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Abstract 

Multiprocessor task scheduling is an important and 
computationally difficult problem. This paper proposes a 
comparison study of genetic algorithm and list scheduling 
algorithm. Both algorithms are naturally parallelizable but have 
heavy data dependencies. Based on experimental results, this 
paper presents a detailed analysis of the scalability, advantages 
and disadvantages of each algorithm. Multiprocessors have 
emerged as a powerful computing means for running real-time 
applications, especially where a uni-processor system would not 
be sufficient enough to execute all the tasks. The high 
performance and reliability of multiprocessors have made them a 
powerful computing resource. Such computing environment 
requires an efficient algorithm to determine when and on which 
processor a given task should execute. In multiprocessor systems, 
an efficient scheduling of a parallel program onto the processors 
that minimizes the entire execution time is vital for achieving a 
high performance. This scheduling problem is known to be NP- 
Hard. In multiprocessor scheduling problem, a given program is 
to be scheduled in a given multiprocessor system such that the 
program’s execution time is minimized. The last job must be 
completed as early as possible. Genetic algorithm (GA) is one of 
the widely used techniques for constrained optimization. Genetic 
algorithms are basically search algorithms based on the 
mechanics of natural selection and natural genetics. List 
scheduling techniques assign a priority to each task to be 
scheduled then sort the list of tasks in decreasing priority. As 
processors become available, the highest priority task in the task 
list is assigned to be processed and removed from the list. If 
more than one task has the same priority, selection from among 
the candidate tasks is typically random. This paper compares 
Genetic algorithm (GA) with List Scheduling heuristic (LSH) to 
solve scheduling problem of multiprocessors. 
 
Keywords: Task scheduling · Parallel computing · Heuristic 
algorithms. Real time systems. 

 

1. Introduction 

Scheduling a set of dependent or independent tasks for 
parallel execution on a set of processors is an important 
and computationally complex problem. Parallel program 
can be decomposed into a set of smaller tasks that 
generally have dependencies. The goal of task scheduling 
is to assign tasks to available processors such that 
precedence requirements between tasks are satisfied and 
the overall time required to execute all tasks, the 
makespan, is minimized. Various studies have proven that 
finding an optimal schedule is an NP-complete problem 
even in the simplest forms. As finding an optimal solution 
is not feasible, a large number of algorithms were 
proposed which attempt to obtain a near-optimal solution 
for various variants of the multiprocessor task scheduling 
problem. These algorithms usually trade the computational 
complexity of the scheduling algorithm itself to the quality 
of the solution. Algorithms based on complex, iterative 
search can usually (but not always) outperform simple 
one-pass heuristics, but their computational complexity 
makes them less scalable. The comparison of the various 
approaches is made difficult by the lack of an agreed 
benchmark problem, and the variety of assumptions made 
by the developers. This paper compares the performance 
of genetic algorithms with list scheduling heuristics. The 
rest of the paper is organized as follows. The next section 
presents related research work. The structure of the 
problem and assumptions are described in Section 3. The 
considered scheduling algorithms discussed in detail in 
Section 4. Section 5 presents simulation results and 
analysis. Conclusions are offered in Section 6.  
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2. Related Work 

In order to allocate parallel applications to maximize 
throughput, task precedence graph (TPG) or a task 
interaction graph (TIG) are modeled. 
 
The system usually schedules tasks according to their 
deadlines, with more urgent ones running at higher 
priorities. The Earliest Deadline First (EDF) algorithm is 
based on the dead line time constraint. The tasks were 
ordered in the increasing order of their deadlines and 
assigned to processors considering earliest deadline first. 
 
In multiprocessor real time systems static algorithms are 
used to schedule periodic tasks whose characteristics are 
known a priori. Scheduling aperiodic tasks whose 
characteristics are not known a priori requires dynamic 
scheduling algorithms. Some researchers analyze the task 
scheduling problems based on the dynamic load balancing. 
It minimizes the execution time of single applications 
running in parallel on multi computer systems. It is 
essential for the efficient use of highly parallel systems 
with solving non uniform problems with unpredictable 
load estimates. In a distributed real time systems, uneven 
task arrivals temporarily overload some nodes and leave 
others idle or under loaded.  
 
Power aware computing is not only for hand held devices 
that have limit energy supply, but also for large systems 
consisting of multiple processors (e.g., complex satellite 
and surveillance systems, data warehouses or web server 
farms), where the cost of energy consumption and cooling 
is substantial. 
 
In the GA technique, the tasks are arranged as per their 
precedence level before applying GA operators. The cross 
over operator is applied for the tasks having different 
height and mutation operator is applied to the task having 
the same height. The fitness function only attempts to 
minimize processing time.  
 
List scheduling techniques assign a priority to each task to 
be scheduled then sort the list of tasks in decreasing 
priority. As processors become available, the highest 
priority task in the task list is assigned to be processed and 
removed from the list. If more than one task has the same 
priority, selection from among the candidate tasks is 
typically random.  

3. Task scheduling problem 

Consider a directed acyclic task graph G = {V,E} of n 
vertices. Each vertex V = {T1, T2,...., Tn} in the graph 
represents a task. Aim is to map every task to a set P = 

{P1,P2, . . . , Pp} of p processors. Each task Ti has a 
weight Wi associated with it, which is the amount of time 
the task takes to execute on any one of the p homogeneous 
processors. Each directed edge eij  indicates a dependency 
between the two tasks Ti and Tj that it connects. If there is 
a path from vertex Ti to vertex Tj in the graph G, then Ti is 
the predecessor of Tj and Tj is the successor of Ti. The 
successor task cannot be executed before all its 
predecessors have been executed and their results are 
available at the processor at which the successor is 
scheduled to execute. A task is “ready” to execute on a 
processor if all of its predecessors have completed 
execution and their results are available at the processor 
on which the task is scheduled to execute. If the next task 
to be executed on a processor is not yet ready, the 
processor remains idle until the task is ready. 
 
The goal is to find a schedule which is a mapping of tasks 
to processors that minimizes the makespan. The makespan 
of a schedule can be defined as the time it takes from the 
instant the first task begins execution to the instant at 
which the last task completes execution.  

4 Scheduling algorithms 

Scheduling is a key concept in computer multitasking and 
multiprocessing operating system design, and in real-time 
operating system design. In modern operating systems, 
there are typically many more processes running than 
there are CPUs available to run them. Scheduling refers to 
the way processes are assigned to run on the available 
CPUs. CPU scheduling deals with the problem of deciding 
which of the processes in the ready queue is to be 
allocated the CPU. There are many different CPU 
scheduling algorithms. This paper compares the 
performance of genetic algorithms with list scheduling 
heuristic. 

4.1 Model 

A simple task graph with 8 tasks is shown in Fig 1. The 
problem of optimal scheduling a task graph onto a 
multiprocessor system with p processors is to assign the 
computational tasks to the processors so that the 
precedence relations are maintained and all of the tasks are 
completed in the shortest possible time. The time that the 
last task is completed is called the finishing time (FT) of 
the schedule. Fig 2 shows a schedule for two processors 
displayers as Gantt chart. Fig 2 illustrates a schedule 
displayed as Gantt chart for the example task graph TG 
using two processors. This schedule has a finishing time 
of 10 units of time. An important lower bound for the 
finishing time of any schedule is the critical path length. 
The critical path length, tcp of a task graph is defined as the 
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http://en.wikipedia.org/wiki/Operating_system
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minimum time required completing all of the tasks in the 
task graph. 
 
 
 

 

 

 

 

 

 

 

Fig 1 A task Graph TG 
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Fig 2 Gantt chart for scheduling two tasks 

4.2 Genetic algorithms 

Genetic algorithms try to mimic the natural evolution 
process and generally start with an initial population of 
individuals, which can either be generated randomly or 
based on some other algorithm. Each individual is an 
encoding of a set of parameters that uniquely identify a 
potential solution of the problem. In each generation, the 
population goes through the processes of crossover, 
mutation, fitness evaluation and selection. During 
crossover, parts of two individuals of the population are 
exchanged in order to create two entirely new individuals 
which replace the individuals from which they evolved. 
Each individual is selected for crossover with a probability 
of crossover rate. Mutation alters one or more genes in a 
chromosome with a probability of mutation rate. For 
example, if the individual is an encoding of a schedule, 

two tasks are picked randomly and their positions are 
interchanged. A fitness function calculates the fitness of 
each individual, i.e., it decides how good a particular 
solution is. In the selection process, each individual of the 
current population is selected into the new population with 
a probability proportional to its fitness. The selection 
process ensures that individuals with higher fitness values 
have a higher probability to be carried onto the next 
generation, and the individuals with lower fitness values 
are dropped out. The new population created in the above 
manner constitutes the next generation, and the whole 
process is terminated either after a fixed number of 
generations or when a stopping criteria is met. The 
population after a large number of generations is very 
likely to have individuals with very high fitness values 
which imply that the solution represented by the individual 
is good; it is very likely to achieve an acceptable solution 
to the problem. There are many variations of the general 
procedure described above. The initial population may be 
generated randomly, or through some other algorithm. The 
search space, i.e., the domain of the individuals, can be 
limited to the set of valid individuals, or extended to the 
set of all possible individuals, including invalid 
individuals. The population size, the number of 
generations, the probabilities of mutation and crossover 
are some of the other parameters that can be varied to 
obtain a different genetic algorithm. 
The height varying point of the tasks are taken for cross 
over as shown in fig 3.After cross over the task 
arrangement is shown in fig 4. And their Gantt chart is 
shown in Fig 5. 

 

 
 
 
 

Fig 3 Cross over point 

 

 

 

Fig 4 after Cross over 
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Fig 5 Gantt chart of tasks after Cross over. 

4.3 List Scheduling Heuristic (LSH) 

List scheduling techniques assign a priority to each task to 
be scheduled then sort the list of tasks in decreasing 
priority. As processors become available, the highest 
priority task in the task list is assigned to be processed and 
removed from the list. If more than one task has the same 
priority, selection from among the candidate tasks is 
typically random 

5 Performance evaluations 

5.1 Experimental setup 

The genetic algorithm and List scheduling algorithm has 
been implemented and tested. Following are the 
assumptions under which the experiment is conducted. 
Assumptions about the task numbers are ranging from 8 to 
110.  The number of successors that each task node 
allowed is a random number between 3 and 6. The 
execution time for each task random number is assumed 
between 1 and 25. The task graphs are tested on a list-
scheduling algorithm. The genetic algorithm used the 
following parameters throughout the simulation. 
Population size = 20. 
Maximum number of iterations = 500. 
The simulation performed using MATLAB. 
 
 
 
 

Table I Comparison of GA and LSH for various random task graph using 
two processors 

 
No. of 
tasks 

GA finish 
time 

LSH finish 
time 

8 11 10 
17 22 24 
28 43 47 
33 48 61 
39 46 60 
44 50 56 
49 55 103 

 
 
From table 1 when the numbers of tasks are minimum of 
less than 15 LSH is the best solution to solve the 
scheduling problem 
 

Table II Comparison of GA and LSH for various random task graph using 
three processors 

 
No. of tasks GA finish 

time 
LSH finish 
time 

23 26 28 
28 43 47 
33 48 61 

Table III Comparison of GA and LSH for various random task graph 
using four processors 

 
No. of tasks GA finish 

time 
LSH 
finish time 

39 46 60 
44 50 56 
49 55 103 
54 68 68 
59 83 121 
69 104 139 
79 137 153 
89 141 157 
99 158 211 
100 158 222 
110 174 222 

 
From table 2 and 3 when the number of task and number 
of processors are increased GA gives the best solution. 
The time taken by the GA to compute the scheduling task 
is more than time taken by the List scheduling. But when 
the Number of Processors and number of tasks are 
increased the GA time is optimal with the List scheduling 
algorithm. 
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Fig 6 Comparison between LSH and GA 

Table IV  Precedence relation Vs. Execution time 

Height Best 
minimum 
time GA 

LSH 
minimum 

time 

3 10 11 
5 22 24 
5 46 60 
5 50 56 
6 158 222 
7 174 222 
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Fig 7: Precedence relation Vs. Execution time 

 
From the fig 6 the LSH and GA produce almost same 
scheduling time when the number of tasks in range 8 to 
28. When the numbers of tasks increase GA gives the 

better solution. When the tasks are more than 100, GA 
gives the best solution. One can infer from the table 4 and 
fig 7 the LSH and GA are producing the same result 
between the height 3 to 5.But when the height are more 
than 5 only GA produces the best result. 

6. Conclusions 

This paper compares scheduling algorithms for 
multiprocessor task scheduling .It conclude that from a 
purely performance point of view, Genetic algorithm is the 
best solution, but its deployment needs to be subject of a 
careful cost benefit analysis. It concludes that list 
scheduling will be suggested for the less number of tasks 
and processors.  It also concludes that the use of these 
algorithms are justified whenever the scheduling can be 
done off-line, there is a need for repeated execution of the 
schedules or the make span of the application is 
significantly longer than the scheduling time. 
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