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Abstract 

The study deals with the parallelization of 2D and 3D finite 
element based Navier-Stokes codes using direct solvers. 
Development of sparse direct solvers using multifrontal solvers 
has significantly reduced the computational time of direct 
solution methods. Although limited by its stringent memory 
requirements, multifrontal solvers can be computationally 
efficient. First the performance of MUltifrontal Massively 
Parallel Solver (MUMPS) is evaluated for both 2D and 3D codes 
in terms of memory requirements and CPU times. The scalability 
of both Newton and modified Newton algorithms is tested. 
Key words: finite element, MUMPS solver, distributed 
computing, Newton method. 

1. Introduction 

Discretization of Navier-Stokes equations involves a large 
set of non-linear equations, requiring high computing 
power in terms of speed and memory.   The resulting set 
of weak form (algebraic) equations in such problems may 
be solved either using a direct solver or an iterative solver.  
The direct solvers are known for their generality and 
robustness. The direct solution methods generally involve 
the use of frontal algorithms [1] in finite element 
applications.  The advent of multifrontal solvers [2] has 
greatly increased the efficiency of direct solvers for sparse 
systems.  They make full use of the high computer 
architecture by invoking level 3 Basic Linear Algebra 
Subprograms (BLAS) library. Thus the memory 
requirement is greatly reduced and the computing speed 
greatly enhanced. Multifrontal solvers have been 
successfully used both in the context of finite volume 
problems [3-5], finite element problems [6] and in power 
system simulations [7-9]. The disadvantage of using direct 
solvers is that the memory size increases much more 
rapidly than the problem size itself [6]. To circumvent this 
problem, out-of-core multifrontal solvers [10] have been 
developed which has the capability of storing the factors 
on the disk during factorization. Another viable alternative 

is to use direct solvers in a distributed computing 
environment. 
The system of non-linear equations obtained from the 
discretization of Navier-Stokes equations is usually solved 
using a Newton or a Picard algorithm. Newton algorithms 
are known for their quadratic convergence behavior. 
When the initial guess is close to the final solution, 
Newton achieves quadratic convergence. In this paper, 
only the Newton algorithm is used. In using direct solvers, 
factorization of the left hand side matrix is the most time 
consuming step. To avoid factorization during every 
iteration, a modified Newton is used in which the 
factorization is done only during the first iteration. The left 
side matrix evaluated for the first iteration is retained and 
is not changed during the subsequent iterations. Only the 
right hand side matrix is updated during each iteration 
step. The right hand side vector is appropriately modified 
to give the final converged solution. Since the 
factorization is done only during the first iteration, the 
subsequent iterations are extremely cheap. It usually 
requires more number of iterations to obtain the overall 
convergence. So there is a tradeoff between the 
computational time per iteration and the number of 
iterations to obtain the final convergence. Although the 
convergence rate is lower compared to the Newton 
iteration, the savings in computational time per iteration is 
so high that it can more than compensate the decrease in 
the convergence rate. 
   MUMPS [11-13] and SUPERLU [14] are amongst the 
fastest parallel general sparse direct solvers that are 
available under public domain software. A detailed 
description of the various features and algorithms 
employed in these packages can be found in [15]. 
MUMPS is found to be much faster compared to 
SUPERLU, although its scalability is low compared to that 
of SUPERLU. In this paper, parallelization is achieved 
using a MUltifrontal Massively Parallel Solver (MUMPS) 
on a distributed environment using MPI. The linear system 
of equations is evaluated on different processors 
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corresponding to the local grid assigned to the processor. 
The right hand side vector is assembled on the host 
processor and is input to the MUMPS solver. On exit from 
the MUMPS solver, the solution is assembled centrally on 
the host processor. This solution is then broadcast to all 
the processors. In the context of modified Newton 
algorithm, the LU factors evaluated during the first 
iteration are reused and the solution of the linear system 
with the new right hand side vector is solved. The 
performance of the solver in terms of scalability and 
memory issues for both two-dimensional and three-
dimensional problems are discussed in detail. 

2. Mathematical Formulation 

The governing equations for laminar flow through a two-
dimensional rectangular duct are presented below in the 
non-dimensional form. 
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where ,u v  are the x and y components of velocity, p is 
the pressure.  The bulk flow Reynolds number, 
Re=ρU0D/µ, U0 being the inlet velocity, ρ the density, L 
the channel length, and µ is the dynamic viscosity.  
Velocities are non-dimensionalized with respect to U0, 
pressure with respect to ρU0

2. 
The boundary conditions are prescribed as follows: 
(1)  Along the channel inlet: 

1; 0.u v= =     (4) 

(2)  Along the channel exit: 

0; 0; 0.u vp
x x
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= = =
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(3) Along the walls: 
0;   0.u v= =     (6) 

   The governing equations for laminar flow through a 
three-dimensional rectangular duct are presented below in 
the non-dimensional form. In three-dimensional 

calculations, instead of the primitive u,v,w,p formulation, 
penalty approach is used to reduce the memory 
requirements. 

0,u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

    (7) 

( ) ( ) ( )2 2
Re

1 1                                            ,
Re Re

u v w uu uv uw
x y z x x y z x x

u v u w
y y x z z x

λ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ⎛ ∂ ∂ ⎞⎛ ⎞+ + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

(8) 

( ) ( ) ( )2 1
Re

2 1                                             ,
Re Re

u v w u vuv v vw
x y z y x y z x y x

v v w
y y z z y

λ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(9) 

and 

( ) ( ) ( )2 1
Re

1 2                                             .
Re Re

u v w u wuw vw w
x y z z x y z x z x

v w w
y z y z z

λ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎛ ∂ ∂ ⎞⎛ ⎞+ + = + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

(10) 
where , ,u v w  are the x, y and z components of velocity,.  
The bulk flow Reynolds number, Re=ρU0D/µ, U0 being 
the inlet velocity, ρ the density, L the channel length,  µ is 
the dynamic viscosity and λ is the penalty parameter.  
Velocities are non-dimensionalized with respect to U0. 
The boundary conditions are prescribed as follows: 
(1)  Along the channel inlet: 

1; 0; 0.u v w= = =     (11) 

(2)  Along the channel exit : 

0; 0; 0.u v w
x x x
∂ ∂ ∂

= = =
∂ ∂ ∂

   (12) 

(3) Along the walls: 
0;   0;   0.u v w= = =     (13) 

4. Newton’s Algorithm 

   The set of non-linear equations obtained by the 
discretization of Galerkin Finite element formulation is 
solved using Newton’s iterative algorithm. 
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and { }( )k
XR
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 is the residual vector. Newton’s iteration is 

continued till the infinity norm of the correction vector 
( )kXδ

%
 converges to a prescribed tolerance of 610− .   

  The modified Newton’s algorithm employs the jacobian 
calculated during the first iteration repeatedly for all the 
successive iterations. The jacobian is not updated. This 
would reduce the rate of convergence of the Newton 
algorithm. Since the jacobian is not updated, factorization 
can be skipped during all the subsequent iterations.  

5. MUMPS Solver 

   The most time consuming part is the solution of the set 
of linear equations. To solve these linear systems, we use a 
robust parallel solver MUMPS. It employs multifrontal 
techniques to solve the set of linear equations on parallel 
computers on a distributed environment using MPI. It 
relies on Level II and Level III optimized BLAS routines. 
It requires SCALAPACK and PBLACS routines. In this 
paper, the vendor optimized INTEL Math Kernal Library 
is used.  The Software is written in Fortran 90 and has a C 
interface available. 
   The solution of the set of linear equations takes place in 
3 essential steps 
(i) Analysis step: MUMPS offers various built in ordering 
algorithms and interface to external packages such as 
PORD [16] and METIS [17]. The Matrix is analyzed to 
determine an ordering and a mapping of the multifrontal 
computational graph is constructed. This symbolic 
information is passed on from the host to all the other 
processors. 
(ii) Factorization: Based on the symbolic information, the 
algorithm tries to construct several dense sub matrices that 
can be processed in parallel. The numerical factorization is 
carried out during this step. 
(iii) Solution step: Using the right hand side vector, the 
solution vector is computed using the distributed factors. 

   All these steps can be called separately or as a 
combination of each other. This can be exploited to save 
some computational effort during the solution of 
subsequent iterations in the solution of a set of nonlinear 
equations. For example if the structure of the matrix does 
not change during every iteration, the analysis step can be 
skipped after evaluating once. Similarly, if the left hand 
matrix does not change, both the analysis and the 
factorization steps can be skipped.  

6. Parallel Implementation 

The MUMPS solver is implemented using the MPI library, 
which makes the code very portable and usable on both, 
shared and distributed memory parallel computers.  The 
parallelization is done internally in the code. The calling 
program should also be in a parallel environment to call 
the code. In the present formulation, each element is 
assigned to particular processor such the elements are 
equally (or almost equally) distributed amongst all the 
processors. The computation of the matrix coefficients and 
the right hand side vector are done in parallel 
corresponding to the set of local elements. Evaluation of 
the Jacobian matrix and the right hand side vector in a 
parallel environment is crucial for problems, which 
consume lot of time for the evaluation of matrix 
coefficients.  
   During the progress of overall iterations, the different set 
of linear equations obtained during every iteration is 
solved by successive calls to the MUMPS. For the 
modified Newton’s algorithm, the left hand matrix 
remains the same (numerically). So both the analysis and 
the factorization steps are skipped during the subsequent 
iterations. Since the factorization is most costly step, it 
leads to a significant amount of savings in time for the 
subsequent iterations. The performance of Newton and 
Modified Newton’s method is tested. 
   While implementing the finite element code in a parallel 
environment with the MUMPS code, the element matrix 
entries are calculated locally on each of the processors. 
Although the facility for element matrix input is available, 
only the option of centralized element entry is available in 
the current versions of MUMPS solver. To facilitate 
distributed matrix input (necessary for improving the 
parallel efficiency), the local element entries are converted 
into sparse matrix triplet entries in coordinate format and 
are input in a distributed fashion (using ICNTL(5) = 0 and 
ICNTL(18) = 3). There will be lot of duplicate entries due 
to contribution of all the neighboring elements at a given 
grid point. MUMPS solver automatically sums up all the 
duplicate entries. Different ordering can be chosen by 
using different values for ICNTL(7). The different 
ordering options that are available within MUMPS solver 
are (i) Approximate minimum degree (AMD), (ii) 
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Approximate minimum fill (AMF), (iii) PORD, (iv) 
METIS, (v) Approximate Minimum degree with automatic 
quasi-dense row detection (QAMD). 

7. Performance of MUMPS Solver 

   Preliminary experiments have been done to study the 
effect of different ordering routines on the performance of 
MUMPS solver both in terms of memory and 
computational time. Table 1 shows the performance of 
different ordering routines for two-dimensional codes. 
Table 1 shows the comparison of different ordering 
routines for a 300x300 mesh using 12 processors. Results 
indicate the both PORD and METIS perform well in 
minimizing the computational time requirements but 
METIS performs well in terms of memory requirements. 
Based on this observation, METIS ordering is used for all 
subsequent calculations. Table 2 shows the performance of 
Newton’s and modified Newton’s method using MUMPS 
solver for a two-dimensional channel flow problem. 
Results indicate that modified Newton’s method performs 
better than Newton’s method. This is due to the fact that in 
modified Newton’s method, factorization is done only 
during the first iteration. During the subsequent iterations, 
factorization is skipped and only the solution step is 
performed. This decreases the convergence rate, thereby 
increasing the number of iterations to obtain convergence. 
However, the solution step being computationally 
inexpensive compared to the factorization step, the overall 
solution time is less compared to the Newton’s step. 
However it should be noted that the memory requirement 
for the Newton and modified Newton’s method are the 
same. Table 2 shows that the memory requirement does 
not vary linearly with the number of processors. It behaves 
erratically. Table 2 also shows that the MUMPS solver 
does not scale so well. Using 20 processors, the 
computational time is approximately halved compared to 
the computational time using 2 processors. It does not 
scale much beyond 6 processors. The scalability of 
MUMPS solver for two-dimensional problems is observed 
to be poor. 
Table 3 shows the performance of MUMPS solver using 
different ordering routines for a three dimensional channel 
flow problem. The table shows that METIS ordering is a 
better choice both in terms of computational speed and 
memory requirement. Hence METIS is used for all the 
subsequent computations of three dimensional problems. 
For a 100x20x20 mesh, memory was not sufficient to run 
on 2 processors. The table shows that the scalability of 
MUMPS solver for three-dimensional problems is better 
than that for the two-dimensional problems. When the 
number of processors increased from 4 to 20, the 
computational time of Newton’s method has reduced to a 
factor of 3.6 approximately, while that of modified 

Newton’s method has reduced to a factor of 3 
approximately.  The maximum memory requirement for a 
single processor has reduced to a factor of 4. The use of 
MUMPS solver for three dimensional problems seems to 
be promising. However, memory requirement is a serious 
limitation for solving three dimensional problems using 
direct solvers. 

8. Conclusions 

Finite element based Navier-Stokes codes are parallelized 
using MUMPS solver. Both Newton and modified 
Newton’s algorithms are used. It is observed that modified 
Newton’s method leads to savings in computational time 
compared to the Newton’s algorithm. It is also observed 
that METIS ordering enhances the performance of 
MUMPS solver both for two-dimensional and three-
dimensional problems. MUMPS solver does not scale well 
for two-dimensional problems but it scales better for three 
dimensional problems.  

Table 1: Comparison of the performance of different orderings in 
MUMPS solver for a 300x300 mesh on 12 processors 

Memory (MB)Ordering CPU time/ 
iteration (sec) avg max 

PORD 16.6 1525 1640 
METIS 5.1 1560 1820 
AMD 5.5 1586 1923 
AMF 6.7 1592 2000 
QAMD 5.3 1603 2056 

 
Table 2: Comparison of the performance of Newton and Modified 

Newton’s methods using MUMPS solver for a 200x200 mesh 
Time to solve 

(Seconds) 
Memory 

Requirements (MB) 
# of 

processors

Newton
Modified
Newton 

max  
memory 
on one 

processor 
Total 

memory 

Ordering

2 35.7 27.4 412 806 Metis 
4 23 18.4 259 977 Metis 
6 21 16.8 227 1082 Metis 
8 20 15.3 178 1209 Metis 
10 19.2 14.8 159 1394 Metis 
12 18.6 14.6 157 1700 Metis 
14 19.1 15 171 2039 Metis 
16 18.4 13 156 2352 Metis 
18 18.3 13 145 2534 Metis 
20 18 12 141 2675 Metis 

 
Table 3: Comparison of the performance of different orderings in 

MUMPS solver for a 100x20x20 mesh on 12 processors 
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Memory 
(MB) Orderin

g 
CPU time/iteration 

(sec) 
Avg max 

PORD 41 1385 1612 
METIS 38 1286 1400 
AMD 105 2296 2496 
AMF 93 1246 1425 
QAMD 102 2296 2593 

 
 
 
Table 4: Comparison of the performance of Newton and Modified 
Newton’s methods using MUMPS solver for a 100x20x20 mesh 

Time to solve  
(Seconds) 

Memory 
requirements  

(GB) # of 
processors 

Newto
n 

Modifie
d 

Newton 

max 
memory 
on one 

processor 

Total 
memor

y 

Orderin
g 

4 184 89 2 7.3 metis 
6 147 77.2 1.6 8.6 metis 
8 112 61.6 1 7.5 metis 

10 91 53.4 1.5 13.9 metis 
12 99 42.5 1.4 15.4 metis 
14 68 37.2 1.45 17 metis 
16 58 37 0.7 9.6 metis 
18 52 34.8 0.63 10.2 metis 
20 50 31.1 0.56 9.9 metis 
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