
IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009 
ISSN (Online): 1694-0784 
ISSN (Print): 1694-0814 

IJCSIIJCSI  

25

The Folklore of Sorting Algorithms  

Dr. Santosh Khamitkar1, Parag Bhalchandra2, Sakharam Lokhande 2, Nilesh Deshmukh2 
 

School of Computational Sciences, 
Swami Ramanand Teerth Marathwada University, 

Nanded (MS ) 431605,  India 
  

 
 

Abstract 
 
The objective of this paper is to review the folklore knowledge 
seen in research work devoted on synthesis, optimization, and 
effectiveness of various sorting algorithms. We will examine 
sorting algorithms in the folklore lines and try to discover the 
tradeoffs between folklore and theorems. Finally, the folklore 
knowledge on complexity values of the   sorting algorithms will 
be considered, verified and subsequently converged in to 
theorems.  
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1. Introduction 

Folklore is the traditional beliefs, legend and customs, 
current among people. Where as a theorem is a general 
conclusion which has been proved [1].In view of these 
definitions one might be tempted to conclude simply that 
the folk theorem is a general conclusion which is 
traditional and can be proved. The objective of this paper 
is to narrate the folklore on complexity issues of sorting 
algorithms and prove them. Accordingly, we shall attempt 
to provide a reasonable definition for complexity or 
criteria for folklore, followed by a detailed example 
illustrating ideas. The letter endeavor might take one of 
the two possible forms. We could take a piece of folklore 
and show that it is a theorem or take a theorem and show 
that it is folklore.  Literature review in present context 
highlights that the unified theory regarding their folklore 
knowledge and in terms of theorems is found missing. 
 
Since the dawn of computing, the sorting problem has 
attracted a great deal of research. Till date, Sorting 
algorithms are open problems and many researchers in 
past have attempted to optimize them with optimal space 
and time scale. Here Optimization was thought as the 
process to reduce the time complexity so as to cross at 
least O (n log n) milestone. Many new techniques were 
proposed and till today fine refinement of them is in 

progress. Every researcher attempted optimization in past 
has found stuck to his / her observations regarding sorting 
experiments and produced his/ her own results. Since 
these results were specific to software and hardware 
environment therein, we found abundance in the 
complexity analysis which possibly could be thought as 
the folklore knowledge. We tried to review this folklore 
knowledge in past research work and came to a conclusion 
that it was mainly devoted on synthesis, optimization, 
effectiveness in working styles of various sorting 
algorithms. 
 
Our work is not mere commenting earlier work rather we 
are putting the knowledge embedded in sorting folklore 
with some different and interesting view so that students, 
teachers and researchers can easily understand them. 
Synthesis, in terms of folklore and theorems, hereupon 
aims to check what past researchers have thought is really 
the same they were saying and to analyze research on 
sorting algorithms in such a way to get united 
understanding of and support for the research results so 
that they can be used directly and defended in public. 
Since we have resolved to introduce no new technical 
material in this paper except having technical elaboration 
of folklore, and as researchers seem to be less familiar 
with folklore than with theorems, we prefer to deal with 
both approaches stated in above Para. We will present 
strong evidence to the effect that a particular folk can be 
converged in to theorem and vice versa. Folklore 
knowledge on complexity values of the   sorting 
algorithms will be considered, verified and subsequently 
converged in to theorems. 
 
This paper is important as Sorting algorithms are often 
prevalent in introductory computer science classes, where 
the abundance of algorithms for the problem provides a 
gentle introduction to a variety of core algorithm concepts. 
Sorting algorithms illustrate a number of important 
principles of algorithm design; some of them are also 
counterintuitive [2]. Efficient sorting is important to 
optimizing the use of other algorithms such as Binary 
search and merge algorithms that require sorted lists to 
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work correctly [2,3]. We can not deploy binary search if 
data is not pre sorted otherwise the search process may get 
trapped into a blind alley thereby exhibiting worst case 
complexity. Literature review has highlighted mainly 
interesting things which could be the parts of folklore and 
or theorems .Usually these folklore and theorem parts are 
always omitted by the faculties teaching these topics and 
students find them extremely difficult to understand. We 
will examine sorting algorithms in these lines and try and 
discover the tradeoffs between folklore and theorems. This 
paper covers different complexity aspects of basic sorting 
models, such as big O notation, best, worst and average 
case analysis, time-space tradeoffs, lower bounds, etc.  

2. Origin of Folklore  

When we look to develop or use a sorting algorithm on 
large problems, it is important to understand how long the 
algorithm might take to run.   The time for most sorting 
algorithms depends on the amount of data or size of the 
problem.  In order to analyze an algorithm, we try to find a 
relationship showing how the time needed for the 
algorithm depends on the amount of data.  This is called 
the "complexity" of the algorithm. [4] 
 
A simple sorting algorithm like bubble sort may have a 
high complexity, whereas an algorithm which is very 
complex in its organization such as shell sort ,  sometimes 
pays off by having a lower  complexity in the sense of 
time needed for computation[5,6]. Besides running time 
analysis, it is seen that, factors other than the sorting 
algorithm selected to solve a problem, affect the time 
needed for a program. It is just because different people 
carrying out a solution to a problem may work at different 
speeds, even when they use the same sorting method, 
different computers work at different speeds.  The 
different speeds of computers on the same program can be 
due to different "clock speeds”, the rates at which steps in 
the program are executed by the machine and different 
"architectures," the way in which the internal instructions 
and circuitry of the computer are organized. Literature 
review shows that, the researchers have attempted for 
rigorous analysis of sorting algorithms and produced 
prolific comments [7, 8, 9] discovering such complexity 
dependent factors . 
 
Consequently, analysis of sorting algorithm can not 
predict exactly how long it will take on a particular 
computer [5]. What analysis can do is tell us how the time 
needed depends on the amount of data.  For example, we 
always come across folklore like, for an algorithm, when 
we double the amount of data, the time needed is also 
doubled, and in other words the time needed is 
proportional to the amount of data.  The analysis of 

another algorithm might tell us that when we double the 
amount of data, the time is increased by a factor of four, 
which is the time needed is proportional to the amount of 
data squared.  The latter algorithm would have the time 
needed increase much more rapidly than the first.  
 
When analyzing sorting algorithms, it often happens that 
the analysis of efficiency also depends considerably on the 
nature of the data. For example, if the original data set 
already is almost ordered, a sorting algorithm may behave 
rather differently than if the data set originally contains 
random data or is ordered in the reverse direction. 
Similarly, for many sorting algorithms, it is difficult to 
analyze the average-case complexity. Generally speaking, 
the difficulty comes from the fact that one has to analyze 
the time complexity for all inputs of a given length and 
then compute the average. This is a difficult task. Using 
the incompressibility method, we can choose just one 
input as a representative input. Via Kolmogorov 
complexity, we can show that the time complexity of this 
input is in fact the average-case complexity of all inputs of 
this length. Constructing such a “representative input”           
is impossible, but we know it exists and this is      
sufficient [10] 
 
For these reasons, the analysis for sorting algorithms often 
considers separate cases, depending on the original nature 
of the data. The price of this generality is exponential 
complexity; with the result that many problems of 
practical interest are solvable better than folklore of 
sorting, but the limitations of computational capacity 
prevent them from being solved in practice. The 
increasing diversity in computing platforms motivates 
consideration of multi-processor environment. Literature 
review suggests that no folklore is found mentioned 
regarding complexity in multiprocessor environment. 
 
Recently, many results on the computational complexity of 
sorting algorithms were obtained using Kolmogorov 
complexity (the incompressibility method). Especially, the 
usually hard average-case analysis is amenable to this 
method. A survey [10] shows such results about Bubble 
sort, Heap sort, Shell sort, Dobosiewicz-sort, Shaker sort, 
and sorting with stacks and queues in sequential or parallel 
mode. It is also found that the trade-off between memory 
and sorting is enhanced by the increase in availability of 
computer memory and the increase in processor speed. 
Currently, the prices of computer memory are decreasing. 
Therefore, acquiring larger memory configurations is no 
longer an obstacle, making it easier to equip a computer 
with more memory.  
 
Similarly, every year there is an increase in computer 
speed. The Moore’s Law, a computer-industry standard 
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stated that computer chips should double in power 
approximately every 18 months. The speed of most of 
today's computers is really quite remarkable. Even the 
"slower" ones are quite fast, and the actual processing 
doesn't take much time. Delays, usually encountered in 
"I/O", either to/from disk, the network or peripheral 
devices have been eliminated because of innovative 
interfacing standards, thereby boosting speed.  If a 
computer has an 800 MHz processor, sounds like it was 
made in the early to mid 90's. If we look at most 
computers coming out today we will notice that the dual 
core processor - which is in fact two processors on the 
computer, each processor is clocking in at around 1.85 
Ghz, which alone is more than two times as fast as that 
800 Mhz processor. Then we have to multiply that by two 
since there are two cores. It is something like today's 
computers are working about 4-5 times faster than the 
earlier ones. Such increase in computer speed causes 
acceleration of sorting algorithms. Thus knowledge 
proved by some researcher for a sorting algorithm on its 
complexity can not be considered absolute as it may be 
increased or decreased analogously. Therefore piece of 
knowledge seen can be thought as folklore knowledge. 
 
Above discussion is potentially the source for folklore. 
Many people, same work on different environment leading 
to different folklores. Some examples of folklore 
knowledge are 1) A quick sort is an effective, but more 
complex, sorting algorithm, 2) Shell Sort is much easier to 
code than Quicksort, and it is nearly as fast as Quicksort.  
 
In next part of paper, we try to express sorting algorithm’s 
behavior using the folklore and then try to prove it by 
formulating theorems.  

3. Background Knowledge  

Sorting is always carried out technically. In computer 
science and mathematics; we can formulate a procedure 
for sorting unordered array or a file. Such procedure is 
always governed by an algorithm; called Sorting 
Algorithm. It is highly expected that we must converge to 
the definition of sorting concept. Basically a sorting 
problem is to arrange a sequence of objects so that the 
values of their "key" fields are in "non-decreasing" 
sequence. 
That is, given objects  

O1, O2, ..., On   
 With key values  

K1,   K2, ...,     Kn    respectively,  
Arrange the objects in an order  

 Oi1,   Oi2,     ...,   Oin , 
 Such that  

 Ki1 <= Ki2    <= ... <= Kin.           (1) 

 
Generally, Computational complexity (worst, average and 
best behavior) of element comparisons in terms of the size 
of the unsorted list is considered for the analysis of the 
efficiency of sorting algorithm. The complexity notational 
terminology is covered in [2]. If the size of unsorted list is 
(n), then for typical sorting algorithms, good behavior is O 
(n log n) and bad behavior is Ω (n²).  The Ideal behavior is 
O (n). Sort algorithms which only use an abstract key 
comparison operation always need Ω (n log n) 
comparisons in the worst case.  
An important criterion used to rate sorting algorithms is 
their running time. Running time is measured by the 
number of computational steps it takes the sorting 
algorithm to terminate when sorting n records. We say that 
an algorithm is O (n2) ("of order n-squared") if the number 
of computational steps needed to terminate as n tends to 
infinity increases in proportion to n2.  Literature review 
carried out in [11, 5] indicate the man’s longing efforts to 
improve running time of sorting algorithm with respect to 
above core algorithm concepts.  
 
Research on efficiency analysis [3, 2] use big O, omega 
and theta notation to give asymptotic upper, lower, and 
tight bounds on time and space complexity of sorting 
algorithms. They determine the time complexity of sorting 
algorithms, use a list of functions and order them 
according to asymptotic growth.  

4. Some Folklore and Convergence in to 
Theorems 

4.1 Folklore 1: The running time of a sorting 
algorithm grows if the length of the input sequence 
grows.  

Proof 1: Proof can be obtained from the following 
reformulation of the sorting problem. For n records there 
are n!  possible linear arrangements, only one of which is 
the correct, sorted set of records. ( n! = 1 x 2 x 3 x . . . [n -
2] x [n - 1] x n.) One may imagine these n!  arrangements 
as the leaves of a binary decision tree. The process of 
sorting then involves starting at the root of the tree (the 
unordered initial list) and traveling down the nodes, 
choosing either the left or right node based on results of 
comparisons. (In this terminology, the "root" of a tree is at 
the top, and all the branches expand downward.) The 
maximum number of steps needed would correspond to 
the height of the tree, which is log n!. Using Stirling's    
approximation of log n!. For large n, this process would be 
O (n log n).  
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Thus the folklore 1 can be converged in to a theorem as, 
Theorem 1: For n records, linear sorting will take a 
complexity O (n log n). If the input sequence is presorted, 
compared to an unsorted sequence possibly less steps are 
sufficient. 
 
Seldom, the theorem does not hold true. It might be the 
case that the keys of the objects fall within a known range. 
Let there be a controlled environment, where we produce 
the keys. For example, we might issue employee numbers 
in a given order and in a given sequence, or we might 
issue part numbers to items that we manufacture. 
Therefore, if the keys are unique and known to be in a 
given range, we might allow the key to be the location of 
the object (imagine placing the objects in a vector such 
that object with key K is in (vector-ref v k)). However the 
algorithms presented only rely on the fact that we can 
compare keys, to determine if one is less than another 

4.2 Folklore 2: In general, we can't sort faster than   
O (n log n). 

Proof 2:  Consider Heap Sort or Bubble Sort or Quick Sort 
or Merge Sort or anything else like those, whether already 
invented or still to be invented. They all will take at least 
O (n log n) steps [5] to sort n items, because of the reason 
that, they all work by comparing data items and then 
moving data items around based on the outcome of the 
comparisons [5]. To illustrate this, here is a piece of Heap 
Sort:  
 
If (a[c/2] < a[c]) // if parent is smaller than child 
     
Swap (c/2, c); // trade their values 
 
Imagine running such a sort on these numbers:  
 
  3, 2, 4, 5, 1 
 
The sort will compare the numbers and based on the 
outcomes of that comparison move the values around, 
with the net effect of all the moves being summarized by 
these arrows:  

 
Fig.1. Suggested moves during swapping process 
 
However it cannot run the same way on same but 
differently arranged inputs like 2, 3, 4, 5, 1, as output will 

be misleading. Thus the execution must take a different 
path for every permutation of inputs.  
 
We can visualize all these executions as an execution tree. 
Each node is some action, either an assignment or a 
comparison; the tree branches after each comparison; each 
path from the root to a leaf is one execution of the 
program; and the height of the tree is the (worst-case) 
running time of the program. If this is a sorting program 
that sorts the numbers 1 through n then execution must 
reach a different leaf for each of the n!  permutations 
of 1....n.  
 
We know that a binary tree with L leaves has height at 
least log L where the log is base 2. Thus our execution tree 
has height at least log (n!) which is O (n log n).To 
conclude, these sorting algorithms must take a different 
path of execution for every different permutation of the 
input values. There are lots of different permutations (n!).  
To be able to run in that many different ways (i.e., for the 
execution tree to have that many leaves), the programs 
cannot run too quickly (i.e., the execution tree cannot be 
too shallow). We may want to conclude that sorting cannot 
be done in less than O (n log n) time. This would be an 
overstatement because there is a subtle assumption in the 
above argument: that the program determines what actions 
to take (i.e., how to move values around) solely based on 
the outcome of comparisons between the input values. The 
lesson learned is, programs that base their actions only on 
comparisons of the data cannot beat the O (n log n) 
barrier. To have a chance at sorting faster we have to 
avoid comparing data! , which is highly impossible. 
However, there are situation where we can say that we can 
sort faster than O (n log n). For example, Counting Sort 
and Radix Sort work faster when the range of values is 
limited .Thus the folklore 2 can be converged in to a 
theorem as, Theorem 2: For n records, sorting will take 
minimum O (n log n) time. 
 

4.3 Folklore 3: The exact number of steps required 
by insertion sort is given by the number of inversions 
of the sequence 

Proof 3: Let a =   a0, ..., an-1 be a finite sequence. An 
inversion is a pair of index positions, where the elements 
of the sequence are out of order. Formally, an inversion is 
a pair (i, j), where i < j and ai > aj. Example:  Let a = 5, 7, 
4, 9, 7. Then, (0, 2) is an inversion, since a0 > a2, namely 
5 > 4. Also, (1, 2) is an inversion, since 7 > 4, and (3, 4) is 
an inversion, since 9 > 7. There are no other inversions in 
this sequence.  The inversion sequence v = v0, ..,vn-1 of a 
sequence a = a0, ..., an-1 is defined by  
vj  =  |{ (i, j)  |  i < j      ai > aj }|  for j = 0, ..., n-1. 
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The above sequence a = 5, 7, 4, 9, 7 has the inversion 
sequence v = 0, 0, 2, 0, 1.  
 
We now count the inversions (i, j) of a sequence a 
separately for each position j. The resulting value of vj 
gives the number of elements ai to the left of aj which are 
greater than aj. Obviously, we have vi i for all 
i = 0, ..., n-1. If all vi are 0, then and only then the 
sequence a is sorted. If the sequence a is a permutation, 
then it is uniquely determined by its inversion sequence v. 
The permutation n-1, ..., 0 has inversion sequence 0, ..., n-
1.  
 
Let a =  a0, ..., an-1 be a sequence and v  =  v0, ..., vn-1 be its 
inversion sequence. Then the number of steps T (a) 
required by insertion sort to sort sequence a is  

 
T (a)   =    i = 0, ..., n-1  vi    (2) 

 
Obviously, insertion sort takes vi steps in each iteration i. 
Thus, the overall number of steps is equal to the sum of all 
vi. This can be proved by an example:  The following table 
shows the sequence a of the first example and its 
corresponding inversion sequence. For instance, v5 = 4 
since 4 elements to the left of a5 = 2 are greater than 2 
(namely 5, 7, 3 and 4). The total number of inversions is 
17. 

 Table 1: Inversion Table  
 

i 0 1 2 3 4 5 6 7 
ai 5 7 0 3 4 2 6 1 
vi 0 0 2 2 2 4 1 6 

 
It is seen that  insertion sort requires 17 steps to sort this 
sequence.Thus the folklore 3 can be converged in to a 
theorem as, Theorem 3 :  The sorting algorithm 
insertion sort has a worst case time complexity of 
T(n) = n·(n-1)/2 comparison-exchange steps to sort a 
sequence of n data elements. 
 

4.4 Folklore 4: Any comparison sort type of 
algorithm requires lower bound comparisons in the 
worst case. 

 
Proof 4: From the folklore 2, it suffices to determine the 
height of a decision tree in which each permutation 
appears as a leaf. Consider a decision three of height h and 
l leaves corresponding to a comparison sort on n elements. 
Because each of the n! permutations of the input appear as 
some leaf, we have   n! ≤ l.  
 

Since a binary tree of height h has no more than 2h leaves, 
we have to conclude that n! ≤ l ≤ 2 , which by taking 
logarithms , implies h ≥ log(n!) (Since the log function is 
monotonically increasing).  
Therefore, 
    h ≥ log(n!) 
 = log (n.n1.n2....2.1) 
 = log n + log (n1) + log (n2) + ... + log2 + log1 
 > log n + log (n1) + log(n2) + ... + log(n/2) 
 > log (n/2) + log (n/2) + ... + log (n/2) 
 = n/2 log (n/2)  
 = n/2logn – n/2 
 = Ω (n log n)     (3) 
 
This folklore can be converged in to new theorem as, 
Theorem 4: any comparison sort algorithm requires   
Ω (n log n) comparisons in the worst case. 

5. Some Convergence of Theorems into 
Folklore  

Now we take a theorem and show that it is a piece of 
folklore.  We know that time needed for these algorithms 
like selection sort varies like N2. [12]. Let’s deduce 
folklore form this.  
 

5.1 Deduction 1:  

Algorithms like selection sort, takes each unsorted list and 
goes through each item in order to identify the 
smallest.  The first unsorted list consists of all N items in 
the original, and each successive unsorted list is one 
smaller, as the smallest item each time is placed in its 
correct position.  So the first search for the smallest will 
take N operations, the next search for the smallest will 
take N-1 operations, the next N-2 operations, and so on 
until the last search for the smallest take 2 operations (we 
don't need to search when the list has only one 
item).  Thus the time needed will be a constant times the 
following sum:  
           

 N + (N-1) + (N-2) + ... + 3 + 2 + 1                (4) 
(We include the 1 to create a sum for which a standard 
formula applies; it adds only a small constant which does 
not affect the overall result.)   
 
This sum, the sum of the first N integers, is known to be N 
(N+1) / 2, which is approximately    N2/2. Since we know 
that this is multiplied by some constant representing the 
time the operations take on a specific machine, we can see 
that the time needed for this algorithm varies like N2, the 
square of the amount of data.  Thus the time needed for 
the selection sort algorithm behaves like; each time the 
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size of the list is doubled, the amount of time needed is 
increased by a factor of four.  The folklore deduced is 
“Algorithms like Selection sort are quadratic in 
nature.” 

6. Conclusion  

In this paper we have shown that the research on sorting 
algorithm has produced abundant results and can be 
thought as Folklore knowledge - momentarily belief 
among people. We proved that these results are not 
absolute as they are specific to some factors like person 
working, configuration of hardware, programming styles, 
whether parallelism is opted or not? Etc. Even with these 
uncertainties, we have analyzed sorting algorithms and 
presented strong evidence to the effect that a particular 
folk can be converged in to theorem and vice versa so as 
to show that folklore and converged theorems are 
interchangeable. 
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