
IJCSI International Journal of Computer Science Issues, Vol. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

33

Self-Partial and Dynamic Reconfiguration Implementation for
AES using FPGA

Zine El Abidine ALAOUI ISMAILI and Ahmed MOUSSA

Innovative Technologies Laboratory,
National School of Applied Sciences,

Tangier, PBox 1818, Morocco

Abstract

This paper addresses efficient hardware/software implementation
approaches for the AES (Advanced Encryption Standard)
algorithm and describes the design and performance testing
algorithm for embedded system.
Also, with the spread of reconfigurable hardware such as FPGAs
(Field Programmable Gate Array) embedded cryptographic
hardware became cost-effective. Nevertheless, it is worthy to
note that nowadays, even hardwired cryptographic algorithms are
not so safe.
From another side, the self-reconfiguring platform is reported
that enables an FPGA to dynamically reconfigure itself under the
control of an embedded microprocessor. Hardware acceleration
significantly increases the performance of embedded systems
built on programmable logic. Allowing a FPGA-based
MicroBlaze processor to self-select the coprocessors uses can
help reduce area requirements and increase a system's versatility.
The architecture proposed in this paper is an optimal hardware
implementation algorithm and takes dynamic partially
reconfigurable of FPGA. This implementation is good solution to
preserve confidentiality and accessibility to the information in
the numeric communication.
Key words: Cryptography; Embedded systems; Reconfigurable
computing; Self-reconfiguration

1. Introduction

Today, ultra deep submicronic technologies offer high
scale density of integration for communication systems.
This growth in integration has been accompanied with
dramatically increase of complexity and transaction speed
of this systems. As a consequence, security becomes a
challenge and a critical issue especially for real time
applications where materiel and software resources are
very precious and necessary to provide a minimum of
service quality.

Indeed, today speed and computing power impose the
recourse to sophisticated and more complicated
cryptography algorithms for high level security. Full
software implementation is very heavy and slows down
considerably speed of the information exchange. From
another side, full hardware implementation is very
expensive in terms of area, power and can also deteriorate
speed of information transitions. This can be done
dynamically at run-time and without user interaction,
while the static part of the chip is not interrupted. The idea
we put into practice is a coarse-grained partially
dynamically reconfigurable implementation of a
cryptosystem.

Our prototype implementation consists of a FPGA which
is partially reconfigured at run-time to provide
countermeasures against physical attacks. The static part is
only configured upon system reset. Some advantages of
dynamic reconfiguration for cryptosystems have been
explored before [1, 2, 3]. In such systems, the main goal of
dynamic reconfigurability is to use the available hardware
resources in an optimal way. This is the first work that
considers using a coarse-grained partially dynamically
reconfigurable architecture in cryptosystems to prevent
physical attacks by introducing temporal and/or spatial
jitter [4, 5].

This paper presents an optimal implementation of the AES
(Advanced Encryption Standard) cryptography algorithm
by the use of a dynamic partially reconfigurable FPGA [6].
The reconfigurable aspect adapts the allowed basic bloc
size to both the loop number and the size of the provided
information, and makes all the AES blocs reconfigurable.
The paper is organized as follows: section 2 describes the
AES algorithm. Reconfigurable FPGA and self
reconfigurable methodology is presented in section 3, 4
and 5. The proposed methodology of algorithm

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009

34

implementation is given in section 6. Finally, results are
presented and illustrated in section 7.

2. AES Encryption Algorithm

The National Institute of Standards and Technology (NIST)
has initiated a process to develop a Federal Information
Processing Standard (FIPS) for the AES, specifying an
Advanced Encryption Algorithm to replace the Data
Encryption Standard (DES) which expired in 1998 [6,7].
NIST has solicited candidate algorithms for inclusion in
AES, resulting in fifteen official candidate algorithms of
which five have been selected as finalists. Unlike DES,
which was designed specifically for hardware
implementations, one of the design criteria for AES
candidate algorithms is that they can be efficiently
implemented in both hardware and software. Thus, NIST
has announced that both hardware and software
performance measurements will be included in their
efficiency testing. However, prior to the third AES
conference in April 2000, virtually all performance
comparisons have been restricted to software
implementations on various platforms [5]. In October 2000,
NIST chose Rijndael as the Advanced Encryption
Algorithm.

The AES use the Rijndael encryption algorithm with
cryptography keys of 128, 192, 256 bits. As in most of the
symmetrical encryption algorithms, the AES algorithm
manipulates the 128 bits of the input data, disposed in a 4
by 4 bytes matrix, with byte substitution, bit permutation
and arithmetic operations in finite fields, more specifically,
addition and multiplications in the Galois Field 28
(GF(28)). Each set of operations is designated by round.
The round computation is repeated 10, 12 or 14 times
depending on the size of the key (128, 192, 256 bits
respectively). The coding process includes the
manipulation of a 128-bit data block through a series of
logical and arithmetic operations. In the computation of
both the encryption and decryption, a well defined order
exists for the several operations that have to be performed
over the data block.

The following describes in detail the operation performed
by the AES encryption in each round. The State variable
contains the 128-bit data block to be encrypted. In the
Encryption part, first the data block to be encrypted is split
into an array of bytes called as state matrix. This algorithm
is based on round function, and different combinations of
the algorithm are structured by repeating the round
function different times. Each round function contains
uniform and parallel four steps: SubBytes, ShiftRows,
MixColumn and AddRoundKey transformation and each
step has its own particular functionality. This is

represented by this flow diagram. Here the round key is
derived from the initial key and repeatedly applied to
transform the block of plain text into cipher text blocks.
The block and the key lengths can be independently
specified to any multiple of 32 bits, with a minimum of
128 and a maximum of 256 bits. The repeated application
of a round transformation state depends on the block
length and the key length. For various block length and
key length variable’s value are given in table1.
The number of rounds of AES algorithm to be performed
during the execution of the algorithm is dependent on the
key size. The number of rounds, Key length and Block
Size in the AES standard is summarized in Table 1 [8].

Table 1: Margin specifications Key-Block-Round Combinations for AES

Key length
(Nk round)

Key length
(Bits)

Number of
Round (Nr)

AES-128 4 128 10
AES-192 6 192 12
AES-256 8 256 14

As mentioned before the coding process consists on the
manipulation of the 128-bit data block through a series of
logical and arithmetic operations, repeated a fixed number
of times. This number of rounds is directly dependent on
the size of the cipher key. In the computation of both the
encryption and decryption, a well defined order exists for
the several operations that have to be performed over the
data block. The encryption/decryption process runs as
follows in figure 1.

Fig.1: AES algorithm

(a) Encryption Structure (b) Decryption Structure

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

35

The next subsections describe in detail the operation
performed by each of the functions used above, for the
particular case of the encryption.

2.1 The SubBytes Transformation

The SubBytes transformation is a non-linear byte
substitution that acts on every byte of the state in isolation
to produce a new byte value using an S-box substitution
table. The action of this transformation is illustrated in
Figure 2 for a block size of 4.
This substitution, which is invertible, is constructed by
composing two transformations:
- First the multiplicative inverse in the finite field

described earlier, with the {00} element mapped to itself.
- Second the affine transformation over GF(28) defined by:

 (1)

for 0 ≤ i < 8 where bi is the ith bit of the byte, and ci is the
ith bit of a byte c with the value {63} or {01100011}. Here
and elsewhere, a prime on a variable b’ indicates that its
value is to be updated with the value on the right.

Fig. 2. SubBytes acts on every byte in the state

In matrix form the affine transformation element of this S-
box can be expressed as:

2.2 The ShiftRows Transformation

The ShiftRows transformation operates individually on
each of the last three rows of the state by cyclically
shifting the bytes in the row such that:

 (2)

This has the effect of moving bytes to lower positions in
the row except that the lowest bytes wrap around into the

top of the row (note that a prime on a variable indicates an
updated value). The action of this transformation is
illustrated in Figure 3.

Fig. 3: Proposed beam former ShiftRows() cyclically shifts the last three
rows in the State.

2.3 The MixColumns Transformation

The MixColumns transformation acts independently on
every column of the state and treats each column as a four-
term polynomial. The columns are considered as
polynomials over GF(28) and multiplied modulo x4+1 with
a fixed polynomial a(x), given by

a(x) = {03}x3+ {01}x2+ {01}x + {02} (3)
This equation can be written as a matrix multiplication.
Let:

S’(x) =a(x)X S(x): (4)
In matrix form the transformation used given in where all
the values are finite field elements as discussed in Section
2.

 (5)

The action of this transformation is illustrated in Figure 3.

Fig. 4: MixColumns() operates on the State column-by-column.

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009

36

2.4 The AddRoundKey Transformation

In the AddRoundKey transformation Nb words from the
key schedule, described later, are each added (XOR) into
the columns of the state so that:

 (6)

Where the key schedule words [7] will be described later
and round is the round number in the range 1≤ round ≤Nr.
The round number starts at 1 because there is an initial key
addition prior to the round function. The action of this
transformation is illustrated in Figure 5.

Fig.5: AddRoundKey() XORs each column of the State with a word from

the key schedule.

3. Reconfigurable Hardware Technology

Field Programmable Gate Array (FPGA) is an integrated
circuit that can be bought off the shelf and reconfigured by
designers themselves. With each reconfiguration, which
takes only a fraction of a second, an integrated circuit can
perform a completely different function. FPGA consists of
thousands of universal building blocks, known as
Configurable Logic Blocks (CLBs), connected using
programmable interconnects. Reconfiguration is able to
change a function of each CLB and connections among
them, leading to a functionally new digital circuit.
In recent years, FPGAs have been used for reconfigurable
computing, when the main goal is to obtain high
performance at a reasonable coast at the hardware
implemented algorithms. The main advantage of FPGAs is
their reconfigurability, i.e. they can be used for different
purposes at different stages of computation and they can
be.
Besides Cryptography, application of FPGAs can be found
in the domains of evolvable and biologically-inspired
hardware, network processor, real-time system, rapid
ASIC prototyping, digital signal processing interactive
multimedia, machine vision, computer graphics, robotics,
embedded applications, and so forth. In general, FPGAs
tend to be an excellent choice when dealing with
algorithms that can benefit from the high parallelism
offered by the FPGA fine grained architecture.

Significant technical advances have led to architecture to
combine FPGAs logic blocks and interconnect matrices,
with one or more microprocessors and memory blocks
integrated on a single chip [9, 10]. This hybrid technology
is called Configurable System on Chip (CSoC). Example
for the CSoC technology are the Xilinx Virtex Pro II, the
virtex 4, and virtex 5 FPGAs families, with include one or
more hard-core Power PC processor embedded along with
the FPGA’s logic fabric.
Alternatively, soft processor cores that are implemented
using part of the FPGAs logic fabric are also available.
This approach is more flexible and less costly than the
CSoC technology [11]. Many soft processors core are now
available in commercial products. Some of the most
notorious examples are: Xilinx 32-bits MicroBlaze and
PicoBlaze, and the Altera Nios and 32-bits Nios II
processors. These soft processor cores are configurable in
the since that the designer can introduce new custom
instructions or data paths. Furthermore, unlike the hard-
core processors included in the Configurable System-on-
Chip (CSoC) technology, designers can add as many soft
processor cores as they may need. (Some designs could
include 64 such processors or even more).

4. Dynamic Partial Reconfiguration

The incredible growth of FPGA capabilities in recent years
and the new features included on them has opened many
new investigation fields. One of the more interesting ones
concerns partial reconfiguration and its possibilities [12,9].
This feature allows the device to be partially reconfigured
while the rest of the device continues its normal operation.
Partial reconfiguration is the ability to reconfigure
preselected areas of an FPGA anytime after its initial
configuration while the design is operational. By taking
advantage of partial reconfiguration, hardware can be
shared between various applications and upgraded
remotely without rebooting and thus resource utilization
can be increased [12].

Fig. 6: Reconfigurable FPGA structure

FPGA devices are partially reconfigured by loading only a
subset of configuration frames into the FPGA internal
configuration memory. The Xilinx Virtex-II Pro FPGAs

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

37

allow partial reconfiguration in two forms: static and
dynamic.
Static (or shutdown) partial reconfiguration takes place
when the rest of the device is inactive and in shutdown
mode. The non-reconfigurable area of the FPGA is held in
reset and the FPGA enters the start-up sequence after
partial reconfiguration is completed. In contrast, in
dynamic (or active) partial reconfiguration new data can
be loaded to dynamically reconfigure a particular area of
FPGA while the rest of it is still operational. User design is
not suspended and no reset and start-up sequence is
necessary.

Fig. 7: Static and dynamic part for system reconfigurable

5. Self Partial Dynamic Reconfiguration

The Dynamic Partial Self-Reconfiguration (DPSR)
concept is the ability to change the configuration of part of
an FPGA device by itself while other processes continue in
the rest of the device. A self-reconfiguring platform is
reported that enables an FPGA to dynamically reconfigure
itself under the control of an embedded microprocessor
[10].
A partially reconfigurable design consists of a set of full
designs and partial modules. The full and partial bitstreams
are generated for different configurations of a design. The
idea of implementing a self-reconfiguring platform for
Xilinx Virtex family was first reported in [10]. The
platform enabled an FPGA to dynamically reconfigure
itself under the control of an embedded microprocessor.
The hardware component of Self Reconfiguring Platform
(SRP) is composed of the internal configuration access
port (ICAP), control logic, a small configuration cache,
and an embedded processor. The embedded processor can
be Xilinx Microblaze, which is a 32-bit RISC soft
processor core [13]. The hard-core Power PC on the virtex
II Pro can also be used as the embedded processor. The
embedded processor provides intelligent control of device
reconfiguration run-time. The provided hardware
architecture established the framework for the
implementation of the self-reconfiguring platforms.
Internal configuration access port application program
interface (ICAP API) and Xilinx partial reconfiguration
toolkit (XPART) provide methods for reading and

modifying select FPGA resources and support for re-
locatable partial bitstreams.
Taking advantage of FPGA capacity presented above, we
try to develop a flexible architecture of the AES
implementation. The complexity of this arises from the
algorithm architecture associated to the loop number and
information size [13,4, 5, 14, 15, 3, 16].
The main idea of this work is to adapt the basic bloc size
to the loop number and the size of the available
information. The global architecture of the proposed
system using dynamically reconfigurable FPGA is
illustrated below (Cf. Fig. 8).

Fig. 8: Global architecture for self-reconfigurable system

6. A Self-Reconfigurable Implementation of
AES

Our principal contribution in this article, is to conceive an
optimal system allowing the implementation of the AES
by using the self-reconfigurable dynamic method.

6.1 Methodology implementation
To increase the performance of the implemented circuit,
especially cost, power and inaccessibility, all of the AES
blocs may be reconfigurable [17]. So, the used parameters
for reconfiguration are implanted inside the manager
module of reconfiguring, and it is possible to quickly cross
from a safe configuration to another by updating a hard
system protection.
The control and management module of reconfiguration
allows choosing a correct memory program (PR) and
generating a reconfiguration signal (Cf. Fig. 9). The real
dynamic reconfiguration procedure of the AES is preceded
by two controllers: the first one, achieved by Microblaze
processor, computes the reconfiguration parameters using
the available signal and the key size. This is the current
state of the system. The second one computes the best
parameters under input constraints, and writes these
parameters in the configuration register for managing the
reconfiguration process.

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009

38

In Figure 10, we present the modular design and
reconfiguration cryptosystem.

Fig. 10: Modular Design and Reconfiguration cryptosystem.

6.2 Configuration controller finite state machine

As described previously, the configuration controller is
developed with a finite state machine. With the
knowledge of the memory mapping, the configuration
management finite state machine is relatively simple.
The configuration controller is used only for normal
FPGA configuration when power is switched on.
Figure 11 shows the four-global-states used by the
configuration controller.
The first state of this four-states FSM (Finite State
Machine) is an start state. To change state the
configuration controller waits for detection the length
key signal. This signal is the begin-signal of the normal
configuration process.

Fig. 11: Finite state machine configuration controller

7 Implementation Result

To test the proposed method, in first time, we have
implemented the AES algorithm with on the Spartan II
(XC2S200E) and Virtex II (XC2V500) of Xilinx. The
results are summarized in the Table 2.

Table 2: comparison of the different implementations of the AES

FPGA

Resource

Resource
Used/Total
Resource

(XC2S200E)

Resource
Used/Total
Resource

(XC2V500)

Slices 196/2353 192/072

Slice Flip-
Flops

92/4704 78/6144

4-input LUTs 352/4704 342/6144 A
E

S-
12

8

BRAMs 6/14 6/32

Slices 265/2353 241/3072

Slice Flip-
Flops

102/4704 76/6144

4-input LUTs 467/4707 341/6144 A
E

S-
19

2

BRAMs 6/14 6/32

Slices 252/2353 207/3072

Slice Flip-
Flops

99/4704 81/6144

4-input LUTs 469/4704 381/6144 A
E

S-
25

6

BRAMs 6/14 6/32

Fig.9: Global architecture for implementation the AES

AES Core
Reconfigurable

Manager Controller

MicroBlaze -

Initialisation

ICAP
attacks

Key
D

et
ec

tio
n

MicroBlaze

System

R
ec

on
fig

ur
ab

le

A
re

a
A

E
S1

28

MicroBlaze
System

R
ec

on
fig

ur
ab

le

A
re

a
A

E
S1

92

Reconfiguration

MicroBlaze

System

R
ec

on
fig

ur
ab

le

A
re

a
A

E
S2

56

Reconfiguration

Start

Crypto
AES 128

Crypto
AES 192

Crypto
AES 256

Change of
length

Key length
(128 bits)

Key length
(192 bits)

Key length
(256 bits)

Change of
length

Change of
length

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

39

The performance implementation of AES cryptographic
is presented in the table 3.

Table 3: Performance implementation for AES

 Parameter Device
XC2S200E)

Device
(XC2V500)

Minimum
Period (ns) 35.520 13.674

Maximum
Frequency 28.742 78.59

Clock Cycle
Used 250 250

Thtoughput
(Mbps) 16.362 40.57

A
E

S-
12

8

TPS (kbps/slice) 83 232
Minimum
Period (ns) 41.387 13.863

Maximum
Frequency 25.825 71.78

Clock Cycle
Used 300 300

Thtoughput
(Mbps) 11.361 31.72

A
E

S-
19

2

TPS (kbps/slice) 41 135
Minimum
Period (ns) 37.648 15.043

Maximum
Frequency 27.067 70.975

Clock Cycle
Used 350 350 A

E
S-

25
6

Thtoughput
(Mbps) 9.739 26.734

After checking of different hardware implementation of
algorithms from the AES, we passed to the total test of the
system of self reconfiguration a base the Microblaze
processor, the results of this implementation in virtex II
pro is shown on the table 4.
We notice that one can easily pass from a configuration to
another using the software program implemented in the
processor Microblaze.
As described previously, the configuration controller is
developed with a finite state machine in figure 11. With
the knowledge of the memory mapping, the configuration
management finite state machine is relatively simple.

Table 4: Implementation of Microblaze and cryptosystem

 FPGA
Slices LUTs FF/Latches BRAM

 MicroBlaze
System 4083 3383 3228 25

AES 128 3565 3086 3042 4

AES-192 3764 3259 3149 4 A
ES

co

pr
oc

es
so

r

AES-256 3632 3127 3205 4

8 Conclusion

In this paper we present the AES coprocessor
implementation using the self partial dynamically
reconfiguration of FPGA. The main advantage of this
works appear in the capacity of the proposed architecture
to modify or/and change the size of the key without
stopping the normal operation of the system. As a
consequence, the proposed system is able to increase the
security and safety of the AES algorithm.
Moreover, implementation of the AES crypto-processor
with this new configuration illustrates the ability of this
architecture to optimize the processor occupation and the
reconfiguration time.
In order to explore the encoding method on the self-partial
dynamic reconfiguration, our short-term prospect, in the
feature work, consists with the implementation of this
algorithm in a real communication system.

References

[1] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater and J.-D.

Legat, “Efficient implementation of Rijndael encryption in
reconfigurable hardware: Improvements and design
tradeoffs,” in the proceedings of CHES 2003, Lecture
Notes in Computer Science, Cologne Germany September
2003, pp. 334–350.

[2] Ming-Haw Jing, Zih-Heng Chen, Jian-Hong Chen, and Yan-
Haw Chen, “Reconfigurable system for high speed and
diversified AES using FPGA”, Microprocessors and
Microsystems, vol. 31, Issue 2, March 2007, pp. 94-102.

[3] A.J Elbirt., W. Yip, B. Chetwynd, C. Paar “An FPGA-

based performance evaluation of the AES block cipher
candidate algorithm ”, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 9 Issue 4, 2001,
pp. 545 – 557.

[4] M. McLoone and J.V.McCanny: “High Performance
Single-Chip FPGA Rijndael Algorithm Implementations”,
Cryptographic Hardware and Embedded Systems
(CHES 2001), Paris, France, 2001.

[5] National Institute of Standards and Technology (NIST),
Second Advanced Encryption Standard (AES)
Conference, Rome, Italy, March 1999.

[6] B. Schneier, “Applied Cryptography”, John Wiley & Sons
Inc., New York, USA, 2nd ed., 1996.

[7] M. Kandemir, W. Zhang, and M. Karakoy, “Runtime code
parallelization for onchip multiprocessors”, In
Proceedings of the 6th Design Automation and Test in
Europe Conference, Munich, Germany, March, 2003.

[8] J. Daemen, V. Rijmen : “AES Proposal: Rijndael, The
Rijndael Block Cipher”, AES Proposal, 1999, pp. 1–45.

[9] M. Huebner, C. Schuck, M. Kuhnle, and J. Becker, “New
2-Dimensional Partial Dynamic Reconfiguration
Techniques for Real-time Adaptive Microelectronic
Circuits,” Proc. Of Emerging VLSI Technologies and
Architectures, Karlsruhe, Germany ,Mars 2006.

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009

40

[10] Xilinx web site.
http://www.xilinx.com/ipcenter/processorcentral/microblaz
e (2003).

[11] P. Lysaght, B. Brodget, J. Mason, J. Young, and B.
Bridgford, “Enhanced Architectures, Design
Methodologies and CAD Tools for Dynamic
Reconfiguration of Xilinx FPGAs”, International
Conference on Field Programmable Logic and
Applications, Madrid, Spain, 2006.

[12] M. Ullmann, M. Huebner, B. Grimm, and J. Becker, “An
FPGA Run-Time System for Dynamical On-Demand
Reconfiguration,” Proc. of the 18th International
Parallel and Distributed Processing Symposium,
Karlsruhe, Germany April 26-30, 2004.

[13] H. Qin, T. Sasao and Y. “An FPGA Design of AES

Encryption Circuit with 128-bit Keys” Proceedings of
the 15th ACM Great Lakes symposium on VLSI,
Chicago, Illinois, USA, April 17–19, 2005,.

[14] O.Perez, Y.Berviller,C.Tanougast, and S.Weber, “The Use
of Runtime Reconfiguration on FPGA Circuits to Increase
the Performance of the AES Algorithm Implementation”,
Journal of Universal Computer Science, vol. 13, no. 3,
2007, pp.349-362.

[15] N. Saqib, F.Rodriguez-Henriquez, and A. Diaz-Pérez, “Two
approaches for a single-Chip FPGA Implementation of an
Encyptor/Decryptor AES Core” International C-
Conference on Field-Programmable Logic and
Applications , Lisbon , Portugal, September 2003 .

[16] M Mogollon: “Cryptography and Security Services:
Mechanisms and Applications” Cybertech Publishing,
2007.

[17] Z.A, Alaoui, A. Moussa, A. Elmourabit and K. Amechnoue
“Flexible Hardware Architecture for AES Cryptography
Algorithm” IEEE Conference on Multimedia Computing
and Systems, ouarzazate, morocco, April 2009.

Z. alaoui-Ismaili, received the DEA in electronics in 1997 and
the Ph.D. degree in Electronics and industrial Computer
Engineering in 2002, both from University IbnTofail de Kenitra,
Morocco. He is currently researcher teacher at the Telecoms &
Electronics department of National School of Applied Sciences
tangier, Morocco, since June 2003.
His main research interests are FPGA based reconfigurable
computing applications, with a special focus on dynamic partial
reconfiguration and embedded systems.
Dr. Alaoui_Ismaili authored or coauthored more than 10 papers
journal and conference.
He is president of Association Moroccan Society of
microelectronics.

A. Moussa, was born in 1970 in Oujda, Morocco. He received
the Licence in Electronics from the University of Oujda, Morocco,
in 1994, and the PhD in Automatic Control and Information
Theory from the University of Kenitra, Morocco, in 2001. He
worked two years as a post-graduate researcher at the
University of Sciences and Technology of Lille, France. At 2003
he joined Sanofi-Aventis research laboratory in Montpellier,
France where he supervised Microarray analysis activities .He is
now a professor at the National School of Applied Sciences in
Tangier-Morocco and his current research interests are in the

application of the Markov theory and multidimensional data
analysis to image processing, and embedded systems.

