
IJCSI International Journal of Computer Science Issues, Vol. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

41

Web Single Sign-On Authentication using SAML

Kelly D. LEWIS, James E. LEWIS, Ph.D.

Information Security, Brown-Forman Corporation
Louisville, KY 40210, USA

Engineering Fundamentals, Speed School of Engineering, University of Louisville
Louisville, KY 40292, USA

Abstract
Companies have increasingly turned to application service
providers (ASPs) or Software as a Service (SaaS) vendors to
offer specialized web-based services that will cut costs and
provide specific and focused applications to users. The
complexity of designing, installing, configuring, deploying, and
supporting the system with internal resources can be eliminated
with this type of methodology, providing great benefit to
organizations. However, these models can present an
authentication problem for corporations with a large number of
external service providers. This paper describes the
implementation of Security Assertion Markup Language
(SAML) and its capabilities to provide secure single sign-on
(SSO) solutions for externally hosted applications.
Keywords: Security, SAML, Single Sign-On, Web,
Authentication

1. Introduction

Organizations for the most part have recently started
using a central authentication source for internal
applications and web-based portals. This single source
of authentication, when configured properly, provides
strong security in the sense that users no longer keep
passwords for different systems on sticky notes on
monitors or under their keyboards. In addition,
management and auditing of users becomes simplified
with this central store.

As more web services are being hosted by external
service providers, the sticky note problem has reoccurred
for these outside applications. Users are now forced to
remember passwords for HR benefits, travel agencies,
expense processing, etc. - or programmers must develop
custom SSO code for each site. Management of users
becomes a complex problem for the help desk and
custom built code for each external service provider can
become difficult to administer and maintain.

In addition, there are problems for the external service
provider as well. Every user in an organization will need
to be set up for the service provider’s application,
causing a duplicate set of data. Instead, if the
organization can control this user data, it would save the
service provider time by not needing to set up and
terminate user access on a daily basis. Furthermore, one
central source would allow the data to be more accurate
and up-to-date.

Given this set of problems for organizations and their
service providers, it is apparent that a solution is needed
that provides a standard for authentication information to
be exchanged over the Internet. Security Assertion
Markup Language (SAML) provides a secure, XML-
based solution for exchanging user security information
between an identity provider (our organization) and a
service provider (ASPs or SaaSs). The SAML standard
defines rules and syntax for the data exchange, yet is
flexible and can allow for custom data to be transmitted
to the external service provider.

2. Background

The consortium for defining SAML standards and
security is OASIS (Organization for the Advancement of
Structured Information Standards). They are a non-profit
international organization that promotes the development
and adoption of open standards for security and web
services. OASIS was founded in 1993 under SGML
(Standard Generalized Markup Language) Open until its
name change in 1998. Headquarters for OASIS are
located in North America, but there is active member
participation internationally in 100 countries on five
continents [1].

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009

42

SAML 1.0 became an OASIS standard toward the end of
2002, with its early formations beginning in 2001. The
goal behind SAML 1.0 was to form a XML framework
to allow for the authentication and authorization from a
single sign-on perspective. At the time of this milestone,
other companies and consortiums started extending
SAML 1.0. While these extensions were being formed,
the SAML 1.1 specification was ratified as an OASIS
standard in the fall of 2003.

The next major revision of SAML is 2.0, and it became
an official OASIS Standard in 2005. SAML 2.0 involves
major changes to the SAML specifications. This is the
first revision of the standard that is not backwards
compatible, and it provides significant additional
functionality [2]. SAML 2.0 now supports W3C XML
encryption to satisfy privacy requirements [3]. Another
advantage that SAML 2.0 includes is the support for
service provider initiated web single sign-on exchanges.
This allows for the service provider to query the identity
provider for authentication. Additionally, SAML 2.0
adds “Single Logout” functionality. The remainder of
this text will be discussing implementation of a SAML
2.0 environment.

There are three roles involved in a SAML transaction –
an asserting party, a relying party, and a subject. The
asserting party (identity provider) is the system in
authority that provides the user information. The relying
party (service provider) is the system that trusts the
asserting party’s information, and uses the data to
provide an application to the user. The user and their
identity that is involved in the transaction are known as
the subject.

The components that make up the SAML standard are
assertions, protocols, bindings and profiles. Each layer
of the standard can be customized, allowing specific
business cases to be addressed per company. Since each
company’s scenarios could be unique, the
implementation of these business cases should be able to
be personalized per service and per identity providers.

The transaction from the asserting party to the relying
party is called a SAML assertion. The relying party
assumes that all data contained in the assertion from the
asserting party is valid. The structure of the SAML
assertion is defined by the XML schema and contains
header information, the subject and statements about the

subject in the form of attributes and conditions. The
assertion can also contain authorization statements
defining what the user is permitted to do inside the web
application.

The SAML standard defines request and response
protocols used to communicate the assertions between
the service provider (relying party) and the identity
provider (asserting party). Some example protocols are
[4]:

• Authentication Request Protocol – defines how
the service provider can request an assertion
that contains authentication or attribute
statements

• Single Logout Protocol – defines the
mechanism to allow for logout of all service
providers

• Artifact Resolution Protocol – defines how the
initial artifact value and then the
request/response values are passed between the
identity provider and the service provider.

• Name Identifier Management Protocol – defines
how to add, change or delete the value of the
name identifier for the service provider

SAML bindings map the SAML protocols onto standard
lower level network communication protocols used to
transport the SAML assertions between the identity
provider and service provider. Some example bindings
used are [4]:

• HTTP Redirect Binding – uses HTTP redirect
messages

• HTTP POST Binding – defines how assertions
can be transported using base64-encoded
content

• HTTP Artifact Binding – defines how an
artifact is transported to the receiver using
HTTP

• SOAP HTTP Binding – uses SOAP 1.1
messages and SOAP over HTTP

The highest SAML component level is profiles, or the
business use cases between the service provider and the
identity provider that dictate how the assertion, protocol
and bindings will work together to provide SSO. Some
example profiles are [4]:

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

43

• Web Browser SSO Profile – uses the
Authentication Request Protocol, and any of the
following bindings: HTTP Redirect, HTTP
POST and HTTP Artifact

• Single Logout Profile – uses the Single Logout
Protocol, which can log the user out of all
service providers using a single logout function

• Artifact Resolution Profile – uses the Artifact
Resolution Protocol over a SOAP HTTP
binding

• Name Identifier Management Profile – uses the
name Identifier management Protocol and can
be used with HTTP Redirect, HTTP POST,
HTTP Artifact or SOAP

Two profiles will be briefly discussed in more detail, the
artifact resolution profile and web browser SSO profile.
The artifact resolution profile can be used if the business
case requires highly sensitive data to pass between the
identity provider and service provider, or if the two
partners want to utilize an existing secure connection
between the two companies.

This profile allows for a small value, called an artifact to
be passed between the browser and the service provider
by one of the HTTP bindings. After the service provider
receives the artifact, it transmits the artifact and the
request/response messages out of band from the browser
back to the identity provider. Most likely the messages
are transmitted over a SSL VPN connection between the
two companies. This provides security for the message,
plus eliminates the need for the assertions to be signed or
encrypted which could potentially reduce overhead.
When the identify provider receives the artifact, it looks
up the value in its database and processes the request.
After all out of band messages are transmitted between
the identity provider and service provider, the service
provider presents the information directly to the browser.

The web browser SSO profile may be initiated by the
identify provider or the service provider. If initiated by
the identity provider, the assertion is either signed,
encrypted, or both. In the web browser SSO profile, all
of the assertion information is sent at once to the service
provider using any of the HTTP bindings and protocols.
The service provider decrypts if necessary and checks for
message integrity against the signature. Next, it parses
the SAML XML statements and gathers any attributes
that were passed, and then performs SSO using the

Assertion Consumer Service. The diagram in Figure 1
shows the identity provider initiated SAML assertion.

Figure 1: Identity Provider Initiated SAML Assertion Flowchart

If the user accesses the external webpage without passing
through the internal federated identity manager first, the
service provider will need to issue the SAML request
back to the identity provider on behalf of the user. This
process of SSO is called service provider initiated. In
this case, the user arrives at a webpage specific for the
company, but without a SAML assertion. The service
provider redirects the user back to the identity provider’s
federation webpage with a SAML request, and optionally
with a RelayState query string variable that can be used
to determine what SAML entity to utilize when sending
the assertion back to the service provider.

After receiving the request from the service provider, the
identity provider processes the SAML request as if it
came internally. This use case is important since it
allows users to be able to bookmark external sites
directly, but still provides SAML SSO capabilities with
browser redirects. Figure 2 demonstrates this service
provider initiated use case.

The most popular business use case for SAML federation
is the web browser SSO profile, used in conjunction with
the HTTP POST binding and authentication request
protocol. The implementation and framework section
will discuss this specific use case and the security needed
to protect data integrity.

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009

44

Figure 2: Service Provider Initiated SAML Assertion Flowchart

3. Implementation/Framework

There are numerous identity and federation manager
products on the market that support federation via SAML
versions 1.1 and 2.0, as well as several open source
products. OpenSAML, an open source toolkit, is
available to support developers working with SAML.
Shibboleth is an example of an open source project that
uses the OpenSAML toolkit. Sun Microsystems has a
product called OpenSSO that is an open source version
of their commercial product, OpenSSO Enterprise.
Computer Associates provides an access manager called
SiteMinder and RSA has a product called Federated
Identity Manager to name a few. Regardless of which
product is selected, as long as it conforms to the
standards of SAML, all products can be used
interchangeably with no compatibility issues.

The process of setting up federation involves configuring
a local entity, a partner entity, and an association
between the two that forms the federation. The local
entity must be manually configured inside the federation
software; however, for SAML 2.0 the process of setting
up the partner entity has been made easier with the
introduction of metadata. Since the SAML standard is
flexible and can allow a number of custom
configurations, certain agreements and configuration
information must be initially set up between two
partners. Exchanging metadata containing this specific

information determines the specifications that will be
used in a particular business case.

Once the metadata file has been received from the
partner entity, this XML file can be uploaded into the
federation software without any additional configuration
needed for the partner entity. This process saves time
and reduces the possibility for error. The file contains
elements and attributes, and includes an EntityDescriptor
and EntityID that specifies to which entity the
configuration refers.

There are many optional elements and attributes for
metadata files; some that may apply are Binding,
WantAuthRequestsSigned, WantAssertionsSigned,
SingleLogoutService, etc. To review the entire list of
elements available for the metadata file, see the OASIS
metadata standard [5].

When manually configuring a local entity, first
determine the parameters to be passed in the assertion
that will be the unique username for each user. Normally
this value is an email address or employee number, since
they are guaranteed to be exclusive for each individual.
In some federation products, values from a data source
can be automatically utilized with the SAML assertion.
These values can be extracted from different data sources
such as LDAP, or another source that could be tied into a
HR system. While setting up the local entity there are
other considerations, such as how the parameters will be
passed (in attributes or nameID), a certificate keystore
for the association, and type of signing policies required.

The following sample metadata shown in Figure 3 is an
example that would be sent from the local entity (identity
provider in this case) to the partner entity (service
provider) to load into the federation software. The
descriptor shows titled as “IDPSSODescriptor”, which
demonstrates this is metadata from an identity provider.

Some elements are mandatory, such as entityID, yet
others are optional, such as ID and OrganizationName.
The elements to note are the Single Sign-On Service
binding, location, protocol support section, and key
descriptor and key info areas. In this example, the
binding must be performed by an HTTP-POST, and the
supported protocol is SAML 2.0.

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

45

<md:EntityDescriptor ID="MyCompany"
 entityID="mycompany:saml2.0"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata"
 xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <md:IDPSSODescriptor WantAuthnRequestsSigned="false"
 protocolSupportEnumeration=
 "urn:oasis:names:tc:SAML:2.0:protocol">
 <md:KeyDescriptor use="encryption">
 <ds:KeyInfo
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>
 CERTIFICATE
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 <md:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc">
 </md:EncryptionMethod>
 </md:KeyDescriptor>
 <md:KeyDescriptor use="signing">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>
 CERTIFICATE
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </md:KeyDescriptor>
 <md:SingleSignOnService
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="http://mycompany.com/sso/SSO">
 </md:SingleSignOnService>
 </md:IDPSSODescriptor>
 <md:Organization>
 <md:OrganizationName xml:lang="en-us">
 My Company Org
 </md:OrganizationName>
 <md:OrganizationDisplayName xml:lang="en-us">
 My Company
 </md:OrganizationDisplayName>
 <md:OrganizationURL xml:lang="en-s">
 http://www.mycompany.com
 </md:OrganizationURL>
 </md:Organization>
</md:EntityDescriptor>

Figure 3: Sample Identity Provider Metadata XML

Figure 4 demonstrates an example metadata XML file
that would be sent from a service provider to an identity
provider for loading into the federation software. Note
that the descriptor is “SPSSODescriptor”, indicating
service provider single sign-on descriptor.

In this case, “WantAuthnRequestsSigned” is equal to
true, as opposed to the previous example in Figure 3.

Also, there are two KeyDescriptors, one for signing and
one for encrypting. This indicates the service provider
requires both for the assertion. There are two methods of
binding listed for the assertion consumer service: the
HTTP Post and the HTTP Artifact. These two metadata
samples show how custom each company can be with
unique SAML requirements.

<EntityDescriptor
 entityID="mypartner:saml2.0"
 xmlns="urn:oasis:names:tc:SAML:2.0:metadata">
 <SPSSODescriptor
 AuthnRequestsSigned="true"
 WantAssertionsSigned="true"
 protocolSupportEnumeration=
 "urn:oasis:names:tc:SAML:2.0:protocol">
 <KeyDescriptor use="signing">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>CERTIFICATE</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </KeyDescriptor>
 <KeyDescriptor use="encryption">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>CERTIFICATE</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc">
 <xenc:KeySize
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">128
 </xenc:KeySize>
 </EncryptionMethod>
 </KeyDescriptor>
 <NameIDFormat>
 urn:oasis:names:tc:SAML:2.0:nameid-format:transient
 </NameIDFormat>
 <AssertionConsumerService
 index="0"
 isDefault="true"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="https://mypartner.com/federation/metaAlias/sp"/>
 <AssertionConsumerService
 index="1"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact"
 Location="https://mypartner.com/federation/metaAlias/sp"/>
 </SPSSODescriptor>
</EntityDescriptor>

Figure 4: Sample Service Provider Metadata XML

After the metadata is exchanged and all entities are set
up, the assertion can be tested and verified using browser
tools and decoders. For this example, the service
provider implementation of the HTTP POST method will
be described briefly.

The identity provider must first determine what URL the
federation software requires, and what attributes need to

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009

46

be passed with the POST data, such as entityID or
RelayState. The browser HTTP-POST action contains
hidden SAMLResponse and RelayState fields enclosed
in a HTML form. After the browser POST is received
by the service provider, the Assertion Consumer Service
validates the signature and processes the assertion,
gathering attributes and other conditions that could
optionally be required. The service provider also obtains
the optional RelayState variable in the HTML form,
determines the application URL, and redirects the
browser to it providing single sign-on to the web
application [4].

To validate the sent attributes in the assertion with this
HTTP POST example, a browser add-on program can be
used to watch exactly what is sent between the browser
and the partner. A few browser add-ons are “HttpFox”
[6] which can be used with Mozilla Firefox, and
“HttpWatch” [7] which can be used with Mozilla Firefox
or Internet Explorer. After capturing HTTP data, the
browser POST action can be verified to ensure the proper
attributes are passed to the partner. The POST action
shows the hidden SAMLResponse and RelayState fields
in the HTML form, and can be used to validate the data
sent to the service provider.

The SAMLResponse field is URL encoded, and must be
decoded before reading the assertion. Depending on the
requirements, the assertion must be signed, or signed and
encrypted. For testing purposes, first only sign the
assertion so it can be URL decoded into a non-encrypted
readable version. Figure 5 shows an example of a URL
decoded SAMLResponse and has been shortened for
readability, designated by capital words.

<samlp:Response xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
 Consent="urn:oasis:names:tc:SAML:2.0:consent:unspecified"
 Destination="https://mypartner.com/metaAlias/sp"
 ID="ad58514ea9365e51c382218fea"
 IssueInstant="2009-04-22T12:33:36Z"
 Version="2.0">
 <saml:Issuer>http://login.mycompany.com/mypartner</saml:Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 SIGNATURE VALUE, ALGORITHM, ETC.
 </ds:Signature>
 <samlp:Status>
 <samlp:StatusCode
 Value="urn:oasis:names:tc:SAML:2.0:status:Success">
 </samlp:StatusCode>
 </samlp:Status>
 <saml:Assertion ID="1234" IssueInstant="2009-04-22T12:33:36Z"
 Version="2.0">
 <saml:Issuer>http://login.mycompany.com/mypartner</saml:Issuer>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 SIGNATURE VALUE, ALGORITHM, ETC.
 </ds:Signature>
 <saml:Subject>
 <saml:NameID>NAMEID FORMAT, INFO, ETC</saml:NameID>
 <saml:SubjectConfirmation
 Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml:SubjectConfirmationData
 NotOnOrAfter="2009-04-22T12:43:36Z"
 Recipient="https://mypartner.com/metaAlias/sp">
 </saml:SubjectConfirmationData>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Conditions
 NotBefore="2009-04-22T12:28:36Z"
 NotOnOrAfter="2009-04-22T12:33:36Z">
 <saml:AudienceRestriction>
 <saml:Audience>mypartner.com:saml2.0</saml:Audience>
 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement AuthnInstant="2009-04-22T12:33:20Z"
 SessionIndex="ccda16bc322adf4f74d556bd">
 <saml:SubjectLocality Address="192.168.0.189"
 DNSName="myserver.mycompany.com">
 </saml:SubjectLocality>
 </saml:AuthnStatement>
 <saml:AttributeStatement xmlns:xs=SCHEMA INFO>
 <saml:Attribute FriendlyName="clientId" Name="clientId"
 NameFormat="urn:oasis:names:tc:SAML:2.0:
 attrname-format:basic">
 <saml:AttributeValue>1234</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute FriendlyName="uid" Name="uid"
 NameFormat="urn:oasis:names:tc:SAML:2.0:
 attrname-format:basic">
 <saml:AttributeValue>the.user@mycompany.com
 </saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 </saml:Assertion>
</samlp:Response>

Figure 5: Sample SAML Assertion

For testing purposes with this sample assertion, the
attributes toward the end of the XML should be verified.
In this example, two attributes are being passed:
clientID and uid. The clientID is a unique value that has
been assigned by the service provider indicating which
company is sending the assertion. The uid in this case is
the email address of the user requesting the web
resource. After receiving and validating these values, the
service provider application performs SSO for the user.
Once these values have been tested and accepted as
accurate, the SAML assertion can be encrypted if
required, and the service provider application can be
fully tested.

There are important security aspects to be considered,
given that the relying party fully trusts the data in the

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

47

SAML assertion. The integrity of the message must be
preserved from man-in-the-middle attacks and other
spoofs. In dealing with this scenario, A SAML assertion
can be unsigned, signed, or signed and encrypted
depending on the type of data and the sensitivity required
per application. The SAML standard allows for message
integrity by supporting X509 digital signatures in the
request/response transmissions. SAML also supports
and recommends HTTP over SSL 3.0 and TLS 1.0 for
situations where data confidentiality is required [8].

As analyzed by Hansen, Skriver, and Nielson there are
some major issues in the SAML 1.1 browser/artifact
profile using TLS security [9]. In SAML 2.0, this profile
was improved to repair a majority of these security
issues; however there is one existing problem in the
specification examined by Groß and Pfitzmann [10].
Groß and Pfitzmann devised a solution to this exploit by
creating a new profile that produces two artifacts, with
the token being valid only when it consists of both
values, thus eliminating successful replay of a single
token. Additional work has also been performed on
recently proposed attack scenarios. Gajek, Liao, and
Schwenk recommend two new stronger bindings for
SAML artifacts to the TLS security layer [11].

An additional scenario that could compromise data
integrity is a replay attack that intercepts the valid
assertion and saves the data for impersonation at a later
time. Both the identity provider and the service provider
should utilize the SAML attributes NotBefore and
NotOnOrAfter shown in Figure 5. These values should
contain a time frame that is as short as possible, usually
around 5 minutes. In addition, the identity provider can
insert locality information into the assertion, which the
service provider can verify is valid against the IP address
of the requesting user. For additional security
considerations, see the OASIS security and privacy
considerations standard [8].

4. Conclusions/Best Practices

In conclusion, the benefits of SAML are abundant.
Organizations can easily, yet securely share identity
information and security is improved by eliminating the
possibility of shared accounts. User experience is
enhanced by eliminating additional usernames and

passwords, which also allows for fewer helpdesk calls
and administrative costs.

Companies should have documentation available to
exchange when setting up SAML associations, since
each SAML use case can be customized per individual
business need. Service providers can use different
security protocols, such as signed only, versus signed
and encrypted. In addition, some service providers may
only use the nameID section of the assertion, while
others might use custom attributes only. This upfront
documentation can save troubleshooting time during the
implementation and testing phases of the project.

Furthermore, during testing phases it is helpful to use a
sample test site for the service provider and also to test
with SAML assertions signed only. The sample test site
allows for the ability to isolate a test of only the SAML
connection between the two partners, before testing of
the application occurs. Testing with signed only
assertions allows for the ability to URL decode the
HTML hidden input field, and validate the data being
passed to the service provider. This ensures the correct
data in the assertion is sent and can be tested prior to the
service provider site being fully prepared for testing.

Additionally, using SAML metadata is very helpful since
it eliminates typos and errors when setting up the partner
entity. These metadata files can help the identity
provider understand exactly what the service provider
needs in the SAML assertion. Both the identity provider
and service provider should utilize metadata files, not
only to speed up manual work when entering data into
the federation software, but to also reduce human error.

The OASIS Security Services Technical Committee
continues to improve upon the current SAML 2.0
standard by developing new profiles to possibly be used
in later releases. For example, one area OASIS has
already improved upon was a supplement to the metadata
specifications that added new elements and descriptor
types. Both identity providers and service providers
should be aware of any changes to SAML standards that
are ratified by OASIS. Staying current and not deviating
from the standards helps to ensure compatibility,
resulting in less customized configurations between
organizations.

IJCSI International Journal of Computer Science Issues, Vol. 2, 2009

48

References
[1] OASIS Frequently Asked Questions “http://www.oasis-

open.org/who/faqs.php”, 2009.
[2] P. Madsen. SAML 2: The Building Blocks of Federated

Identity
“http://www.xml.com/pub/a/2005/01/12/saml2.html”, 2005.

[3] Differences Between SAML V2.0 and SAML V1.1.
“https://spaces.internet2.edu/display/SHIB/SAMLDiffs”,
Feb. 2007.

[4] N. Ragouzis et al. Security Assertion Markup Language
(SAML) V2.0 Technical Overview. “http://www.oasis-
open.org/committees/download.php/22553/sstc-saml-tech-
overview.pdf”, Feb. 2007.

[5] S. Cantor et al. Metadata for the OASIS Security Assertion
Markup Language (SAML) V2.0. “http://docs.oasis-
open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf”,
March 2005.

[6] M. Theimer. HttpFox 0.8.4. “https://addons.mozilla.org/en-
US/firefox/addon/6647”, 2009.

[7] HttpWatch. “http://www.httpwatch.com/”, 2009.
[8] F. Hirsch et al. Security and Privacy Considerations for the

OASIS Security Assertion Markup Language (SAML)
V2.0. “http://docs.oasis-open.org/security/saml/v2.0/saml-
sec-consider-2.0-os.pdf”, March 2005.

[9] S. M. Hansen, J. Skriver, and H. R. Nielson. “Using static
analysis to validate the SAML single sign-on protocol”, in
Proceedings of the 2005 workshop on Issues in the theory
of security (WITS ’05), 2005, pages 27–40.

[10] T. Großand, and B. Pfitzmann, “Saml Artifact Information
Flow Revisited”. Research Report RZ 3643 (99653), IBM
Research,
“http://www.zurich.ibm.com/security/publications/2006/Gr
Pf06.SAML-Artifacts.rz3643.pdf”, 2006.

[11] S. Gajek, L. Liao, and J. Schwenk. “Stronger TLS bindings
for SAML assertions and SAML artifacts”, in Proceedings
of the 2008 ACM Workshop on Secure Web Services
(SWS ’08), 2008, pages 11-20.

Kelly D. Lewis graduated with a B.S. of Computer Engineering

and Computer Science at the University of Louisville in 2001.
She received her M. Eng. at the University of Louisville in the
same discipline in 2005, publishing a thesis titled “Student
Performance Evaluation Package using a Web Interface and
a Database”. She started her Information Technology career
in 1999 with the United States Army Research Institute. She
has been employed for Brown-Forman Corporation the last 8
years, and has worked a Systems Administrator, Network
Engineer, and presently holds a Security Analyst position in
Information Security. Her focus is on network security,
automation, and single sign-on technologies.

James E. Lewis graduated with a B.A. in Computer Science
from Hanover College in 1994, and earned a M.S. in Computer
Science from the University of Louisville in 1996, with a thesis
focusing on expert systems and networking. He received a
Ph.D. in Computer Science and Engineering from the University
of Louisville in 2003, publishing a dissertation with an emphasis
in distributed genetic algorithms. He started teaching in 1995,

and is currently an Assistant Professor in the Department of
Engineering Fundamentals at the University of Louisville’s Speed
School of Engineering, where he received this appointment in
2004. He has fourteen publications on various topics including
distributed algorithms, intelligent system design, and engineering
education that were published in national and international
conference proceedings. He has also been invited to present on
critical thinking in engineering education at two conferences. He
has been awarded two research grants for his critical thinking
and case study initiatives. He is a member of the ACM and
ASEE organizations. His research interests include parallel and
distributed computer systems, cryptography, security design,
engineering education, and technology used in the classroom.

