
IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

IJCSIIJCSI

20

Parallel Computation of Finite Element Navier-Stokes codes
using MUMPS Solver

Mandhapati P. Raju

 1 Mechanical Engineering, Case Western Reserve University,
Cleveland, Ohio 44106

Abstract

The study deals with the parallelization of 2D and 3D finite
element based Navier-Stokes codes using direct solvers.
Development of sparse direct solvers using multifrontal solvers
has significantly reduced the computational time of direct
solution methods. Although limited by its stringent memory
requirements, multifrontal solvers can be computationally
efficient. First the performance of MUltifrontal Massively
Parallel Solver (MUMPS) is evaluated for both 2D and 3D codes
in terms of memory requirements and CPU times. The scalability
of both Newton and modified Newton algorithms is tested.
Key words: finite element, MUMPS solver, distributed
computing, Newton method.

1. Introduction

Discretization of Navier-Stokes equations involves a large
set of non-linear equations, requiring high computing
power in terms of speed and memory. The resulting set
of weak form (algebraic) equations in such problems may
be solved either using a direct solver or an iterative solver.
The direct solvers are known for their generality and
robustness. The direct solution methods generally involve
the use of frontal algorithms [1] in finite element
applications. The advent of multifrontal solvers [2] has
greatly increased the efficiency of direct solvers for sparse
systems. They make full use of the high computer
architecture by invoking level 3 Basic Linear Algebra
Subprograms (BLAS) library. Thus the memory
requirement is greatly reduced and the computing speed
greatly enhanced. Multifrontal solvers have been
successfully used both in the context of finite volume
problems [3-5], finite element problems [6] and in power
system simulations [7-9]. The disadvantage of using direct
solvers is that the memory size increases much more
rapidly than the problem size itself [6]. To circumvent this
problem, out-of-core multifrontal solvers [10] have been
developed which has the capability of storing the factors
on the disk during factorization. Another viable alternative

is to use direct solvers in a distributed computing
environment.
The system of non-linear equations obtained from the
discretization of Navier-Stokes equations is usually solved
using a Newton or a Picard algorithm. Newton algorithms
are known for their quadratic convergence behavior.
When the initial guess is close to the final solution,
Newton achieves quadratic convergence. In this paper,
only the Newton algorithm is used. In using direct solvers,
factorization of the left hand side matrix is the most time
consuming step. To avoid factorization during every
iteration, a modified Newton is used in which the
factorization is done only during the first iteration. The left
side matrix evaluated for the first iteration is retained and
is not changed during the subsequent iterations. Only the
right hand side matrix is updated during each iteration
step. The right hand side vector is appropriately modified
to give the final converged solution. Since the
factorization is done only during the first iteration, the
subsequent iterations are extremely cheap. It usually
requires more number of iterations to obtain the overall
convergence. So there is a tradeoff between the
computational time per iteration and the number of
iterations to obtain the final convergence. Although the
convergence rate is lower compared to the Newton
iteration, the savings in computational time per iteration is
so high that it can more than compensate the decrease in
the convergence rate.
 MUMPS [11-13] and SUPERLU [14] are amongst the
fastest parallel general sparse direct solvers that are
available under public domain software. A detailed
description of the various features and algorithms
employed in these packages can be found in [15].
MUMPS is found to be much faster compared to
SUPERLU, although its scalability is low compared to that
of SUPERLU. In this paper, parallelization is achieved
using a MUltifrontal Massively Parallel Solver (MUMPS)
on a distributed environment using MPI. The linear system
of equations is evaluated on different processors

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009

21

IJCSIIJCSI

corresponding to the local grid assigned to the processor.
The right hand side vector is assembled on the host
processor and is input to the MUMPS solver. On exit from
the MUMPS solver, the solution is assembled centrally on
the host processor. This solution is then broadcast to all
the processors. In the context of modified Newton
algorithm, the LU factors evaluated during the first
iteration are reused and the solution of the linear system
with the new right hand side vector is solved. The
performance of the solver in terms of scalability and
memory issues for both two-dimensional and three-
dimensional problems are discussed in detail.

2. Mathematical Formulation

The governing equations for laminar flow through a two-
dimensional rectangular duct are presented below in the
non-dimensional form.

0,u v
x y
∂ ∂

+ =
∂ ∂

 (1)

() ()2 2 1 ,
Re Re

p u u vu uv
x y x x x y y x

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ = − + + +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
(2)

and

() ()2 1 2 ,
Re Re

p u v vuv v
x y y x y x y y

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3)

where ,u v are the x and y components of velocity, p is
the pressure. The bulk flow Reynolds number,
Re=ρU0D/µ, U0 being the inlet velocity, ρ the density, L
the channel length, and µ is the dynamic viscosity.
Velocities are non-dimensionalized with respect to U0,
pressure with respect to ρU0

2.
The boundary conditions are prescribed as follows:
(1) Along the channel inlet:

1; 0.u v= = (4)

(2) Along the channel exit:

0; 0; 0.u vp
x x
∂ ∂

= = =
∂ ∂

 (5)

(3) Along the walls:
0; 0.u v= = (6)

 The governing equations for laminar flow through a
three-dimensional rectangular duct are presented below in
the non-dimensional form. In three-dimensional

calculations, instead of the primitive u,v,w,p formulation,
penalty approach is used to reduce the memory
requirements.

0,u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (7)

() () ()2 2
Re

1 1 ,
Re Re

u v w uu uv uw
x y z x x y z x x

u v u w
y y x z z x

λ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + = + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ⎛ ∂ ∂ ⎞⎛ ⎞+ + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

(8)

() () ()2 1
Re

2 1 ,
Re Re

u v w u vuv v vw
x y z y x y z x y x

v v w
y y z z y

λ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

(9)

and

() () ()2 1
Re

1 2 .
Re Re

u v w u wuw vw w
x y z z x y z x z x

v w w
y z y z z

λ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎛ ∂ ∂ ⎞⎛ ⎞+ + = + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

(10)
where , ,u v w are the x, y and z components of velocity,.
The bulk flow Reynolds number, Re=ρU0D/µ, U0 being
the inlet velocity, ρ the density, L the channel length, µ is
the dynamic viscosity and λ is the penalty parameter.
Velocities are non-dimensionalized with respect to U0.
The boundary conditions are prescribed as follows:
(1) Along the channel inlet:

1; 0; 0.u v w= = = (11)

(2) Along the channel exit :

0; 0; 0.u v w
x x x
∂ ∂ ∂

= = =
∂ ∂ ∂

 (12)

(3) Along the walls:
0; 0; 0.u v w= = = (13)

4. Newton’s Algorithm

 The set of non-linear equations obtained by the
discretization of Galerkin Finite element formulation is
solved using Newton’s iterative algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009

22

IJCSIIJCSI

 Let ()kX
%

 be the available vector of field unknowns
for the kth iteration. Then the update for the ()1 stk +

iteration is obtained as
() () ()1k k kX X Xαδ+ = +

% % %
, (14)

where α is an under-relaxation factor, and ()kXδ
%

 is the
correction vector obtained by solving the linearized
system

(){ } { }()[] kk
XJ X Rδ = −

% %
. (15)

Here, [J] is the Jacobian matrix,
()

()[]
k

X
k

RJ
X
∂

=
∂
%

%

. (16)

and { }()k
XR
%

 is the residual vector. Newton’s iteration is

continued till the infinity norm of the correction vector
()kXδ

%
 converges to a prescribed tolerance of 610− .

 The modified Newton’s algorithm employs the jacobian
calculated during the first iteration repeatedly for all the
successive iterations. The jacobian is not updated. This
would reduce the rate of convergence of the Newton
algorithm. Since the jacobian is not updated, factorization
can be skipped during all the subsequent iterations.

5. MUMPS Solver

 The most time consuming part is the solution of the set
of linear equations. To solve these linear systems, we use a
robust parallel solver MUMPS. It employs multifrontal
techniques to solve the set of linear equations on parallel
computers on a distributed environment using MPI. It
relies on Level II and Level III optimized BLAS routines.
It requires SCALAPACK and PBLACS routines. In this
paper, the vendor optimized INTEL Math Kernal Library
is used. The Software is written in Fortran 90 and has a C
interface available.
 The solution of the set of linear equations takes place in
3 essential steps
(i) Analysis step: MUMPS offers various built in ordering
algorithms and interface to external packages such as
PORD [16] and METIS [17]. The Matrix is analyzed to
determine an ordering and a mapping of the multifrontal
computational graph is constructed. This symbolic
information is passed on from the host to all the other
processors.
(ii) Factorization: Based on the symbolic information, the
algorithm tries to construct several dense sub matrices that
can be processed in parallel. The numerical factorization is
carried out during this step.
(iii) Solution step: Using the right hand side vector, the
solution vector is computed using the distributed factors.

 All these steps can be called separately or as a
combination of each other. This can be exploited to save
some computational effort during the solution of
subsequent iterations in the solution of a set of nonlinear
equations. For example if the structure of the matrix does
not change during every iteration, the analysis step can be
skipped after evaluating once. Similarly, if the left hand
matrix does not change, both the analysis and the
factorization steps can be skipped.

6. Parallel Implementation

The MUMPS solver is implemented using the MPI library,
which makes the code very portable and usable on both,
shared and distributed memory parallel computers. The
parallelization is done internally in the code. The calling
program should also be in a parallel environment to call
the code. In the present formulation, each element is
assigned to particular processor such the elements are
equally (or almost equally) distributed amongst all the
processors. The computation of the matrix coefficients and
the right hand side vector are done in parallel
corresponding to the set of local elements. Evaluation of
the Jacobian matrix and the right hand side vector in a
parallel environment is crucial for problems, which
consume lot of time for the evaluation of matrix
coefficients.
 During the progress of overall iterations, the different set
of linear equations obtained during every iteration is
solved by successive calls to the MUMPS. For the
modified Newton’s algorithm, the left hand matrix
remains the same (numerically). So both the analysis and
the factorization steps are skipped during the subsequent
iterations. Since the factorization is most costly step, it
leads to a significant amount of savings in time for the
subsequent iterations. The performance of Newton and
Modified Newton’s method is tested.
 While implementing the finite element code in a parallel
environment with the MUMPS code, the element matrix
entries are calculated locally on each of the processors.
Although the facility for element matrix input is available,
only the option of centralized element entry is available in
the current versions of MUMPS solver. To facilitate
distributed matrix input (necessary for improving the
parallel efficiency), the local element entries are converted
into sparse matrix triplet entries in coordinate format and
are input in a distributed fashion (using ICNTL(5) = 0 and
ICNTL(18) = 3). There will be lot of duplicate entries due
to contribution of all the neighboring elements at a given
grid point. MUMPS solver automatically sums up all the
duplicate entries. Different ordering can be chosen by
using different values for ICNTL(7). The different
ordering options that are available within MUMPS solver
are (i) Approximate minimum degree (AMD), (ii)

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009

23

IJCSIIJCSI

Approximate minimum fill (AMF), (iii) PORD, (iv)
METIS, (v) Approximate Minimum degree with automatic
quasi-dense row detection (QAMD).

7. Performance of MUMPS Solver

 Preliminary experiments have been done to study the
effect of different ordering routines on the performance of
MUMPS solver both in terms of memory and
computational time. Table 1 shows the performance of
different ordering routines for two-dimensional codes.
Table 1 shows the comparison of different ordering
routines for a 300x300 mesh using 12 processors. Results
indicate the both PORD and METIS perform well in
minimizing the computational time requirements but
METIS performs well in terms of memory requirements.
Based on this observation, METIS ordering is used for all
subsequent calculations. Table 2 shows the performance of
Newton’s and modified Newton’s method using MUMPS
solver for a two-dimensional channel flow problem.
Results indicate that modified Newton’s method performs
better than Newton’s method. This is due to the fact that in
modified Newton’s method, factorization is done only
during the first iteration. During the subsequent iterations,
factorization is skipped and only the solution step is
performed. This decreases the convergence rate, thereby
increasing the number of iterations to obtain convergence.
However, the solution step being computationally
inexpensive compared to the factorization step, the overall
solution time is less compared to the Newton’s step.
However it should be noted that the memory requirement
for the Newton and modified Newton’s method are the
same. Table 2 shows that the memory requirement does
not vary linearly with the number of processors. It behaves
erratically. Table 2 also shows that the MUMPS solver
does not scale so well. Using 20 processors, the
computational time is approximately halved compared to
the computational time using 2 processors. It does not
scale much beyond 6 processors. The scalability of
MUMPS solver for two-dimensional problems is observed
to be poor.
Table 3 shows the performance of MUMPS solver using
different ordering routines for a three dimensional channel
flow problem. The table shows that METIS ordering is a
better choice both in terms of computational speed and
memory requirement. Hence METIS is used for all the
subsequent computations of three dimensional problems.
For a 100x20x20 mesh, memory was not sufficient to run
on 2 processors. The table shows that the scalability of
MUMPS solver for three-dimensional problems is better
than that for the two-dimensional problems. When the
number of processors increased from 4 to 20, the
computational time of Newton’s method has reduced to a
factor of 3.6 approximately, while that of modified

Newton’s method has reduced to a factor of 3
approximately. The maximum memory requirement for a
single processor has reduced to a factor of 4. The use of
MUMPS solver for three dimensional problems seems to
be promising. However, memory requirement is a serious
limitation for solving three dimensional problems using
direct solvers.

8. Conclusions

Finite element based Navier-Stokes codes are parallelized
using MUMPS solver. Both Newton and modified
Newton’s algorithms are used. It is observed that modified
Newton’s method leads to savings in computational time
compared to the Newton’s algorithm. It is also observed
that METIS ordering enhances the performance of
MUMPS solver both for two-dimensional and three-
dimensional problems. MUMPS solver does not scale well
for two-dimensional problems but it scales better for three
dimensional problems.

Table 1: Comparison of the performance of different orderings in
MUMPS solver for a 300x300 mesh on 12 processors

Memory (MB)Ordering CPU time/
iteration (sec) avg max

PORD 16.6 1525 1640
METIS 5.1 1560 1820
AMD 5.5 1586 1923
AMF 6.7 1592 2000
QAMD 5.3 1603 2056

Table 2: Comparison of the performance of Newton and Modified

Newton’s methods using MUMPS solver for a 200x200 mesh
Time to solve

(Seconds)
Memory

Requirements (MB)
of

processors

Newton
Modified
Newton

max
memory
on one

processor
Total

memory

Ordering

2 35.7 27.4 412 806 Metis
4 23 18.4 259 977 Metis
6 21 16.8 227 1082 Metis
8 20 15.3 178 1209 Metis
10 19.2 14.8 159 1394 Metis
12 18.6 14.6 157 1700 Metis
14 19.1 15 171 2039 Metis
16 18.4 13 156 2352 Metis
18 18.3 13 145 2534 Metis
20 18 12 141 2675 Metis

Table 3: Comparison of the performance of different orderings in

MUMPS solver for a 100x20x20 mesh on 12 processors

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009

24

IJCSIIJCSI

Memory
(MB) Orderin

g
CPU time/iteration

(sec)
Avg max

PORD 41 1385 1612
METIS 38 1286 1400
AMD 105 2296 2496
AMF 93 1246 1425
QAMD 102 2296 2593

Table 4: Comparison of the performance of Newton and Modified
Newton’s methods using MUMPS solver for a 100x20x20 mesh

Time to solve
(Seconds)

Memory
requirements

(GB) # of
processors

Newto
n

Modifie
d

Newton

max
memory
on one

processor

Total
memor

y

Orderin
g

4 184 89 2 7.3 metis
6 147 77.2 1.6 8.6 metis
8 112 61.6 1 7.5 metis

10 91 53.4 1.5 13.9 metis
12 99 42.5 1.4 15.4 metis
14 68 37.2 1.45 17 metis
16 58 37 0.7 9.6 metis
18 52 34.8 0.63 10.2 metis
20 50 31.1 0.56 9.9 metis

Acknowledgments

Author would like to thank the Ohio Supercomputing
Centre for proving the computing facility.

References
[1] B.M. Irons, "A frontal solution scheme for finite element

analysis," Numer. Meth. Engg, Vol. 2, 1970, pp. 5-32.
[2] T. A. Davis, and I. S. Duff, "A combined

unifrontal/multifrontal method for unsymmetric sparse
matrices," ACM Trans. Math. Softw., Vol 25, No 1, 1997,
pp. 1–19.

[3] M. P. Raju, and J. S. T’ien, "Development of Direct
Multifrontal Solvers for Combustion Problems,” Numerical
Heat Transfer, Part B, Vol. 53, 2008, pp. 1-17.

[4] M. P. Raju, and J. S. T’ien, “Modelling of Candle Wick
Burning with a Self-trimmed Wick,” Comb. Theory
Modell., Vol. 12, No. 2, 2008, pp. 367-388.

[5] M. P. Raju, and J. S. T’ien, "Two-phase flow inside an
externally heated axisymmetric porous wick," Journal of
Porous Media, Vol. 11, No. 8, 2008, pp. 701-718.

[6] P. K. Gupta and K. V. Pagalthivarthi, "Application of
Multifrontal and GMRES Solvers for Multisize Particulate

Flow in Rotating Channels," Prog. Comput Fluid Dynam.,
Vol. 7, 2007, pp. 323–336.

[7] S. Khaitan, J. McCalley, Q. Chen, "Multifrontal solver for
online power system time-domain simulation," IEEE
Transactions on Power Systems, Vol. 23, No. 4, 2008, pp.
1727–1737.

[8] S. Khaitan, C. Fu, J. D. McCalley, "Fast parallelized
algorithms for online extended-term dynamic cascading
analysis," PSCE, 2009, pp. 1–7.

[9] J. McCalley, S. Khaitan, “Risk of Cascading outages”, Final
Report, PSrec Report, S-26, August 2007.
http://www.pserc.org/docsa/Executive_ Summary_Dobson_

 McCalley_Cascading_Outage_ S-2626_PSERC_ Final_
 Report.pdf.
 [10] J. A. Scott, Numerical Analysis Group Progress Report,

RAL-TR-2008-001.
 [11] P. R. Amestoy, I. S. Duff and J.-Y. L'Excellent,

"Multifrontal parallel distributed symmetric and
unsymmetric solvers," Comput. Methods in Appl. Mech.
Eng., Vol. 184, 2000, pp. 501-520.

[12] P. R. Amestoy, I. S. Duff, J. Koster and J.-Y. L'Excellent,
"A fully asynchronous multifrontal solver using distributed
dynamic scheduling," SIAM Journal of Matrix Analysis
and Applications, Vol. 23, No. 1, 2001, pp 15-41.

[13] P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent and S.
Pralet, "Hybrid scheduling for the parallel solution of linear
systems," Parallel Computing, Vol. 32, No. 2, 2006, pp.
136-156.

[14] S. L. Xiaoye and W. D. James, "A Scalable Distributed-
Memory Sparse Direct Solver for Unsymmetric Linear
Systems," ACM Trans. Mathematical Software, Vol. 29,
No. 2, 2003, pp. 110-140.

[15] A. Gupta, "Recent advances in direct methods for solving
unsymmetric sparse systems of linear equations," ACM
transaction in Mathematical Software, Vol. 28, No. 3,
2002, pp. 301-324.

[16] J. Schulze, "Towards a tighter coupling of bottom-up and
top-down sparse Matrix ordering methods," BIT Numerical
Mathematics, Vol. 41, No. 4, 2001, pp. 800-841.

[17] G. Karypis, and V. Kumar, "A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs,"
SIAM J Scientific Computing, Vol. 20, 1999, pp. 359-392.

Mandhapati P. Raju

Mandhapati P. Raju completed his MS (2002-2004) and Ph.D
(2004-2006) in Mechanical Engineering department at Case
Western Reserve University, Cleveland, OH. Later he worked as
Postdoctoral fellow in Case Western Reserve University during
2006-2008. Later he worked at Caterpillar Champaign simulation
centre as a CFD analyst. Currently he is working as a Post
Doctoral fellow in General Motors Inc. His research interests are
combustion, porous media flows, multifrontal solvers, fuel cell and
hydrogen storage. This work was done during his presence in
Case Western Reserve University. He has published 5 journal
papers in reputed international journals.

