
IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

IJCSIIJCSI

42

Distributed Object Medical Imaging Model

Ahmad Shukri Mohd Noor1 and Md Yazid Md Saman2.
Department of Computer Science ,Faculty of Science and Technology

University Malaysia Terengganu
21030 Kuala Terengganu, Malaysia

096683159 / 09-6694660(FAX)

ABSTRACT
Abstract- Digital medical informatics and images are commonly
used in hospitals today,. Because of the interrelatedness of the
radiology department and other departments, especially the
intensive care unit and emergency department, the transmission
and sharing of medical images has become a critical issue.
 Our research group has developed a Java-based Distributed
Object Medical Imaging Model(DOMIM) to facilitate the rapid
development and deployment of medical imaging applications in
a distributed environment that can be shared and used by related
departments and mobile physiciansDOMIM is a unique suite of
multimedia telemedicine applications developed for the use by
medical related organizations. The applications support real-
time patients’ data, image files, audio and video diagnosis
annotation exchanges. The DOMIM enables joint collaboration
between radiologists and physicians while they are at distant
geographical locations. The DOMIM environment consists of
heterogeneous, autonomous, and legacy resources. The
Common Object Request Broker Architecture (CORBA), Java
Database Connectivity (JDBC), and Java language provide the
capability to combine the DOMIM resources into an integrated,
interoperable, and scalable system. The underneath technology,
including IDL ORB, Event Service, IIOP JDBC/ODBC, legacy
system wrapping and Java implementation are explored. This
paper explores a distributed collaborative CORBA/JDBC based
framework that will enhance medical information management
requirements and development. It encompasses a new paradigm
for the delivery of health services that requires process
reengineering, cultural changes, as well as organizational
changes

KEY WORDS
Java, CORBA, DICOM , Medical Imagine ,Medical
Informatics , Distributed Object Computing.

1. Introduction

Digital medical images are commonly used in hospitals
today, even outside the radiology department. Because of
the interrelatedness of the radiology department and other
departments, especially the intensive care unit and
emergency department, the transmission of medical
images has become a critical issue. The use of World

Wide Web and network related technologies in radiology
is not new. These technologies have been used in
radiology teaching files to access information in
multimedia integrated picture archiving and
communication systems (PACS), for teleradiology

purposes . Web technology has also been used to access
the images stored in a Digital Imaging and
Communications in Medicine (DICOM)archive in PACS
environments[1][2].

2. Project Background

This research develops a framework of distributed
medical informatics that can be used for multimedia data
exchange. framework can be expand it any distributed
object oriented, collaborative applications, for example,
distance learning modeling and simulation

A DOMIM system based on distributed object
computing sytem. The system can be viewed as a set of
object services and a set of client applications. Each client
application has a defined, interactive user interface. The
object services provide and manage the information for
the DOMIM clients. The ultimate goal is to have a
complete set of services with a single fine-grained
framework. The DOMIM strategy is an approach towards
a single architecture where hardware and software from
multiple vendors coexist in harmony. This is achieved by
categorizing information into components or services
(object services) as they communicate, by passing the
information via interface invocations of objects. These
object services are manufactured by different vendors and
can run on different computers on networks. The
architecture must have certain key characteristics:

(I) distributed: it must support a service object

model that is distributed across a regional area
over LAN and WAN networks.

(2) platform independent: it must support multiple

computing platforms, from mainframes to
servers to desktop PCs.

(3) heterogeneous: it must support all different types

and classes of medical equipment and software
tools from many different vendors.

(4) location insensitive: it must allow components in

the system to replaced, repaired, upgraded and
changed without compromising its ability.

Obviously, interoperability is a key technology that
allows this exchange to scale. Interoperability is also the
ability to leverage and reuse system content and
functionality to an end user or to another system

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

IJCSIIJCSI

43

3. Approach

The distributed and heterogeneous nature of todays
computing systems requires a middleware infrastructure
capable of supporting a three-tier computing architecture
such as Common Object Request Broker Architecture
(CORBA). Business logic can be built, or existing
applications encapsulated, into middle-tier components
that interact with end users via standard interfaces such as
web browsers and standard GUI desktops, and back-end
data repositories [4].

3.1 Distributed Object .

Common Object Request Broker Architecture (CORBA)
was introduced by OMG in 1991 to go a step beyond
OMA to specify technologies for interoperable distributed
OO systems. With the CORBA specification, a broad and
consistent model for building distributed applications is
defined :
• An object-oriented based model for developing

applications
• A common application programming objects in the

network to be shared by client and server applications
• A syntax to define and describe the interfaces of

objects used in the environment
• Support for multiple programming languages and

platforms
Therefore, CORBA model formally separates the client
and server portions of the application and also logically
separates an application into objects that can perform
certain functions. It also provides data marshaling to send
and receive data with remote or local machine
applications without direct knowledge of the information
source or its location. In the CORBA environment, client
and server applications communicate using Object
Request Broker (ORB).

3.2 Java Based CORBA.

The Java programming language is a strongly typed,
object-oriented language that borrows heavily most of its
syntax from C and C++. Java is a simple, object-oriented,
distributed, interpreted, robust, secure, architecture
neutral, portable, high performance, multithreaded and
dynamic language. This language was primarily used for
developing applets-downloadable mini-applications that
could be embedded inside Web pages and performed in
browsers. However, since 1995, Java has emerged as a
first-class programming language that is being used for
everything from embedded devices to enterprise servers.
Nowadays the Java language can be seen in use in a wider
range of applications. When an application is written and
compiled in one place it can run on any machine under
any operating system. Sometimes the "Write Once, Run

Anywhere" slogan is called the synonym of Java.
Anyway, platform independence is the ability of a
program to move from one computer system to another.
Java is platform independent at both the source and the
binary level. The secret of the Java has been hidden into
Java Virtual machine (JVM). Instead of creating machine
dependent code, the Java compiler creates a bytecode
format, which can be run on any Virtual Machine (VM).
Somehow, Java makes programming easier because it is
object-oriented and has automatic garbage collection.

Java offers tremendous flexibility for distributed
application development. To do this, Java needs to be
augmented with a distributed object infrastructure, which
is where OMG's CORBA comes into the picture. Using
CORBA requires more than just a knowledge of the
CORBA architecture. CORBA should be part of a well
designed system architecture.

CORBA technology as part of the Java 2 platform
consists of an Object Request Broker (ORB) written in
Java. Java IDL adds CORBA capability to the Java
platform, providing standards-based interoperability and
connectivity. Java IDL enables distributed Web-enabled
Java applications to transparently invoke operations on
remote network services using the industry standard
OMG IDL (Interface Definition Language) and IIOP
(Internet Inter-ORB Protocol) defined by the Object
Management Group. CORBA is an distibuted object-
oriented middleware protocols, used for the DOMIM
development. By using CORBA it gives us several
benefits in the system distributed computing environment.
For example, we are able to interface legacy database by
developing CORBA wrapper that allows us to access the
data structures in the database without disturbing the
existing database. Interoperability and scalability are
other benefits of using CORBA. The CORBA IDL for
streaming medical image in our model as follow :-

 struct Info {
 string name; module Student_App {

 struct Info {
 string name;
 string matric;
 string address;
 string city;
 string state;
 string zip;
 string country;
 string email;
 string phone;
 string program;
 };

 typedef sequence<octet> Data;

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

IJCSIIJCSI

44

 interface project {
 string execute(in short operation, in Info
info_student);
 Info execute2(in short operation, in Info
info_student);
 Data downloadFile(in string fileName);
 };

};
 string matric;
 string address;
 string city;
 string state;
 string zip;
 string country;
 string email;
 string phone;
 string program;
 };

 typedef sequence<octet> Data;

 interface project {
 string execute(in short operation, in Info
info_student);
 Info execute2(in short operation, in Info
info_student);
 Data downloadFile(in string fileName);
 };

};
module Student_App {

 struct Info {
 string name;
 string matric;
 string address;
 string city;
 string state;
 string zip;
 string country;
 string email;
 string phone;
 string program;
 };

 typedef sequence<octet> Data;

 interface project {
 string execute(in short operation, in Info
info_student);
 Info execute2(in short operation, in Info
info_student);
 Data downloadFile(in string fileName);

 };

 typedef sequence<octet> Data;
 interface project {
 string execute(in short operation, in Info info_patient);
 Info execute2(in short operation, in Info info_patient);
 Data downloadFile(in string fileName);

3.3 Digital Imaging and Communications in Medicine

The Digital Imaging and Communications in Medicine
(DICOM) standard was created by the National Electrical
Manufacturers Association (NEMA) to aid the
distribution and viewing of medical images, such as CT
scans and ultrasound. New technologies such as Java
should always be used as complements of the de facto
standard in medical imagine, DICOM. DICOM allows the
interchange of images from different modalities, archives,
and workstations from different vendors. java technology
can be used to build a storage system and to make this
service accessible for different clients. However, this
storage service should also incorporate DICOM services
to store and access examination data from DICOM
workstations and DICOM modalities. Since Java version
1.4, the Java standard includes a specification for working
with images stored in files and accessed across the
network. This specification is called Java Image I/O. It
provides a pluggable framework for easily adding support
for alternate image formats using third-party plug-ins. The
DICOM Image I/O Plug-in connects the DICOM®
standard to the Java™ standard. DICOM is the universal
standard for sharing medical imaging resources between
heterogeneous and multi-vendor equipments (acquisition
device, workstation, storage server, patient management
system, etc.).

3.4 Distributed Medical API Impelememtaion

A toolkit, which is referred to as NeatMed, is intended to
reduce development time by eliminating the need for the
application developer to deal directly with medical image
data The medical imaging application developers
interface(API), NeatMed interface (API), was developed
using the Java programming language (Sun
Microsystems, Mountain View, Calif). An extension API
is a set of classes that can be instantiated by a
programmer to create a particular type of application, thus
facilitating software reuse. NeatMed is an example of an
extension API that can be used for the development of
applications that deal with off-line medical image
data..NeatMed currently provides support for the Digital
Imaging and Communications in Medicine and Analyze
medical image file formats. The NeatMed API is a group
of core and support classes that can be used to interpret,
represent, and manipulate images and related data that are
stored in DICOM-compliant files. The toolkit has been

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

IJCSIIJCSI

45

created specifically for interpreting medical image data; it
thus acts as a platform for development of medical
imaging applications.. NeatMed was implemented by
using Java[1]. NeatMed currently provides support for the
DICOM in Medicine and Analyze medical image file
formats.The Neat-Med API is distributed in accordance
with the terms and conditions laid out in the GNU Lesser
General Public License[2]. This license was selected to
ensure that the NeatMed. NeatMed was developed using
the Java programming languages. It was initially intended
for the development of software for use in the consumer
electronics industry (eg, set-top boxes). The core Java
libraries maintained by Sun Microsystems are used as the
foundation for the development of any Java application.
These libraries can be used in conjunction with an
extension API in order to develop specialized
applications. An extension API is a set of classes that can
be instantiated by a programmer to create a particular type
of application, thus facilitating software reuse. NeatMed
is an example of an extension API that can be used for the
development of applications that deal with off-line
medical image data. A large number of Java APIs exist;
these deal with a broad range of applications ranging from
communicating with the serial and parallel ports to
advanced image processing. The set of classes
representing the API is deployed in some type of library.
Java provides a packaging tool that can be used to
package a set of class files and associated resources into a
Java archive or JAR file. In order to be useful, an API
must be well documented. Java provides a documentation
tool called Javadoc that allows an API developer to
document software as it is being written. The resulting
documentation provides detailed information about each
class, method, and variable that is defined in the
associated API. The structure of Javadoc documentation
is more or less the same for every API. This makes it very
easy for programmers to familiarize themselves with a
new API once they are comfortable with the basic
Javadoc documentation structure. The API documentation
is generated in HTML and can be viewed using any
standard Web browser. Java has a wide range of benefits
associated with it; however, there are also some
limitations. One example is performance: Java is a
multiplatform programming language; the byte code (ie,
binary form) that represents a Java program is interpreted
and not executed directly. This reduces the performance
of a Java program compared to a natively executed
program. Overall, however, the benefits associated with
Java (listed previously) far outweigh the drawbacks,
hence its selection for the development of NeatMed.. In

Fig 2, Client Programming structure show flexibility, and
ease of use of the NeatMed API in java Environment

Figure 2: Client Programming structure.

The central class in the API is the DICOMImage class. A
DICOMImage object can be instantiated by specifying a
reference to a suitable data source in the constructor. The
constructor will accept data from a number of sources (eg,
local file, data stream, and remote uniform resource
locator (URL)). Once constructed, a DICOMImage object
provides direct access to all of the data elements stored
within the specified DICOM source. Other classes in the
API are used to represent individual components within a
DICOM RadioGraphics.

GUI

Image
screen

Swing /
awt

Medical
Image
files.
DICOM

Text
form

screen

NeatMed
API

handler

Images
files in
byte[]
stream
from

server

Process binary[],
convert Buffer data,
treat as dicom file

Byte[]1010101
stream

Client Side
(in Any Platform)

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

IJCSIIJCSI

46

Here is the example :

DICOMImagePlus image = new DICOMImagePlus(ss);
 JLabel label = new JLabel(new
ImageIcon(image.getAsBufferedImage(0)));

JFrame frame = new JFrame("Patient NO : "
+Patient_info2.id +" NAME : " +
Patient_info2.name + " Image File :"+
Patient_info2.file_id);
frame.getContentPane().setLayout(new

BorderLayout());
 frame.getContentPane().add(label);
 frame.setVisible(true);
 frame.pack();}

The choice of Java for implementing the NeatMed API
was also influenced by a number of its key features:

 Ease of use: Java is a modern programming language
that was designed with simplicity in mind. Many of
the complexities that are associated with other
programming languages have been omitted, whereas
much of the power and flexibility has been retained.
This makes Java very easy to learn and use,
particularly in the case of novice programmers.

 Level of support: Although Java is a relatively new
programming language, there is a significant amount
of support material available. Numerous texts have
been written dealing with all aspects of the language.
In addition, tutorials, sample source code, API
documentation, and freely available integrated
development environments (IDEs) can all be
accessed via the Internet.

 Portability: Java is a multiplatform programming
language. This means that a Java

5. Distributed Medical informatics Architecture.

The distributed medical informatics architecture design
includes client applications at the 1st tier that access
remote medical imaging data query server and database at
3rd tier via Java ORB as a middle agent at 2nd tier,

The client’s implementations comprised of a Java
application . All the user interfaces were created using
Java APIs while NeatMed API for presenting and
displaying the medical image files in DICOM format.
The server is comprised of the some logical algorithms
that responsible for executing an input query statement
from the client and returning the query results back to the
client. The connection between the servers and the IBM
DB2 Database is accomplished via its native JDBC
driver. This server is placed on the local area network
(LAN) with Java ORB acting as the middleware. The
ORB using octet-streaming services is utilized to transfer
multimedia data such as medical images, It also can be
used for audio and video in a 3-tiers heterogeneous
environment.

Figure3: Distributed Object Medical Imaging Model
(DOMIM) Architecture

The back-end tier of the architecture involves the storage
and retrieval of multimedia data on the database server.
 In this paper, the Object Relational database management
system (ORDBMS) is used for the development of
medical imaging and multimedia database as it allows
queries to be performed on complex data, e.g.
images,video, audio, etc. The following components are
utilised in the development of the server application:

• IBM DB2 v 8.1 PE database.
• Server application (ProjectServer.class) for

receiving object and sending back the object
from/to client application.

• Server application logic (ProjectImpl.class) for
executing as input query

IBM DB2 has been chosen as the implementation
database. Due to IBM DB2 ability to support the binary
large object blocks (BLOBs) data. All the image data are
stored in their native binary format in a particular column
of the database table.
The following features are provided by the client's
implementations(ProjectClient.class) via a Graphical User
Interface (GUI):

• Binding to the servers’ implementations.
• Invoking the servers’ implementation with

the appropriate commands.
• Displaying and presenting the query results(text

and images) to the user.
 The design depicts that ORB can be an integral part of
deploying Java applets/applications, including those that
access database. The diagram also shows that the client

Network

 Java ORB (text and octet[]array stream)

Image
screen

Java/
NeatMed
handler

JDBC
data query

IBMDB2
(Blob/Text)

Buffer

Byte[]
Array

Medical
Image
files
(dicom)

Buffer

Byte[]
Array

TCP/IP
Text
form
screen

Client Side
1st Tier

CORBA
Middle Tier

Server Side
3rd Tier

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

IJCSIIJCSI

47

application does not directly connect to the databases.
Instead, Java ORB facilitates database connectivity by
allowing client-side objects to communicate with server-
side objects that assume responsibility for performing
database access. That is, server-side objects is written to
handle database access on behalf of a client object(s) that
instantiated it. The client main function is to display
multiple media data to the user in the specified format.
Such architecture can provide adequate database support
for medical applications demanding interactive medical
imaging presentations .the modules involved are:-

• GUI Object Class

The Graphical User Interface (GUI) class represents the
tools used for human-to-computer interaction . The GUI
may include menus, buttons, graphics, textual and visual
information, image annotation, full-duplex audio, and
video information. The GUI class is responsible for
collecting relevant information to be passed onto the user.
The GUI class also distributes user input to objects whose
states depend on the user. The objects in the class are
linked with other objects in the system , e.g., management
and control objects.

• Audio Object Class

The audio object class handles real-time and playback of
audio sequences at the user workstation. Digital audio is
encoded to sequences of 8-bit or 16-bit samples using
standard telephone Coder/Decoder (CODEC) conversion.
The audio sequences are two-way conversations between
physicians or audio notes to be stored with a patient
record.

• Video Object Class

The video object class handles real-time and playback
video sequences. The video sequences are digital format
using MPEG compression frames. Video sequences can
be generated from digital camera or pre-recorded video on
CD disk formats. Video sequences can be stored as video
object classes in the multimedia database archive system.

• Buffer Object Class

The buffer object class controls jitter by queuing data
until it is synchronized and ready for use. Buffering takes
place on all data traversing the network stack to abstract
the application from network timing idiosyncrasies and
dependencies.

• File Stream Object Class

The file stream objects include files, e.g., images, which
must be transferred between nodes over networks. These

nodes can be workstations or the Database Archive
System. The objects represent a flow of packets, and the
objects inherent the format of their types, i.e., audio,
video, annotation commands, etc.

• Communication Object Class
The communication object class represents a group of
connectivity mechanism. For example, objects conduct
communication via middleware APIs or TCP/IP sockets.
These objects provide the communication paradigm to the
data objects described above, i.e., annotation commands,
file streams, etc. and link the multimedia information
exchanging over the distributed computing environment.

6. Implemantation

In this application, client patient’s detail screen and
medical image in DICOM format screen are displyed in
separated windows.

i. The client request patient data by providing patient
case retrieving procedures such as patient id and
notifies the server(services Perovider) via corba event
service .

ii. The Server retrieve a patient demographic data and
image(s) from client and send the DBA via JDBC
Server using JDBC connectivity to the DBMS, e.g.,
IBM DB2 database. As in figure 5

Fig 6:Server response screen shot

iii. The Server passes the patient demographic data and

image file identification (where those files resid ein
remote storage) to the client via ORB.

iv. The remote Client fetches the demographic data
 and display then details on client GUI screen as

depict in figure 6 . Then it point the patient image(s)
based on the given file identification. then, the
system pop-up the medical image as illustrated
figure 7 below

IJCSI International Journal of Computer Science Issues, Vol. 4, No. 2, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

IJCSIIJCSI

48

Fig 7. Screenshot of GUI patient’s data

Fig 8. Screenshot of patient’s Medical Image

7. Conclusion

The three-tier distributed medical imagine application
allow the application interoperability and independence of
platform, operating system, programming language and
even of network and protocolThe application architecture
or framework is an important and common stage in the
development of any medical imaging application in
distributed environment.

NeatMed removes the need to deal directly with encoded
medical image data, thus increasing productivity and
allowing the developer to concentrate on other aspects of
application development. NeatMed is written in Java, a
multiplatform programming language with a large amount
of freely available support material that is straightforward
to learn and use.These and other features of Java make
NeatMed accessible to a large group of potential users.
Most important, NeatMed is a freely available research
tool whose ongoing development is driven by the needs
and requirements of its users.

References

[1] Mildenberger P, Eichelberg M, and Martin E.

(2002)Introduction to the DICOM standard.
European Radiology , Publisher: Springer Berlin /
Heidelberg ISSN: 0938-7994.

[2] Rosslyn,V.(2003). Digital Imaging and
Communications in Medicine (DICOM):National
Electrical manufacturers Association, 2003; PS 3.1-
2003– 3. 16-2003.

[3] Robinson, J. and Wakeman I(2004) “Middleware
for service composition in pervasive computing”.
The 2nd Workshop on Middleware for Pervasive and
Ad-hoc Computing , Toronto, Canada

[4] A. S. Mohd Noor and M. Y. Saman (2006).
”Traditional CORBA Framework Re-engineering For
Distributed Medical Informatics Model
Development”. IEEE International Conference on
Computing & Informatics (ICOCI 2006) 6 – 8 June,
2006, Kuala Lumpur, MALAYSIA.

[5] Togni D, Ribas P and Lisboa. M (2005) “Tool
 integration using the web-services approach”
 Proceedings of the 15th ACM Great Lakes
 symposium on VLSI, Chicago, Illinois, USA
[6] Aaron W. Jr. (2004) “Flexible distributed
 programming in an extended Java”. ACM
 Transactions on Programming Languages and
 Systems (TOPLAS), Volume 26 Issue 3,
[7] Wan Zahari, W. N. I. (2003), Model Pengkomputeran

Teragih Bagi Memaparkan Rupa Bumi Berdigit
Bersaiz Besar. Master Thesis. Univerisiti Teknologi
Malaysia.

[8] Gokhale, A. and Schmidt, D. C. (1998), Measuring
and Optimizing CORBA Latency and Scalability
Over High-speed Networks. Transactions on
Computing, 47(4).

[9] Morgan G and Fengyun L. (2005) “Visibility &
games: Interest management middleware for
networked games”. Symposium on Interactive 3D
graphics and games , Washington, USA

[10] Gokhale, A. and Schmidt, D. C. (1996), Measuring
the Performance of Communication Middleware on
High-Speed Networks. In Proceedings of SIGCOMM
’96, pages 306–317, Stanford, CA. ACM.

