
IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

IJCSIIJCSI

25

The Folklore of Sorting Algorithms

Dr. Santosh Khamitkar1, Parag Bhalchandra2, Sakharam Lokhande 2, Nilesh Deshmukh2

School of Computational Sciences,
Swami Ramanand Teerth Marathwada University,

Nanded (MS) 431605, India

Abstract

The objective of this paper is to review the folklore knowledge
seen in research work devoted on synthesis, optimization, and
effectiveness of various sorting algorithms. We will examine
sorting algorithms in the folklore lines and try to discover the
tradeoffs between folklore and theorems. Finally, the folklore
knowledge on complexity values of the sorting algorithms will
be considered, verified and subsequently converged in to
theorems.

Key words: Folklore, Algorithm analysis, Sorting algorithm,
Computational Complexity notations.

1. Introduction

Folklore is the traditional beliefs, legend and customs,
current among people. Where as a theorem is a general
conclusion which has been proved [1].In view of these
definitions one might be tempted to conclude simply that
the folk theorem is a general conclusion which is
traditional and can be proved. The objective of this paper
is to narrate the folklore on complexity issues of sorting
algorithms and prove them. Accordingly, we shall attempt
to provide a reasonable definition for complexity or
criteria for folklore, followed by a detailed example
illustrating ideas. The letter endeavor might take one of
the two possible forms. We could take a piece of folklore
and show that it is a theorem or take a theorem and show
that it is folklore. Literature review in present context
highlights that the unified theory regarding their folklore
knowledge and in terms of theorems is found missing.

Since the dawn of computing, the sorting problem has
attracted a great deal of research. Till date, Sorting
algorithms are open problems and many researchers in
past have attempted to optimize them with optimal space
and time scale. Here Optimization was thought as the
process to reduce the time complexity so as to cross at
least O (n log n) milestone. Many new techniques were
proposed and till today fine refinement of them is in

progress. Every researcher attempted optimization in past
has found stuck to his / her observations regarding sorting
experiments and produced his/ her own results. Since
these results were specific to software and hardware
environment therein, we found abundance in the
complexity analysis which possibly could be thought as
the folklore knowledge. We tried to review this folklore
knowledge in past research work and came to a conclusion
that it was mainly devoted on synthesis, optimization,
effectiveness in working styles of various sorting
algorithms.

Our work is not mere commenting earlier work rather we
are putting the knowledge embedded in sorting folklore
with some different and interesting view so that students,
teachers and researchers can easily understand them.
Synthesis, in terms of folklore and theorems, hereupon
aims to check what past researchers have thought is really
the same they were saying and to analyze research on
sorting algorithms in such a way to get united
understanding of and support for the research results so
that they can be used directly and defended in public.
Since we have resolved to introduce no new technical
material in this paper except having technical elaboration
of folklore, and as researchers seem to be less familiar
with folklore than with theorems, we prefer to deal with
both approaches stated in above Para. We will present
strong evidence to the effect that a particular folk can be
converged in to theorem and vice versa. Folklore
knowledge on complexity values of the sorting
algorithms will be considered, verified and subsequently
converged in to theorems.

This paper is important as Sorting algorithms are often
prevalent in introductory computer science classes, where
the abundance of algorithms for the problem provides a
gentle introduction to a variety of core algorithm concepts.
Sorting algorithms illustrate a number of important
principles of algorithm design; some of them are also
counterintuitive [2]. Efficient sorting is important to
optimizing the use of other algorithms such as Binary
search and merge algorithms that require sorted lists to

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009

26

IJCSIIJCSI

work correctly [2,3]. We can not deploy binary search if
data is not pre sorted otherwise the search process may get
trapped into a blind alley thereby exhibiting worst case
complexity. Literature review has highlighted mainly
interesting things which could be the parts of folklore and
or theorems .Usually these folklore and theorem parts are
always omitted by the faculties teaching these topics and
students find them extremely difficult to understand. We
will examine sorting algorithms in these lines and try and
discover the tradeoffs between folklore and theorems. This
paper covers different complexity aspects of basic sorting
models, such as big O notation, best, worst and average
case analysis, time-space tradeoffs, lower bounds, etc.

2. Origin of Folklore

When we look to develop or use a sorting algorithm on
large problems, it is important to understand how long the
algorithm might take to run. The time for most sorting
algorithms depends on the amount of data or size of the
problem. In order to analyze an algorithm, we try to find a
relationship showing how the time needed for the
algorithm depends on the amount of data. This is called
the "complexity" of the algorithm. [4]

A simple sorting algorithm like bubble sort may have a
high complexity, whereas an algorithm which is very
complex in its organization such as shell sort , sometimes
pays off by having a lower complexity in the sense of
time needed for computation[5,6]. Besides running time
analysis, it is seen that, factors other than the sorting
algorithm selected to solve a problem, affect the time
needed for a program. It is just because different people
carrying out a solution to a problem may work at different
speeds, even when they use the same sorting method,
different computers work at different speeds. The
different speeds of computers on the same program can be
due to different "clock speeds”, the rates at which steps in
the program are executed by the machine and different
"architectures," the way in which the internal instructions
and circuitry of the computer are organized. Literature
review shows that, the researchers have attempted for
rigorous analysis of sorting algorithms and produced
prolific comments [7, 8, 9] discovering such complexity
dependent factors .

Consequently, analysis of sorting algorithm can not
predict exactly how long it will take on a particular
computer [5]. What analysis can do is tell us how the time
needed depends on the amount of data. For example, we
always come across folklore like, for an algorithm, when
we double the amount of data, the time needed is also
doubled, and in other words the time needed is
proportional to the amount of data. The analysis of

another algorithm might tell us that when we double the
amount of data, the time is increased by a factor of four,
which is the time needed is proportional to the amount of
data squared. The latter algorithm would have the time
needed increase much more rapidly than the first.

When analyzing sorting algorithms, it often happens that
the analysis of efficiency also depends considerably on the
nature of the data. For example, if the original data set
already is almost ordered, a sorting algorithm may behave
rather differently than if the data set originally contains
random data or is ordered in the reverse direction.
Similarly, for many sorting algorithms, it is difficult to
analyze the average-case complexity. Generally speaking,
the difficulty comes from the fact that one has to analyze
the time complexity for all inputs of a given length and
then compute the average. This is a difficult task. Using
the incompressibility method, we can choose just one
input as a representative input. Via Kolmogorov
complexity, we can show that the time complexity of this
input is in fact the average-case complexity of all inputs of
this length. Constructing such a “representative input”
is impossible, but we know it exists and this is
sufficient [10]

For these reasons, the analysis for sorting algorithms often
considers separate cases, depending on the original nature
of the data. The price of this generality is exponential
complexity; with the result that many problems of
practical interest are solvable better than folklore of
sorting, but the limitations of computational capacity
prevent them from being solved in practice. The
increasing diversity in computing platforms motivates
consideration of multi-processor environment. Literature
review suggests that no folklore is found mentioned
regarding complexity in multiprocessor environment.

Recently, many results on the computational complexity of
sorting algorithms were obtained using Kolmogorov
complexity (the incompressibility method). Especially, the
usually hard average-case analysis is amenable to this
method. A survey [10] shows such results about Bubble
sort, Heap sort, Shell sort, Dobosiewicz-sort, Shaker sort,
and sorting with stacks and queues in sequential or parallel
mode. It is also found that the trade-off between memory
and sorting is enhanced by the increase in availability of
computer memory and the increase in processor speed.
Currently, the prices of computer memory are decreasing.
Therefore, acquiring larger memory configurations is no
longer an obstacle, making it easier to equip a computer
with more memory.

Similarly, every year there is an increase in computer
speed. The Moore’s Law, a computer-industry standard

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009

27

IJCSIIJCSI

stated that computer chips should double in power
approximately every 18 months. The speed of most of
today's computers is really quite remarkable. Even the
"slower" ones are quite fast, and the actual processing
doesn't take much time. Delays, usually encountered in
"I/O", either to/from disk, the network or peripheral
devices have been eliminated because of innovative
interfacing standards, thereby boosting speed. If a
computer has an 800 MHz processor, sounds like it was
made in the early to mid 90's. If we look at most
computers coming out today we will notice that the dual
core processor - which is in fact two processors on the
computer, each processor is clocking in at around 1.85
Ghz, which alone is more than two times as fast as that
800 Mhz processor. Then we have to multiply that by two
since there are two cores. It is something like today's
computers are working about 4-5 times faster than the
earlier ones. Such increase in computer speed causes
acceleration of sorting algorithms. Thus knowledge
proved by some researcher for a sorting algorithm on its
complexity can not be considered absolute as it may be
increased or decreased analogously. Therefore piece of
knowledge seen can be thought as folklore knowledge.

Above discussion is potentially the source for folklore.
Many people, same work on different environment leading
to different folklores. Some examples of folklore
knowledge are 1) A quick sort is an effective, but more
complex, sorting algorithm, 2) Shell Sort is much easier to
code than Quicksort, and it is nearly as fast as Quicksort.

In next part of paper, we try to express sorting algorithm’s
behavior using the folklore and then try to prove it by
formulating theorems.

3. Background Knowledge

Sorting is always carried out technically. In computer
science and mathematics; we can formulate a procedure
for sorting unordered array or a file. Such procedure is
always governed by an algorithm; called Sorting
Algorithm. It is highly expected that we must converge to
the definition of sorting concept. Basically a sorting
problem is to arrange a sequence of objects so that the
values of their "key" fields are in "non-decreasing"
sequence.
That is, given objects

O1, O2, ..., On
 With key values

K1, K2, ..., Kn respectively,
Arrange the objects in an order

 Oi1, Oi2, ..., Oin ,
 Such that

 Ki1 <= Ki2 <= ... <= Kin. (1)

Generally, Computational complexity (worst, average and
best behavior) of element comparisons in terms of the size
of the unsorted list is considered for the analysis of the
efficiency of sorting algorithm. The complexity notational
terminology is covered in [2]. If the size of unsorted list is
(n), then for typical sorting algorithms, good behavior is O
(n log n) and bad behavior is Ω (n²). The Ideal behavior is
O (n). Sort algorithms which only use an abstract key
comparison operation always need Ω (n log n)
comparisons in the worst case.
An important criterion used to rate sorting algorithms is
their running time. Running time is measured by the
number of computational steps it takes the sorting
algorithm to terminate when sorting n records. We say that
an algorithm is O (n2) ("of order n-squared") if the number
of computational steps needed to terminate as n tends to
infinity increases in proportion to n2. Literature review
carried out in [11, 5] indicate the man’s longing efforts to
improve running time of sorting algorithm with respect to
above core algorithm concepts.

Research on efficiency analysis [3, 2] use big O, omega
and theta notation to give asymptotic upper, lower, and
tight bounds on time and space complexity of sorting
algorithms. They determine the time complexity of sorting
algorithms, use a list of functions and order them
according to asymptotic growth.

4. Some Folklore and Convergence in to
Theorems

4.1 Folklore 1: The running time of a sorting
algorithm grows if the length of the input sequence
grows.

Proof 1: Proof can be obtained from the following
reformulation of the sorting problem. For n records there
are n! possible linear arrangements, only one of which is
the correct, sorted set of records. (n! = 1 x 2 x 3 x . . . [n -
2] x [n - 1] x n.) One may imagine these n! arrangements
as the leaves of a binary decision tree. The process of
sorting then involves starting at the root of the tree (the
unordered initial list) and traveling down the nodes,
choosing either the left or right node based on results of
comparisons. (In this terminology, the "root" of a tree is at
the top, and all the branches expand downward.) The
maximum number of steps needed would correspond to
the height of the tree, which is log n!. Using Stirling's
approximation of log n!. For large n, this process would be
O (n log n).

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009

28

IJCSIIJCSI

Thus the folklore 1 can be converged in to a theorem as,
Theorem 1: For n records, linear sorting will take a
complexity O (n log n). If the input sequence is presorted,
compared to an unsorted sequence possibly less steps are
sufficient.

Seldom, the theorem does not hold true. It might be the
case that the keys of the objects fall within a known range.
Let there be a controlled environment, where we produce
the keys. For example, we might issue employee numbers
in a given order and in a given sequence, or we might
issue part numbers to items that we manufacture.
Therefore, if the keys are unique and known to be in a
given range, we might allow the key to be the location of
the object (imagine placing the objects in a vector such
that object with key K is in (vector-ref v k)). However the
algorithms presented only rely on the fact that we can
compare keys, to determine if one is less than another

4.2 Folklore 2: In general, we can't sort faster than
O (n log n).

Proof 2: Consider Heap Sort or Bubble Sort or Quick Sort
or Merge Sort or anything else like those, whether already
invented or still to be invented. They all will take at least
O (n log n) steps [5] to sort n items, because of the reason
that, they all work by comparing data items and then
moving data items around based on the outcome of the
comparisons [5]. To illustrate this, here is a piece of Heap
Sort:

If (a[c/2] < a[c]) // if parent is smaller than child

Swap (c/2, c); // trade their values

Imagine running such a sort on these numbers:

 3, 2, 4, 5, 1

The sort will compare the numbers and based on the
outcomes of that comparison move the values around,
with the net effect of all the moves being summarized by
these arrows:

Fig.1. Suggested moves during swapping process

However it cannot run the same way on same but
differently arranged inputs like 2, 3, 4, 5, 1, as output will

be misleading. Thus the execution must take a different
path for every permutation of inputs.

We can visualize all these executions as an execution tree.
Each node is some action, either an assignment or a
comparison; the tree branches after each comparison; each
path from the root to a leaf is one execution of the
program; and the height of the tree is the (worst-case)
running time of the program. If this is a sorting program
that sorts the numbers 1 through n then execution must
reach a different leaf for each of the n! permutations
of 1....n.

We know that a binary tree with L leaves has height at
least log L where the log is base 2. Thus our execution tree
has height at least log (n!) which is O (n log n).To
conclude, these sorting algorithms must take a different
path of execution for every different permutation of the
input values. There are lots of different permutations (n!).
To be able to run in that many different ways (i.e., for the
execution tree to have that many leaves), the programs
cannot run too quickly (i.e., the execution tree cannot be
too shallow). We may want to conclude that sorting cannot
be done in less than O (n log n) time. This would be an
overstatement because there is a subtle assumption in the
above argument: that the program determines what actions
to take (i.e., how to move values around) solely based on
the outcome of comparisons between the input values. The
lesson learned is, programs that base their actions only on
comparisons of the data cannot beat the O (n log n)
barrier. To have a chance at sorting faster we have to
avoid comparing data! , which is highly impossible.
However, there are situation where we can say that we can
sort faster than O (n log n). For example, Counting Sort
and Radix Sort work faster when the range of values is
limited .Thus the folklore 2 can be converged in to a
theorem as, Theorem 2: For n records, sorting will take
minimum O (n log n) time.

4.3 Folklore 3: The exact number of steps required
by insertion sort is given by the number of inversions
of the sequence

Proof 3: Let a = a0, ..., an-1 be a finite sequence. An
inversion is a pair of index positions, where the elements
of the sequence are out of order. Formally, an inversion is
a pair (i, j), where i < j and ai > aj. Example: Let a = 5, 7,
4, 9, 7. Then, (0, 2) is an inversion, since a0 > a2, namely
5 > 4. Also, (1, 2) is an inversion, since 7 > 4, and (3, 4) is
an inversion, since 9 > 7. There are no other inversions in
this sequence. The inversion sequence v = v0, ..,vn-1 of a
sequence a = a0, ..., an-1 is defined by
vj = |{ (i, j) | i < j ai > aj }| for j = 0, ..., n-1.

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009

29

IJCSIIJCSI

The above sequence a = 5, 7, 4, 9, 7 has the inversion
sequence v = 0, 0, 2, 0, 1.

We now count the inversions (i, j) of a sequence a
separately for each position j. The resulting value of vj
gives the number of elements ai to the left of aj which are
greater than aj. Obviously, we have vi i for all
i = 0, ..., n-1. If all vi are 0, then and only then the
sequence a is sorted. If the sequence a is a permutation,
then it is uniquely determined by its inversion sequence v.
The permutation n-1, ..., 0 has inversion sequence 0, ..., n-
1.

Let a = a0, ..., an-1 be a sequence and v = v0, ..., vn-1 be its
inversion sequence. Then the number of steps T (a)
required by insertion sort to sort sequence a is

T (a) = i = 0, ..., n-1 vi (2)

Obviously, insertion sort takes vi steps in each iteration i.
Thus, the overall number of steps is equal to the sum of all
vi. This can be proved by an example: The following table
shows the sequence a of the first example and its
corresponding inversion sequence. For instance, v5 = 4
since 4 elements to the left of a5 = 2 are greater than 2
(namely 5, 7, 3 and 4). The total number of inversions is
17.

 Table 1: Inversion Table

i 0 1 2 3 4 5 6 7
ai 5 7 0 3 4 2 6 1
vi 0 0 2 2 2 4 1 6

It is seen that insertion sort requires 17 steps to sort this
sequence.Thus the folklore 3 can be converged in to a
theorem as, Theorem 3 : The sorting algorithm
insertion sort has a worst case time complexity of
T(n) = n·(n-1)/2 comparison-exchange steps to sort a
sequence of n data elements.

4.4 Folklore 4: Any comparison sort type of
algorithm requires lower bound comparisons in the
worst case.

Proof 4: From the folklore 2, it suffices to determine the
height of a decision tree in which each permutation
appears as a leaf. Consider a decision three of height h and
l leaves corresponding to a comparison sort on n elements.
Because each of the n! permutations of the input appear as
some leaf, we have n! ≤ l.

Since a binary tree of height h has no more than 2h leaves,
we have to conclude that n! ≤ l ≤ 2 , which by taking
logarithms , implies h ≥ log(n!) (Since the log function is
monotonically increasing).
Therefore,
 h ≥ log(n!)
 = log (n.n1.n2....2.1)
 = log n + log (n1) + log (n2) + ... + log2 + log1
 > log n + log (n1) + log(n2) + ... + log(n/2)
 > log (n/2) + log (n/2) + ... + log (n/2)
 = n/2 log (n/2)
 = n/2logn – n/2
 = Ω (n log n) (3)

This folklore can be converged in to new theorem as,
Theorem 4: any comparison sort algorithm requires
Ω (n log n) comparisons in the worst case.

5. Some Convergence of Theorems into
Folklore

Now we take a theorem and show that it is a piece of
folklore. We know that time needed for these algorithms
like selection sort varies like N2. [12]. Let’s deduce
folklore form this.

5.1 Deduction 1:

Algorithms like selection sort, takes each unsorted list and
goes through each item in order to identify the
smallest. The first unsorted list consists of all N items in
the original, and each successive unsorted list is one
smaller, as the smallest item each time is placed in its
correct position. So the first search for the smallest will
take N operations, the next search for the smallest will
take N-1 operations, the next N-2 operations, and so on
until the last search for the smallest take 2 operations (we
don't need to search when the list has only one
item). Thus the time needed will be a constant times the
following sum:

 N + (N-1) + (N-2) + ... + 3 + 2 + 1 (4)
(We include the 1 to create a sum for which a standard
formula applies; it adds only a small constant which does
not affect the overall result.)

This sum, the sum of the first N integers, is known to be N
(N+1) / 2, which is approximately N2/2. Since we know
that this is multiplied by some constant representing the
time the operations take on a specific machine, we can see
that the time needed for this algorithm varies like N2, the
square of the amount of data. Thus the time needed for
the selection sort algorithm behaves like; each time the

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009

30

IJCSIIJCSI

size of the list is doubled, the amount of time needed is
increased by a factor of four. The folklore deduced is
“Algorithms like Selection sort are quadratic in
nature.”

6. Conclusion

In this paper we have shown that the research on sorting
algorithm has produced abundant results and can be
thought as Folklore knowledge - momentarily belief
among people. We proved that these results are not
absolute as they are specific to some factors like person
working, configuration of hardware, programming styles,
whether parallelism is opted or not? Etc. Even with these
uncertainties, we have analyzed sorting algorithms and
presented strong evidence to the effect that a particular
folk can be converged in to theorem and vice versa so as
to show that folklore and converged theorems are
interchangeable.

References
[1] Oxford Dictionary
[2]Horowitz, E.,Sahni. S, Fundamentals of Computer

Algorithms, Computer Science Press, Rockville. Md.
[3] Dr. D. E. Knuth, The Art of Computer Programming, 3rd

volume, "Sorting and Searching”, second edition.
[4] Liu C. L., “Analysis of sorting algorithms”, Proceedings of

Switching and Automata Theory, 12th Annual
Symposium, 1971, East Lansing, MI, USA, pp 207-215.

[5] Darlington. J, A synthesis of several sorting algorithms, Acta
Inf. II, 1978, pp 1-30.

[6] John Darlington, Remarks on “A Synthesis of Several Sorting
Algorithms”, Springer Berlin / Heidelberg, pp 225-227,
Volume 13, Number 3 / March, 1980.

[7] Talk presented by Dr. Sedgewick ,” Open problems in the
analysis of sorting and searching algorithms”, at the
Workshop on the probabilistic analysis of algorithms,
Princeton, May, 1997.

[8] A. Andersson & T. Hagerup, S. Nilsson, and R. Raman,
“Sorting In Linear Time?” Proceedings of the 27th Annual
ACM Symposium on the Theory of Computing, 1995.

[9] Parag Bhalchandra, “Proliferation of Analysis of
Algorithms with application to Sorting Algorithms”,
M.Phil Dissertation, VMRF, India, July 2009

[10] Paul Vitanyi , “Analysis of Sorting Algorithms by
Kolmogorov Complexity (A Survey) “, appeared in
Entropy, Search, Complexity, Bolyai Society
Mathematical Studies, pp 209—232 , Springer-Verlag,
2007

[11] Richard Harter, Inefficient sort algorithms – “A Computer
Environment for Beginners' Learning of Sorting Algorithms:
Design and Pilot Evaluation”, ERIC, Journal Number
795978, Computers & Education, v51 n2, pp708-723, Sep
2008

[12] S Nilsson, “the Fastest Sorting Algorithm?” Doctor Dobbs
Journal, 2000.

Dr. S. D. Khamitkar, M.Sc. PhD
He is Associate Professor and has more than 14 years of teaching
and research experience. He has published near abut 6+ papers in
international journals. He is research guide and currently ten
students are working with him His interest area includes Network
Security, Scientific computing, etc. He is life member of Indian
Science Congress Association, ISTE.

Parag Bhalchandra, Sakharam Lokhande, Nilesh Deshmukh,
M.Sc., SET-NET, M.Phil
All of them are Assistant Professors and have registered for PhD
research work. They have 8+ years teaching experience and have
2+ papers in international conferences. They are life members of
ISCA, ISTE. Their interest lies in Algorithm Analysis, soft
computing and web based developments.

