
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 1, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

37

A Performance Study of GA and LSH in Multiprocessor Job
Scheduling

Mrs S. R. Vijayalakshmi 1 and Dr G. Padmavathi 2

1. Assistant Professor, School of Information Technology and Science, Dr.G.R.D College of Science,

Coimbatore, Tamil Nadu, India

2.Professor and Head, Dept.of Computer Science, Avinashilingam University for Women,
Coimbatore – 43, Tamil Nadu, India.

Abstract

Multiprocessor task scheduling is an important and
computationally difficult problem. This paper proposes a
comparison study of genetic algorithm and list scheduling
algorithm. Both algorithms are naturally parallelizable but have
heavy data dependencies. Based on experimental results, this
paper presents a detailed analysis of the scalability, advantages
and disadvantages of each algorithm. Multiprocessors have
emerged as a powerful computing means for running real-time
applications, especially where a uni-processor system would not
be sufficient enough to execute all the tasks. The high
performance and reliability of multiprocessors have made them a
powerful computing resource. Such computing environment
requires an efficient algorithm to determine when and on which
processor a given task should execute. In multiprocessor systems,
an efficient scheduling of a parallel program onto the processors
that minimizes the entire execution time is vital for achieving a
high performance. This scheduling problem is known to be NP-
Hard. In multiprocessor scheduling problem, a given program is
to be scheduled in a given multiprocessor system such that the
program’s execution time is minimized. The last job must be
completed as early as possible. Genetic algorithm (GA) is one of
the widely used techniques for constrained optimization. Genetic
algorithms are basically search algorithms based on the
mechanics of natural selection and natural genetics. List
scheduling techniques assign a priority to each task to be
scheduled then sort the list of tasks in decreasing priority. As
processors become available, the highest priority task in the task
list is assigned to be processed and removed from the list. If
more than one task has the same priority, selection from among
the candidate tasks is typically random. This paper compares
Genetic algorithm (GA) with List Scheduling heuristic (LSH) to
solve scheduling problem of multiprocessors.

Keywords: Task scheduling · Parallel computing · Heuristic
algorithms. Real time systems.

1. Introduction

Scheduling a set of dependent or independent tasks for
parallel execution on a set of processors is an important
and computationally complex problem. Parallel program
can be decomposed into a set of smaller tasks that
generally have dependencies. The goal of task scheduling
is to assign tasks to available processors such that
precedence requirements between tasks are satisfied and
the overall time required to execute all tasks, the
makespan, is minimized. Various studies have proven that
finding an optimal schedule is an NP-complete problem
even in the simplest forms. As finding an optimal solution
is not feasible, a large number of algorithms were
proposed which attempt to obtain a near-optimal solution
for various variants of the multiprocessor task scheduling
problem. These algorithms usually trade the computational
complexity of the scheduling algorithm itself to the quality
of the solution. Algorithms based on complex, iterative
search can usually (but not always) outperform simple
one-pass heuristics, but their computational complexity
makes them less scalable. The comparison of the various
approaches is made difficult by the lack of an agreed
benchmark problem, and the variety of assumptions made
by the developers. This paper compares the performance
of genetic algorithms with list scheduling heuristics. The
rest of the paper is organized as follows. The next section
presents related research work. The structure of the
problem and assumptions are described in Section 3. The
considered scheduling algorithms discussed in detail in
Section 4. Section 5 presents simulation results and
analysis. Conclusions are offered in Section 6.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 1, January 2010
www.IJCSI.org

38

2. Related Work

In order to allocate parallel applications to maximize
throughput, task precedence graph (TPG) or a task
interaction graph (TIG) are modeled.

The system usually schedules tasks according to their
deadlines, with more urgent ones running at higher
priorities. The Earliest Deadline First (EDF) algorithm is
based on the dead line time constraint. The tasks were
ordered in the increasing order of their deadlines and
assigned to processors considering earliest deadline first.

In multiprocessor real time systems static algorithms are
used to schedule periodic tasks whose characteristics are
known a priori. Scheduling aperiodic tasks whose
characteristics are not known a priori requires dynamic
scheduling algorithms. Some researchers analyze the task
scheduling problems based on the dynamic load balancing.
It minimizes the execution time of single applications
running in parallel on multi computer systems. It is
essential for the efficient use of highly parallel systems
with solving non uniform problems with unpredictable
load estimates. In a distributed real time systems, uneven
task arrivals temporarily overload some nodes and leave
others idle or under loaded.

Power aware computing is not only for hand held devices
that have limit energy supply, but also for large systems
consisting of multiple processors (e.g., complex satellite
and surveillance systems, data warehouses or web server
farms), where the cost of energy consumption and cooling
is substantial.

In the GA technique, the tasks are arranged as per their
precedence level before applying GA operators. The cross
over operator is applied for the tasks having different
height and mutation operator is applied to the task having
the same height. The fitness function only attempts to
minimize processing time.

List scheduling techniques assign a priority to each task to
be scheduled then sort the list of tasks in decreasing
priority. As processors become available, the highest
priority task in the task list is assigned to be processed and
removed from the list. If more than one task has the same
priority, selection from among the candidate tasks is
typically random.

3. Task scheduling problem

Consider a directed acyclic task graph G = {V,E} of n
vertices. Each vertex V = {T1, T2,...., Tn} in the graph
represents a task. Aim is to map every task to a set P =

{P1,P2, . . . , Pp} of p processors. Each task Ti has a
weight Wi associated with it, which is the amount of time
the task takes to execute on any one of the p homogeneous
processors. Each directed edge eij indicates a dependency
between the two tasks Ti and Tj that it connects. If there is
a path from vertex Ti to vertex Tj in the graph G, then Ti is
the predecessor of Tj and Tj is the successor of Ti. The
successor task cannot be executed before all its
predecessors have been executed and their results are
available at the processor at which the successor is
scheduled to execute. A task is “ready” to execute on a
processor if all of its predecessors have completed
execution and their results are available at the processor
on which the task is scheduled to execute. If the next task
to be executed on a processor is not yet ready, the
processor remains idle until the task is ready.

The goal is to find a schedule which is a mapping of tasks
to processors that minimizes the makespan. The makespan
of a schedule can be defined as the time it takes from the
instant the first task begins execution to the instant at
which the last task completes execution.

4 Scheduling algorithms

Scheduling is a key concept in computer multitasking and
multiprocessing operating system design, and in real-time
operating system design. In modern operating systems,
there are typically many more processes running than
there are CPUs available to run them. Scheduling refers to
the way processes are assigned to run on the available
CPUs. CPU scheduling deals with the problem of deciding
which of the processes in the ready queue is to be
allocated the CPU. There are many different CPU
scheduling algorithms. This paper compares the
performance of genetic algorithms with list scheduling
heuristic.

4.1 Model

A simple task graph with 8 tasks is shown in Fig 1. The
problem of optimal scheduling a task graph onto a
multiprocessor system with p processors is to assign the
computational tasks to the processors so that the
precedence relations are maintained and all of the tasks are
completed in the shortest possible time. The time that the
last task is completed is called the finishing time (FT) of
the schedule. Fig 2 shows a schedule for two processors
displayers as Gantt chart. Fig 2 illustrates a schedule
displayed as Gantt chart for the example task graph TG
using two processors. This schedule has a finishing time
of 10 units of time. An important lower bound for the
finishing time of any schedule is the critical path length.
The critical path length, tcp of a task graph is defined as the

http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/CPU

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 1, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

39

T1 (2,0) T2 (2,0)

T3 (2,1) T5 (2,1)T4(2,1)

T7 (2,2)T6(2,2)

T8
(2,3)

minimum time required completing all of the tasks in the
task graph.

Fig 1 A task Graph TG

0 2 4 6 8 10

Fig 2 Gantt chart for scheduling two tasks

4.2 Genetic algorithms

Genetic algorithms try to mimic the natural evolution
process and generally start with an initial population of
individuals, which can either be generated randomly or
based on some other algorithm. Each individual is an
encoding of a set of parameters that uniquely identify a
potential solution of the problem. In each generation, the
population goes through the processes of crossover,
mutation, fitness evaluation and selection. During
crossover, parts of two individuals of the population are
exchanged in order to create two entirely new individuals
which replace the individuals from which they evolved.
Each individual is selected for crossover with a probability
of crossover rate. Mutation alters one or more genes in a
chromosome with a probability of mutation rate. For
example, if the individual is an encoding of a schedule,

two tasks are picked randomly and their positions are
interchanged. A fitness function calculates the fitness of
each individual, i.e., it decides how good a particular
solution is. In the selection process, each individual of the
current population is selected into the new population with
a probability proportional to its fitness. The selection
process ensures that individuals with higher fitness values
have a higher probability to be carried onto the next
generation, and the individuals with lower fitness values
are dropped out. The new population created in the above
manner constitutes the next generation, and the whole
process is terminated either after a fixed number of
generations or when a stopping criteria is met. The
population after a large number of generations is very
likely to have individuals with very high fitness values
which imply that the solution represented by the individual
is good; it is very likely to achieve an acceptable solution
to the problem. There are many variations of the general
procedure described above. The initial population may be
generated randomly, or through some other algorithm. The
search space, i.e., the domain of the individuals, can be
limited to the set of valid individuals, or extended to the
set of all possible individuals, including invalid
individuals. The population size, the number of
generations, the probabilities of mutation and crossover
are some of the other parameters that can be varied to
obtain a different genetic algorithm.
The height varying point of the tasks are taken for cross
over as shown in fig 3.After cross over the task
arrangement is shown in fig 4. And their Gantt chart is
shown in Fig 5.

Fig 3 Cross over point

Fig 4 after Cross over

T2
T1 T3

T5
T4
T6

T7
T8

P1
P2

T1 T3 T4 T7

T8 T6 T5

P1

P2 T2

T3 T4 T
6

T7 T5

P
1

P2 T2

T8 T1

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 1, January 2010
www.IJCSI.org

40

Fig 5 Gantt chart of tasks after Cross over.

4.3 List Scheduling Heuristic (LSH)

List scheduling techniques assign a priority to each task to
be scheduled then sort the list of tasks in decreasing
priority. As processors become available, the highest
priority task in the task list is assigned to be processed and
removed from the list. If more than one task has the same
priority, selection from among the candidate tasks is
typically random

5 Performance evaluations

5.1 Experimental setup

The genetic algorithm and List scheduling algorithm has
been implemented and tested. Following are the
assumptions under which the experiment is conducted.
Assumptions about the task numbers are ranging from 8 to
110. The number of successors that each task node
allowed is a random number between 3 and 6. The
execution time for each task random number is assumed
between 1 and 25. The task graphs are tested on a list-
scheduling algorithm. The genetic algorithm used the
following parameters throughout the simulation.
Population size = 20.
Maximum number of iterations = 500.
The simulation performed using MATLAB.

Table I Comparison of GA and LSH for various random task graph using
two processors

No. of
tasks

GA finish
time

LSH finish
time

8 11 10
17 22 24
28 43 47
33 48 61
39 46 60
44 50 56
49 55 103

From table 1 when the numbers of tasks are minimum of
less than 15 LSH is the best solution to solve the
scheduling problem

Table II Comparison of GA and LSH for various random task graph using
three processors

No. of tasks GA finish

time
LSH finish
time

23 26 28
28 43 47
33 48 61

Table III Comparison of GA and LSH for various random task graph
using four processors

No. of tasks GA finish

time
LSH
finish time

39 46 60
44 50 56
49 55 103
54 68 68
59 83 121
69 104 139
79 137 153
89 141 157
99 158 211
100 158 222
110 174 222

From table 2 and 3 when the number of task and number
of processors are increased GA gives the best solution.
The time taken by the GA to compute the scheduling task
is more than time taken by the List scheduling. But when
the Number of Processors and number of tasks are
increased the GA time is optimal with the List scheduling
algorithm.

T2

T1 T3

T5

T4

T7

T6 P1

P2

T8

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 1, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

41

Fig 6 Comparison between LSH and GA

Table IV Precedence relation Vs. Execution time

Height Best
minimum
time GA

LSH
minimum

time

3 10 11
5 22 24
5 46 60
5 50 56
6 158 222
7 174 222

Precedence relation Vs.Execution time

0

50

100

150

200

250

0 5 10

Height of the task

Ex
ec

ut
io

n
tim

e Best
minimum
time GA
LSH
minimum
time

Fig 7: Precedence relation Vs. Execution time

From the fig 6 the LSH and GA produce almost same
scheduling time when the number of tasks in range 8 to
28. When the numbers of tasks increase GA gives the

better solution. When the tasks are more than 100, GA
gives the best solution. One can infer from the table 4 and
fig 7 the LSH and GA are producing the same result
between the height 3 to 5.But when the height are more
than 5 only GA produces the best result.

6. Conclusions

This paper compares scheduling algorithms for
multiprocessor task scheduling .It conclude that from a
purely performance point of view, Genetic algorithm is the
best solution, but its deployment needs to be subject of a
careful cost benefit analysis. It concludes that list
scheduling will be suggested for the less number of tasks
and processors. It also concludes that the use of these
algorithms are justified whenever the scheduling can be
done off-line, there is a need for repeated execution of the
schedules or the make span of the application is
significantly longer than the scheduling time.

References

[1] Joel M Crichlow,”An introduction to distributed and parallel

computing” PHI, 2001.
[2] Harry F Jordon Gita alaghbad , “ Fundamentals of parallel

processing”, PHI,2003.
[3] M.Sasikumar, Dinesh Shikhare, P.Ravi prakash, “

Introduction to parallel processing”, PHI, 2003.
[4] David.E.Goldberg, “ Genetic Algorithms in search,

optimization & machine learning”, Pearson education,2004.
[5] Pinaki Mazumdu Elizabeth, M.Pudnick, “ Genetic

Algorithms”, Pearson education 2004.
[6] Ben Kao and Hector Garcia Molina, December 1997,

Deadline assignment in a distributed soft real time system, ,
IEEE transactions on parallel and distributed systems, Vol. 8,
No.12, pp 1268-1274.

[7] Andrei Radulescu and Arjan J.C, june 2002, Low cost task
scheduling for distributed memory machines, , IEEE
transactions on parallel and distributed systems, Vol. 13,
No.6, pp 648-657

[8] Yair Wiseman and Dror G.Feitelson , June 2003,.Paired Gang
Scheduling, , IEEE transactions on parallel and distributed
systems, Vol. 14, No.6, pp 581-592

[9] Dakai Zhu, Rami Melhem and Bruce R.Childers , July 2005 ,
Scheduling with dynamic voltage/speed adjustment using
slack reclamation in multiprocessor real time systems, IEEE
transactions on parallel and distributed systems, Vol. 14,
No.7, pp 686-699.

[10] Rabi N.Mahapatra and Wei Zhao, July 2005, An energy
efficient slack distribution technique for multimode
distributed real time embedded systems, IEEE transactions
on parallel and distributed systems, Vol. 16, No.7, pp 650-
662.

[11] Theodore P.Baker, August 2005, An analysis of EDF
schedulability on a multiprocessor, IEEE transactions on
parallel and distributed systems, Vol. 16, No.8, pp 760-768.

Comparison between LSH & GA

0

5

10

15

20

25

1 3 5 7 9 1 1 1

LSH Execution
 GA Execution Time

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 1, January 2010
www.IJCSI.org

42

[12] Eitan Frachtenberg, Fabrizio Petrini, November 2005 ,
Adaptive parallel job scheduling with flexible coscheduling ,
IEEE transactions on parallel and distributed systems, Vol.
16, No.11, pp 1066-1077.

Authors Profile

S.R.Vijayalakshmi is a Lecturer in
School of Information Technology and
Science, Dr.G.R.D college of science,
Coimbatore. She received her B.Sc
M.Sc, M.Phil in Electronics from the
Bharathiar University and also received
M.Sc in Computer Science from

Bharathiar University and M.Phil in computer Science
from Avinashilingam University for women. She has 14
years of experience in the teaching field. Her research
interests include embedded systems, parallel and
distributed systems, real time systems, real time operating
systems and Microprocessors.

The author is a doctorate holder in
Computer science with 21 years of
experience in the academic side and
approximately 2 years of experience in the
industrial sector. She is the Professor and
Head of the Department of Computer
Science in Avinashilingam University for

Women, Coimbatore-43. She has 80 publications at
national and International level and executing funded
projects worth 2 crores from UGC,AICTE and DRDO-
NRB, DRDO-ARMREB. She is a life member of many
professional organizations like CSI, ISTE, ISCA,
WSEAS,AACE. Her areas of interest include network
security, real time communication and real time operating
systems. Her biography has been profiled at World’s
Who’s Who in Science and Engineering Book,
International Biographical Centre- Cambridge, England’s -
Outstanding Scientist Worldwide for 2007, International
Educator of the Year 2007 by IBC, 21st Century award for
Achievement by International Biographical Centre-
Cambridge, England, The International president’s award
for Iconic achievement, by International Biographical
Centre- Cambridge, England, The Da Vinci Diamond for
Inspirational Accomplishment by International
Biographical Centre, Cambridge .

