRE mechanisms (such as transactions).

The Filter Module: Experimental errors lead to noise in
the raw measurement experiments. This noise leads to
imprecision in the measured values, making it difficult to

interpret the results. In the smart card context, the noise is
due to crossing the platform, the CAD and the terminal
(measurement tools, Operating System, hardware).
The issues become: how to interpret the varying values
and how to compare platforms when there is some noise in
the results. The filter module uses a statistical design to
extract meaningful information from noisy data. From
multiple measurements for a given operation, the filter
module uses the mean value µ of the set of measurements
to guess the actual value, and the standard deviation σ of
the measurements to quantify the spread of the
measurements around the mean. Moreover, since the
measurements respect the normal Gaussian distribution, a
confidence interval [µ − (n × σ), µ + (n × σ)], within
which the confidence level is of 1−a, is used to help
eliminate the measurements outside the confidence
interval, where n and a are respectively the number of
measurements and the temporal precision, and they are
related by traditional statistical laws.

The Extractor Module: is used to isolate the execution
time of the features of interest among the mass of raw
measurements that we gathered so far. Benchmarking
byte-codes and API methods within Java Card platforms
requires some subtle means in order to obtain execution
results that reflect as accurately as possible the actual
isolated execution time of the feature of interest. This is
because there exists a significant and non-predictable
elapse of time between the beginning of the measure,
characterized by the starting of the timer on the computer,
and the actual execution of the byte-code of interest. This
is also the case the other way around. Indeed, when
performing a request on the card, the execution call has to
travel several software and hardware layers down to the
card’s hardware and up to the card’s VM (vice versa upon
response). This non-predictability is mainly dependent on
hardware characteristics of the benchmark environment
(such as the CAD, PC’s hardware, etc), the Operating
System level interferences, services and also on the PC’s
VM.
To minimize the effect of these interferences, we need to
isolate the execution time of the features of interest, while
ensuring that their execution time is sufficiently important
to be measurable. The maximization of the byte-codes
execution time requires a test applet structure with a loop
having a large upper bound, which will execute the byte-
codes for a substantial amount of time. On the other hand,
to achieve execution time isolation, we need to compute
the isolated execution time of any auxiliary byte-code
upon which the byte-code of interest is dependent. For
example if sadd is the byte-code of interest, then the byte-
codes that need to be executed prior to its execution are
those in charge of loading its operands onto the stack, like
two sspush. Thereafter we subtract the execution time of

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

53

an empty loop and the execution time of the auxiliary
byte-codes from that of the byte-code of interest (opn in
Table 1) to obtain the isolated execution time of the byte-
code. As presented in Table 1, the actual test is performed
within a method run to ensure that the stack is freed after
each invocation, thus guaranteeing memory availability.

Table 1: The framework for a bytecode opn

Java Card Applet Test Case

process() {
 i = 0
 while i <= L
 do {
 run()
 i = i+1
 }
}

run() {
 op0
 op1
 .
 .
 .
 opn-1
 opn
}

In Table 1:
- L represents the chosen upper bound,
- opn represents the byte-code of interest,
- opi for i ∈ [0..n-1] represents the auxiliary byte-codes
necessary to perform the byte-code opn.

To compute the mean isolated execution time of opn we
need to perform the following calculation:

∑
−

=

− −=
1

0

)()()()(
n

i
iL

Emptyloopmopm
n opMopM LnL (1)

Where :

‐)(iopM is the mean isolated execution time of the byte-
code opi
‐)(nL opm is the mean global execution time of the byte-
code opn, including interferences coming from other
operations performed during the measurement, both on the
card and on the computer, with respect to a loop size L.
These other operations represent for example auxiliary
byte-codes needed to execute the byte-code of interest, or
OS and JVM specific operations. The mean is computed
over a significant number of tests. It is the only value that
is experimentally measured.
- Emptyloop represents the execution of a case where the
run method does nothing.

The formula (1) implies that prior to computing)(nopM we

need to compute)(iopM for i ∈ [0..n-1].

The Profiler Module: In order to define performance
references, our framework provides measurements that are

specifically adapted to one of the following application
domains:
– Banking applications
– Transport applications, and
– Identity applications.
A JCVM is instrumented in order to count the different
operations performed during the execution of a script for a
given application. More precisely, this virtual machine is a
simulated and proprietary VM executing on a workstation.
This instrumentation method is rather simple to implement
compared to a static analysis based methods, and can
reach a good level of precision, but it requires a detailed
knowledge of the applications and of the most significant
scripts.
Some features related to byte-codes and API methods
appeared to be necessary and the simulator was
instrumented to give useful information such as:
– for the API methods :

• the types and values of method parameters
• the length of arrays passed as parameters,

– for the byte-codes :
• the type and duration of arrays for array related byte-
codes (load, astore, arraylength),
• the transaction status when invoking the byte-code.

A simple utility tool has been developed to parse the log
files generated by the instrumented JCVM, which builds a
human-readable tree of method invocations and byte-code
usage. Thus, with the data obtained from the instrumented
VM, we attribute for each application domain a number
that represents the performance of some representative
applets of the domain on the tested card. Each of these
numbers is then used to compute a global performance
mark. We use weighted means for each domain dependent
mark. Those weights are computed by monitoring how
much each Java Card feature is used within a regular use
of standard applets for a given domain. For instance, if we
want to test the card for a use in transport applications, we
will use the statistics that we gathered with a set of
representative transport applets to evaluate the impact of
each feature of the card.

We are considering the measure of the feature f on a card c
for an application domain d. For a set of nM extracted
measurements M1c,f, …, MnMc,f considered as significant

for the feature f, we can determine a mean fcM ,
modelling the performance of the platform for this feature.
Given nC cards for which the feature f was measured, it is
necessary to determine the reference mean execution time
Rf , which will then serve as a basis of comparison for all
subsequent test. Hence the “mark” Nc,f of a card c for a

feature f, is the relation between Rf and fcM , :

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

54

fc

f

M
R

fcN
,, = (2)

However, this mark is not weighted. For each pair of a
feature f and an application domain d, we associate a
coefficient αf,d, which models the importance of f in d. The
more a feature is used within typical applications of the
domain, the bigger the coefficient:

∑
=

=
Fn

i di

df

df
1 ,

,

, β

βα (3)

where :
– βf,d is the total number of occurrence of the feature f in
typical applications of the domain d.
– nF is the total number of features involved in the test.
Therefore, the coefficient αf,d represents the occurrence
proportion of the feature of interest f among all the
features.
Hence, given a feature f, a card c and a domain d, the
“weighted mark” Wc,f,d is computed as follows :

Wc,f,d = Nc,f × αf,d (4)

The “global mark” Pc,d for a card c and for a domain d is
then the sum of all weighted marks for the card. A general
domain independent note for a card is computed as the
mean of all the domain dependant marks.

Figure 4 shows some significant byte-codes computed for
a card and compared to the reference tests regarding the
financial domain. Whereas, Figure 5 shows the global
results obtained for a tested card. Based on the results of
Figure 5, our tested card seems to be dedicated for
financial use.

Fig. 4 An example of a financial-dependent mark

Fig. 5 Computing a global performance mark

4. Validation of the tests

4.1 Statistical correctness of the measurements

The expected distribution of any measurement is a normal
distribution. The results being time values, if the
distribution is normal, then, according to Lilja [8], the
arithmetic mean is an acceptable representative time value
for a certain number of measurements (Lilja recommends

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

55

at least 30 measurements). Nevertheless, Rehioui [12]
pointed out that the results obtained via methods similar to
ours were not normally distributed on IBM JCOP41 cards.
Erdmann [6] cited similar problems with Infineon smart
cards. When we measure both the reference test and the
operation test on several smart cards by different providers
using different CADs on different OSs, none of the time
performances had a normal distribution (see Figure 6 for a
sample reference test performed on a card). The results
were similar from one card to another in terms of
distribution, even for different time values, and for
different loop sizes. Changes in CAD, in host-side JVM,
in task priority made no difference on the experimental
distribution curve. Testing the cards on Linux and on
Windows XP or Windows Vista, on the other side,
showed differences. Indeed, the recurring factor when
measuring the performances with a terminal running
Linux with PC/SC Lite and a CCID driver is the gap
between peaks of distribution. The peaks are often
separated by 400ms and 100 ms steps which match some
parts of the public code of PC/SC Lite and the CCID
driver. With other CADs, the distribution shows similar
steps with respect to the CAD driver source code. The
peaks in the distribution from the measurements obtained
on Windows are separated by 0.2 ms steps (see Figure 7).
Without having access to neither the source code of the
PC/SC implementation on Windows nor the driver source
codes, we can deduce that there must be some similarities
in the source codes between the proprietary versions and
the open source versions.
In order to check the normality of the results, we isolated
some of the peaks of some distribution obtained on our
measurements and we used the resulting data set. The
Shapiro-Wilk test is a well established statistical test used
to verify the null hypothesis that a sample of data comes
from a normally distributed population. The result of such
a test is a number W ∈ [0, 1], with W close to 1 when the
data is normally distributed. No set of value obtained by
isolating a peak within a distribution gave us a satisfying
W close to 1. For instance, considering the peak in Figure
8, W = 0.8442, which is the highest value for W that we
observed, with other values ranging as low as W = 0.1384.
We conclude that the measurements we obtain, even if we
consider a peak of distribution, are not normally
distributed.

4.2 Validation through a precision CAD

We used a Micropross MP300 TC1 reader to verify the
accuracy of our measurements. This is a smart card test
platform, that is designed specifically to give accurate
results, most particularly in terms of time analysis.

The results here are seemingly unaffected by noises on the
host machine. With this test platform, we can precisely
monitor the polarity changes on the contact of the smart
card, that mark the I/Os.
We measured the time needed by a given smart card to
reply to the same APDUs that we used with a regular
CAD. We then tested the measured time values using the
Shapiro-Wilk test, we observed W ≥ 0.96, much closer to
what we expected in the first place. So we can assume that
the values are normally distributed for both the operation
measurement and the reference measurement.

We subtracted each reference measurement value from
each sadd operation measurement value, divided by the
loop size to get a time values set that represents the time
performance of an isolated sadd bytecode. Those new time
values are normally distributed as well (W = 0.9522). On
the resulting time value set, the arithmetic mean is
10611.57 ns and the standard deviation is 16.19524.
According to [6], since we are dealing with a normal
distribution, this arithmetic mean is an appropriate
evaluation of the time needed to perform a sadd byte code
on this smart card. Using a more traditional CAD (here, a
Cardmann 4040, but we tried five different CADs) we
performed 1000 measurements of the sadd operation test
and 1000 measurements of the corresponding reference
test. By subtracting each value obtained with the reference
test from each of the values of the sadd operation test, and
dividing by the loop size, we produced a new set of
1000000 time values. The new set of time values has an
arithmetic mean of 10260.65 ns and a standard deviation
of 52.46025.

The value we found with a regular CAD under Linux and
without priority modification is just 3.42% away from the
more accurate value found with the precision reader.
Although this is a set of measurements that are not
normally distributed (W = 0.2432), the arithmetic mean of
our experimental noisy measurements seems to be a good
approximation of the actual time it takes for this smart
card to perform a sadd. The same test under Windows
Vista gave us a mean time of 11380.83 ns with a standard
deviation of 100.7473, that is 7,24% away from the
accurate value.
We deduce that our data are noisy and faulty but despite a
potentially very noisy test environment, our time
measurements always provide a certain accuracy and a
certain precision.

5. Conclusion

With the wide use of Java in smart card technology, there
is a need to evaluate the performance and characteristics
of these platforms in order to ascertain whether they fit the

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

56

requirements of the different application domains. For the
time being, there is no other open source benchmark
solution for Java Card. The objective of our project [10] is
to satisfy this need by providing a set of freely available
tools, which, in the long term, will be used as a benchmark
standard. In this paper, we have presented the overall
benchmarking framework. Despite the noise, our
framework achieves some degree of accuracy and
precision. Our benchmarking framework does not need a
costly reader to accurately evaluate the performance of a
smart card. Java Card 3.0 is a new step forward for this
community. Our framework should still be relevant to the
classic edition of this platform, but we have yet to test it.

Fig. 6 Measurements of a reference test as the tests proceed under Linux,
and the corresponding distribution curve L = 412

Fig. 7 Distribution of sadd operation measurements using Windows
Vista, and a close up look at the distribution (L = 902)

Fig. 8 Some Distribution of the measurement of a reference test: close up
look at a peak in distribution L = 412

References
[1] Java card 3.0 specification, March 2008.
[2] Pierrick Arlot. Le marché de la carte à puce ne connaît pas la crise.

Technical report, Electronique international, 2008.
[3] Zhiqun Chen, Java Card Technology for Smart Cards: Architecture

and Programmer’s Guide, Addison Wesley 2000.
[4] Jordy Castellà-Roca, Josep Domingo-Ferrer, Jordi Herrera-

Joancomati, and Jordi Planes. A performance comparison of Java
Cards for micropayment implementation. In CARDIS, pages 19–38,
2000.

[5] Jean-Michel Douin, Pierre Paradinas, and Cédric Pradel. Open
Benchmark for Java Card Technology. In e-Smart Conference,
September 2004.

[6] Monika Erdmannn. Benchmarking von Java Cards. Master’s thesis,
Institut für Informatik der Ludwig-Maximilians-Universität
München, 2004.

[7] Mario Fischer. Vergleich von Java und native-chipkarten
toolchains, benchmarking, messumgebung. Master’s thesis, Institut
für Informatik der Ludwig-Maximilians-Universität München,
2006.

[8] David J. Lilja. Measuring Computer Performance: A Practitioner’s
Guide. Cambridge University Press, 2000.

[9] Constantinos Markantonakis. Is the performance of smart card
cryptographic functions the real bottleneck? In 16th international
conference on Information security: Trusted information: the new
decade challenge, volume 193, pages 77 – 91. Kluwer 2001.

[10] The MESURE project website. http://mesure.gforge.inria.fr.
[11] Pierre Paradinas, Samia Bouzefrane, and Julien Cordry.

Performance evaluation of Java card bytecodes. In Springer, editor,
Workshop in Information Security Theory and Practices (WISTP),
Heraklion, Greece, 2007.

[12] Karima Rehioui. Java Card Performance Test Framework,
September 2005. Université de Nice, Sophia-Antipolis, IBM
Research internship.

[13] JSR 268 : http://jcp.org/en/jsr/detail?id=268

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

57

Samia Bouzefrane is an associate professor at the CNAM
(Conservatoire National des Arts et Métiers) in Paris. She received
her Ph. D. in Computer Science in 1998 at the University of
Poitiers (France). She joined the CEDRIC Laboratory of CNAM on
September 2002 after 4 years at the University of Le Havre. After
many research works on real-time systems, she is interested in
smart card area. Furthermore, she is the author of two books: a
French/English/Berber dictionary (1996) and a book on operating
systems (2003). Currently, she is a member of the ACM-SIGOPS,
France Chapter.

Julien Cordry is a PhD student from the SEMpIA team
(embedded and mobile systems towards ambient intelligence) of
the CNAM in Paris. The topic of his research is the performance
evaluation of Java Card platforms. He took part in the MESURE
project, a collaborative work between the CNAM, the university of
Lille and Trusted Labs. He gives lecturers at the CNAM, at the
ECE (Ecole Centrale d'Electronique) and at the EPITA (a computer
science engineering school). The MESURE project has received
on September 2007 the Isabelle Attali Award from INRIA, which
honors the most innovative work presented during “e-Smart”
Conference.

Pierre Paradinas is currently the Technology-Development
Director at INRIA, France. He is also Professor at CNAM (Paris)
where he manages the "chair of Embedded and Mobile Systems".
He received a PhD in Computer Science from the University of
Lille (France) in 1988 on smart cards and health application. He
joined Gemplus in 1989, and was successively researcher, internal
technology audit, Advanced Product Manager while he launched
the card based on Data Base engine (CQL), and the Director of
a common research Lab with universities and National Research
Center (RD2P). He sets up the Gemplus Software Research Lab in
1996. He was also appointed technology partnership Director in
2001 based in California until June 2003. He was the Gemplus
representative at W3C, ISO/AFNOR, Open Card Framework and
Java Community Process, co-editor of the part 7 of ISO7816,
Director of the European funded Cascade project where the first
32-Risc microprocessor with Java Card was issued.

