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Abstract 
The advent of the Java Card standard has been a major turning 
point in smart card technology. With the growing acceptance of 
this standard, understanding the performance behavior of these 
platforms is becoming crucial. To meet this need, we present in 
this paper a novel benchmarking framework to test and evaluate 
the performance of Java Card platforms. MESURE tool is the 
first framework which accuracy and effectiveness are 
independent from the particular Java Card platform tested and 
CAD used. 
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1. Introduction 

With more than 5 billion copies in 2008 [2], smart 
cards are an important device of today’s information 
society. The development of the Java Card standard made 
this device even more popular as it provides a secure, 
vendor-independent, ubiquitous Java platforms for smart 
cards. It shortens the time-to-market and enables 
programmers to develop smart card applications for a wide 
variety of vendors products. In this context, understanding 
the performance behavior of Java Card platforms is 
important to the Java Card community (users, smart card 
manufacturers, card software providers, card users, card 
integrators, etc.). Currently, there is no solution on the 
market which makes it possible to evaluate the 
performance of a smart card that implements Java Card 
technology. In fact, the programs which realize this type 
of evaluations are generally proprietary and not available 
to the whole of the Java Card community. Hence, the only 
existing and published benchmarks are used within 
research laboratories (e.g., SCCB project from CEDRIC 
laboratory [5] or IBM Research [12]). However, 
benchmarks are important in the smart card area because 
they contribute in discriminating companies products, 

especially when the products are standardized. In this 
paper, on one hand we propose a general benchmarking 
solution through different steps that are essential for 
measuring the performance of the Java Card platforms; on 
the other hand we validate the obtained measurements 
from statistical and precision CAD (Card Acceptance 
Device) points of view. 

The remainder of this paper is organised as follows. 
In Section 2, we describe briefly some benchmarking 
attempts in the smart card area. In Section 3, an overview 
of the benchmarking framework is given. Section 4 
analyses the obtained measurements using first a statistical 
approach, and then a precision reader, before concluding 
the paper in Section 5.   

2. Java-Card Benchmarking State of the Art 

Currently, there is no standard benchmark suite which can 
be used to demonstrate the use of the Java Card Virtual 
Machine (JCVM) and to provide metrics for comparing 
Java Card platforms. In fact, even if numerous 
benchmarks have been developed around the Java Virtual 
Machine (JVM), there are few works that attempt to 
evaluate the performance of smart cards. The first 
interesting initiative has been done by Castellà et al. in [4] 
where they study the performance of micro-payment for 
Java Card platforms, i.e., without PKI (Public Key 
Infrastructure). Even if they consider Java Card platforms 
from distinct manufacturers, their tests are not complete as 
they involve mainly computing some hash functions on a 
given input, including the I/O operations. A more recent 
and complete work has been undertaken by Erdmann in 
[6]. This work mentions different application domains, 
and makes the distinction between I/O, cryptographic 
functions, JCRE (Java Card Run Time Execution) and 
energy consumption. Infineon Technologies is the only 
provider of the tested cards for the different application 
domains, and the software itself is not available. The work 
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of Fischer in [7] compares the performance results given 
by a Java Card applet with the results of the equivalent 
native application. Another interesting work has been 
carried out by the IBM BlueZ secure systems group and it 
was detailed in a Master thesis [12]. JCOP framework has 
been used to perform a series of tests to cover the 
communication overhead, DES performance and reading 
and writing operations into the card memory (RAM and 
EEPROM). Markantonakis in [9] presents some 
performance comparisons between the two most widely 
used terminal APIs, namely PC/SC and OCF. 
Comparatively to these works, our benchmarking 
framework not only covers the different functionalities of 
a Java Card platform but it also provided as a set of open 
source code freely accessible on-line. 

3. General benchmarking framework 

3.1 Introduction 

Our research work falls under the MESURE project 
[10], a project funded by the French administration 
(Agence Nationale de Recherche), which aims at 
developing a set of open source tools to measure the 
performance of Java Card platforms. These benchmarking 
tools focus on Java Card 2.2 functionalities even if Java 
Card 3.0 specifications have been published since March 
2008 [1], principally because until now there is no Java 
Card 3.0 platform in the market except for some 
prototypes such as the one demonstrated by Gemalto 
during the Java One Conference in June 2008. Since Java 
Card 3.0 proposes two editions: connected (web oriented) 
edition and classic edition, our measuring tools can be 
reused to benchmark Java Card 3.0 classic edition 
platforms. 

3.2 Addressed issues 

Only features related to the normal use phase of Java 
Card applications will be considered here. Excluded 
features include installing, personalizing or deleting an 
application since they are of lesser importance from user’s 
point of view and performed once. 

Hence, the benchmark framework enables 
performance evaluation at three levels: 

– The VM level: to measure the execution time of the 
various instructions of the virtual machine (basic 
instructions), as well as subjacent mechanisms of the 
virtual machine (e.g., reading and writing the memory). 

– The API level: to evaluate the functioning of the 
services proposed by the libraries available in the 
embedded system (various methods of the API, namely 
those of Java Card and GlobalPlatform). 

– The JCRE (Java Card Runtime Execution) level: to 
evaluate the non-functional services, such as the 
transaction management, the method invocation in the 
applets, etc. 

We will not take care of features like the I/Os or the 
power consumption because their measurability raises 
some problems such as: 

– For a given smart card, distinct card readers may 
provide different I/Os measurements. 

– Each part of an APDU is managed differently on a 
smart card reader. The 5 bytes header is read first, and the 
following data can be transmitted in several way: 1 
acknowledge for each byte or not, delay or not before 
noticing the status word, etc. 

– The smart card driver used by the workstation 
generally induces more delay on the measurement than the 
smart card reader itself. 

 

3.3 The benchmarking overview 

The set of tests are supplied to benchmark Java Card 
platforms available for anybody and supported by any card 
reader. The various tests thus have to return accurate 
results, even if they are not executed on precision readers. 
We reach this goal by removing the potential card reader 
weakness (in terms of delay, variance and predictability) 
and by controlling the noise generated by measurement 
equipment (the card reader and the workstation). 
Removing the noise added to a specific measurement can 
be done with the computation of an average value 
extracted from multiple samples. As a consequence, it is 
important on the one hand to perform each test several 
times and to use basic statistical calculations to filter the 
trustworthy results. On the other hand, it is necessary to 
execute several times in each test the operation to be 
measured in order to fix a minimal duration for the tests (> 
1 second) and to expect getting precise results. We defined 
a set of modules as part of the benchmarking framework. 
The benchmarks have been developed under the Eclipse 
environment based on JDK 1.6, with JSR268 [13] that 
extends Java Standard Edition with a package that defines 
methods within Java classes to interact with a smart card. 
According to the ISO 7816 standard, since a smart card 
has no internal clock, we are obliged to measure the time a 
Java Card platform takes to answer to an APDU command, 
and to use that measure to deduce the execution time of 
some operations.  

 
The benchmarking development tool covers two parts as 
described in Figure 1: the script part and the applet part. 
The script part, entirely written in Java, defines an abstract 
class that is used as a template to derive test cases 
characterized by relevant measuring parameters such as, 
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the operation type to measure, the number of loops, etc. A 
method run() is executed in each script to interact with the 
corresponding test case within the applet. Similarly, on the 
card is defined an abstract class that defines three 
methods: 
– a method setUp() to perform any memory allocation 
needed during the lifetime test case. 
– a method run() used to launch the tests corresponding to 
the test case of interest, and 
– a method cleanUp() used after the test is done to 
perform any clean-up. 

 

Fig. 1 The script part and the Applet part 

3.4 Modules 

In this section, we describe the general benchmark 
framework (see Figure 2) that has been designed to 
achieve the MESURE goal. The methodology consists of 
different steps. The objective of the first step is to find the 
optimal parameters used to carry out correctly the tests. 
The tests cover the Virtual Machine (VM) operations and 
the API methods. The obtained results are filtered by 
eliminating non-relevant measurements and values are 
isolated by drawing aside measurement noise. A profiler 
module is used to assign a mark to each benchmark type, 
hence allowing us to establish a performance index for 
each smart card profile used. In the following subsections, 
we detail every module composing the framework. 
 
The bulk of the benchmark consists in performing time 
execution measurements when we send APDU commands 
from the computer through the CAD to the card. Each test 
(through the run method) is performed within the card a 
certain number of times (Y) to ensure reliability of the 
collected execution times, and within each run method, 
we perform a certain number of loops (L). L is coded on 
the byte P2 of the APDU commands which are sent to the 
on-card applications. The size of the loop performed on 

the card is L = (P2)2 since L is so great to be represented 
with one byte. 
 
The Calibrate Module: computes the optimal parameters 
(such as the number of loops) needed to obtain 
measurements of a given precision. 

 

Fig. 2 Overall Architecture 

Benchmarking the various different byte-codes and API 
entries takes time. At the same time, it is necessary to be 
precise enough when it comes to measuring those 
execution times. Furthermore, the end user of such a 
benchmark should be allowed to focus on a few key 
elements with a higher degree of precision. It is therefore 
necessary to devise a tool that let us decide what are the 
most appropriate parameters for the measurement. 
 
Figure 3 depicts the evolution of the raw measurement, as 
well as its standard deviation, as we take 30 measurements 
for each available loop size of a test applet. As we can see, 
the measured execution time of an applet grows linearly 
with the number of loops being performed on the card (L). 
On the other hand, the perceived standard deviation on the 
different measurements varies randomly as the loop size 
increases, though with less and less peaks. Since a bigger 
loop size means a relatively more stable standard 
deviation, we use both the standard deviation and the 
mean measured execution time as a basis to assess the 
precision of the measurement.  
 
To assess the reliability of the measurements, we compare 
the value of the measurement with the standard deviation. 
The end user will need to specify this ratio between the 
average measurement and the standard deviation, as well 
as an optional minimum accepted value, which is set at 
one second by default. The ratio refers to the precision of 
the tests while the minimal accepted value is the minimum 



IJCSI International Journal of Computer Science Issues, Vol. 1, 2009 

 

52 

duration to perform each test. Hence, with both the ratio 
and the minimal accepted value, as specified by the end 
user, we can test and try different values for the loop size 
to binary search and approach the ideal value. 

 

 

Fig. 3 Raw measurements and Standard deviation 

 
The Bench Module:  For a number of cycles, defined by 
the calibrate module, the bench module computes the 
execution time for: 

– The VM byte codes 
– The API methods 
– The JCRE mechanisms (such as transactions). 
 

The Filter Module: Experimental errors lead to noise in 
the raw measurement experiments. This noise leads to 
imprecision in the measured values, making it difficult to 

interpret the results. In the smart card context, the noise is 
due to crossing the platform, the CAD and the terminal 
(measurement tools, Operating System, hardware). 
The issues become: how to interpret the varying values 
and how to compare platforms when there is some noise in 
the results. The filter module uses a statistical design to 
extract meaningful information from noisy data. From 
multiple measurements for a given operation, the filter 
module uses the mean value µ of the set of measurements 
to guess the actual value, and the standard deviation σ of 
the measurements to quantify the spread of the 
measurements around the mean. Moreover, since the 
measurements respect the normal Gaussian distribution, a 
confidence interval [µ − (n × σ), µ + (n × σ)], within 
which the confidence level is of 1−a, is used to help 
eliminate the measurements outside the confidence 
interval, where n and a are respectively the number of 
measurements and the temporal precision, and they are 
related by traditional statistical laws. 

 
The Extractor Module: is used to isolate the execution 
time of the features of interest among the mass of raw 
measurements that we gathered so far. Benchmarking 
byte-codes and API methods within Java Card platforms 
requires some subtle means in order to obtain execution 
results that reflect as accurately as possible the actual 
isolated execution time of the feature of interest. This is 
because there exists a significant and non-predictable 
elapse of time between the beginning of the measure, 
characterized by the starting of the timer on the computer, 
and the actual execution of the byte-code of interest. This 
is also the case the other way around. Indeed, when 
performing a request on the card, the execution call has to 
travel several software and hardware layers down to the 
card’s hardware and up to the card’s VM (vice versa upon 
response). This non-predictability is mainly dependent on 
hardware characteristics of the benchmark environment 
(such as the CAD, PC’s hardware, etc), the Operating 
System level interferences, services and also on the PC’s 
VM. 
To minimize the effect of these interferences, we need to 
isolate the execution time of the features of interest, while 
ensuring that their execution time is sufficiently important 
to be measurable. The maximization of the byte-codes 
execution time requires a test applet structure with a loop 
having a large upper bound, which will execute the byte-
codes for a substantial amount of time. On the other hand, 
to achieve execution time isolation, we need to compute 
the isolated execution time of any auxiliary byte-code 
upon which the byte-code of interest is dependent. For 
example if sadd is the byte-code of interest, then the byte-
codes that need to be executed prior to its execution are 
those in charge of loading its operands onto the stack, like 
two sspush. Thereafter we subtract the execution time of 
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an empty loop and the execution time of the auxiliary 
byte-codes from that of the byte-code of interest (opn in 
Table 1) to obtain the isolated execution time of the byte-
code. As presented in Table 1, the actual test is performed 
within a method run to ensure that the stack is freed after 
each invocation, thus guaranteeing memory availability. 

Table 1: The framework for a bytecode opn 

Java Card Applet Test Case 

process() { 
    i = 0 
    while i <= L 
      do { 
           run() 
           i = i+1 
        } 
} 

run() { 
   op0 
   op1 
  . 
  . 
  . 
   opn-1 
   opn 
} 

 
In Table 1: 
- L represents the chosen upper bound, 
- opn represents the byte-code of interest, 
- opi for i ∈ [0..n-1] represents the auxiliary byte-codes 
necessary to perform the byte-code opn. 
 
To compute the mean isolated execution time of opn we 
need to perform the following calculation:  

∑
−

=

− −=
1

0

)()( )()(
n

i
iL

Emptyloopmopm
n opMopM LnL     (1) 

 
Where : 
 
‐  )( iopM is the mean isolated execution time of the byte-
code opi 
‐  )( nL opm  is the mean global execution time of the byte-
code opn, including interferences coming from other 
operations performed during the measurement, both on the 
card and on the computer, with respect to a loop size L. 
These other operations represent for example auxiliary 
byte-codes needed to execute the byte-code of interest, or 
OS and JVM specific operations. The mean is computed 
over a significant number of tests. It is the only value that 
is experimentally measured. 
- Emptyloop represents the execution of a case where the 
run method does nothing. 

 
The formula (1) implies that prior to computing )( nopM we 

need to compute )( iopM  for i ∈ [0..n-1]. 
 
The Profiler Module: In order to define performance 
references, our framework provides measurements that are 

specifically adapted to one of the following application 
domains: 
– Banking applications 
– Transport applications, and 
– Identity applications. 
A JCVM is instrumented in order to count the different 
operations performed during the execution of a script for a 
given application. More precisely, this virtual machine is a 
simulated and proprietary VM executing on a workstation. 
This instrumentation method is rather simple to implement 
compared to a static analysis based methods, and can 
reach a good level of precision, but it requires a detailed 
knowledge of the applications and of the most significant 
scripts. 
Some features related to byte-codes and API methods 
appeared to be necessary and the simulator was 
instrumented to give useful information such as: 
– for the API methods : 

• the types and values of method parameters 
• the length of arrays passed as parameters, 

– for the byte-codes : 
• the type and duration of arrays for array related byte-
codes (load, astore, arraylength),  
• the transaction status when invoking the byte-code. 

 
A simple utility tool has been developed to parse the log 
files generated by the instrumented JCVM, which builds a 
human-readable tree of method invocations and byte-code 
usage. Thus, with the data obtained from the instrumented 
VM, we attribute for each application domain a number 
that represents the performance of some representative 
applets of the domain on the tested card. Each of these 
numbers is then used to compute a global performance 
mark. We use weighted means for each domain dependent 
mark. Those weights are computed by monitoring how 
much each Java Card feature is used within a regular use 
of standard applets for a given domain. For instance, if we 
want to test the card for a use in transport applications, we 
will use the statistics that we gathered with a set of 
representative transport applets to evaluate the impact of 
each feature of the card. 
 
We are considering the measure of the feature f on a card c 
for an application domain d. For a set of nM extracted 
measurements M1c,f, …, MnMc,f  considered as significant 

for the feature f, we can determine a mean fcM ,  
modelling the performance of the platform for this feature. 
Given nC cards for which the feature f was measured, it is 
necessary to determine the reference mean execution time 
Rf , which will then serve as a basis of comparison for all 
subsequent test. Hence the “mark” Nc,f of a card c for a 

feature f, is the relation between Rf and fcM ,  : 
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However, this mark is not weighted. For each pair of a 
feature f and an application domain d, we associate a 
coefficient αf,d, which models the importance of f in d. The 
more a feature is used within typical applications of the 
domain, the bigger the coefficient: 

∑
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i di
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,

, β

βα     (3) 

where : 
– βf,d is the total number of occurrence of the feature f in 
typical applications of the domain d. 
– nF is the total number of features involved in the test. 
Therefore, the coefficient αf,d represents the occurrence 
proportion of the feature of interest f among all the 
features. 
Hence, given a feature f, a card c and a domain d, the 
“weighted mark” Wc,f,d is computed as follows : 

Wc,f,d = Nc,f × αf,d   (4) 
 

The “global mark” Pc,d for a card c and for a domain d is 
then the sum of all weighted marks for the card. A general 
domain independent note for a card is computed as the 
mean of all the domain dependant marks. 
 
Figure 4 shows some significant byte-codes computed for 
a card and compared to the reference tests regarding the 
financial domain. Whereas, Figure 5 shows the global 
results obtained for a tested card. Based on the results of 
Figure 5, our tested card seems to be dedicated for 
financial use. 
 

 
Fig. 4 An example of a financial-dependent mark  

 
 

 
Fig. 5 Computing a global performance mark 

4. Validation of the tests 

4.1 Statistical correctness of the measurements 

The expected distribution of any measurement is a normal 
distribution. The results being time values, if the 
distribution is normal, then, according to Lilja [8], the 
arithmetic mean is an acceptable representative time value 
for a certain number of measurements (Lilja recommends 
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at least 30 measurements). Nevertheless, Rehioui [12] 
pointed out that the results obtained via methods similar to 
ours were not normally distributed on IBM JCOP41 cards. 
Erdmann [6] cited similar problems with Infineon smart 
cards. When we measure both the reference test and the 
operation test on several smart cards by different providers 
using different CADs on different OSs, none of the time 
performances had a normal distribution (see Figure 6 for a 
sample reference test performed on a card). The results 
were similar from one card to another in terms of 
distribution, even for different time values, and for 
different loop sizes. Changes in CAD, in host-side JVM, 
in task priority made no difference on the experimental 
distribution curve. Testing the cards on Linux and on 
Windows XP or Windows Vista, on the other side, 
showed differences. Indeed, the recurring factor when 
measuring the performances with a terminal running 
Linux with PC/SC Lite and a CCID driver is the gap 
between peaks of distribution. The peaks are often 
separated by 400ms and 100 ms steps which match some 
parts of the public code of PC/SC Lite and the CCID 
driver. With other CADs, the distribution shows similar 
steps with respect to the CAD driver source code. The 
peaks in the distribution from the measurements obtained 
on Windows are separated by 0.2 ms steps (see Figure 7). 
Without having access to neither the source code of the 
PC/SC implementation on Windows nor the driver source 
codes, we can deduce that there must be some similarities 
in the source codes between the proprietary versions and 
the open source versions. 
In order to check the normality of the results, we isolated 
some of the peaks of some distribution obtained on our 
measurements and we used the resulting data set. The 
Shapiro-Wilk test is a well established statistical test used 
to verify the null hypothesis that a sample of data comes 
from a normally distributed population. The result of such 
a test is a number W ∈ [0, 1], with W close to 1 when the 
data is normally distributed. No set of value obtained by 
isolating a peak within a distribution gave us a satisfying 
W close to 1. For instance, considering the peak in Figure 
8, W = 0.8442, which is the highest value for W that we 
observed, with other values ranging as low as W = 0.1384. 
We conclude that the measurements we obtain, even if we 
consider a peak of distribution, are not normally 
distributed. 

4.2 Validation through a precision CAD 

We used a Micropross MP300 TC1 reader to verify the 
accuracy of our measurements. This is a smart card test 
platform, that is designed specifically to give accurate 
results, most particularly in terms of time analysis. 
 

The results here are seemingly unaffected by noises on the 
host machine. With this test platform, we can precisely 
monitor the polarity changes on the contact of the smart 
card, that mark the I/Os. 
We measured the time needed by a given smart card to 
reply to the same APDUs that we used with a regular 
CAD. We then tested the measured time values using the 
Shapiro-Wilk test, we observed W ≥ 0.96, much closer to 
what we expected in the first place. So we can assume that 
the values are normally distributed for both the operation 
measurement and the reference measurement. 
 
We subtracted each reference measurement value from 
each sadd operation measurement value, divided by the 
loop size to get a time values set that represents the time 
performance of an isolated sadd bytecode. Those new time 
values are normally distributed as well (W = 0.9522). On 
the resulting time value set, the arithmetic mean is 
10611.57 ns and the standard deviation is 16.19524. 
According to [6], since we are dealing with a normal 
distribution, this arithmetic mean is an appropriate 
evaluation of the time needed to perform a sadd byte code 
on this smart card. Using a more traditional CAD (here, a 
Cardmann 4040, but we tried five different CADs) we 
performed 1000 measurements of the sadd operation test 
and 1000 measurements of the corresponding reference 
test. By subtracting each value obtained with the reference 
test from each of the values of the sadd operation test, and 
dividing by the loop size, we produced a new set of 
1000000 time values. The new set of time values has an 
arithmetic mean of 10260.65 ns and a standard deviation 
of 52.46025. 
 
The value we found with a regular CAD under Linux and 
without priority modification is just 3.42% away from the 
more accurate value found with the precision reader. 
Although this is a set of measurements that are not 
normally distributed (W = 0.2432), the arithmetic mean of 
our experimental noisy measurements seems to be a good 
approximation of the actual time it takes for this smart 
card to perform a sadd. The same test under Windows 
Vista gave us a mean time of 11380.83 ns with a standard 
deviation of 100.7473, that is 7,24% away from the 
accurate value. 
We deduce that our data are noisy and faulty but despite a 
potentially very noisy test environment, our time 
measurements always provide a certain accuracy and a 
certain precision. 

5. Conclusion 

With the wide use of Java in smart card technology, there 
is a need to evaluate the performance and characteristics 
of these platforms in order to ascertain whether they fit the 
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requirements of the different application domains. For the 
time being, there is no other open source benchmark 
solution for Java Card. The objective of our project [10] is 
to satisfy this need by providing a set of freely available 
tools, which, in the long term, will be used as a benchmark 
standard. In this paper, we have presented the overall 
benchmarking framework. Despite the noise, our 
framework achieves some degree of accuracy and 
precision. Our benchmarking framework does not need a 
costly reader to accurately evaluate the performance of a 
smart card. Java Card 3.0 is a new step forward for this 
community. Our framework should still be relevant to the 
classic edition of this platform, but we have yet to test it. 
 

 

Fig. 6 Measurements of a reference test as the tests proceed under Linux, 
and the corresponding distribution curve L = 412 

 

Fig. 7 Distribution of sadd operation measurements using Windows 
Vista, and a close up look at the distribution (L = 902) 

 

 

Fig. 8 Some Distribution of the measurement of a reference test: close up 
look at a peak in distribution L = 412 
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