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Abstract 
The importance of finding the characteristics leading to either a 
success or a failure is one of the driving forces of data mining. 
The various application areas of finding success/failure factors 
cover vast variety of areas such as credit risk evaluation and 
granting loans, micro array analysis, health factors and health 
risk factors, and parameter combinations leading to a product 
success. This paper presents a new approach for making 
inferences about dichotomous data. The objective is to 
determine rules that lead to a certain result. The method 
consists of four phases: in the first phase, the data is processed 
into a binary format of a truth table, in the second phase; rules 
are found by utilizing an algorithm that minimizes Boolean 
functions. In the third phase the rules are checked and filtered. 
In the fourth phase, simple rules that involve one to two 
features are revealed. 
Keywords: Data Mining, Project Success, Rule Extraction, 
Knowledge Acquisition, Heuristics, Binary Data, Type 
dichotomy.

1.  Introduction 
The Rules of success and failure as well as 
characterization of parameters that lead to desired results 
have immense importance in today's business world. For 
example, finding the underlying rules for credit-risk 
evaluation, insurance-application evaluation, and project 
evaluation are all very important management science 
problems [1, 2]. Though great advances had been 
achieved in this area, the search for techniques for 
finding such rules is as fervent as ever. The need to 
extract knowledge from data has spawned increasing 
efforts in trying to infer rules from databases [3]. For 
example, in the last two decades, the fields of neural 
networks and data mining have grown considerably.  

This paper is taking a step forward in this direction. 
It offers a new approach in dealing with dichotomous 
data (fields with one of two values). Specifically, it 

characterizes combinations of features that lead to one of 
two results we call a success or a failure.  

The paper presents a technique for rule extraction 
with three major constraints that differentiate it from the 
general data mining techniques: 
1. All the data fields must be made dichotomous (0/1 

values) 
2. The population of records is classified into two groups:  

Success=1, and Failure=0. 
3. The rules always associate records with the group 

defined as 1 (the Success group).  
 
The presented approach finds the rules 

characterizing the desired combinations and expresses 
these rules in the most efficient way.  In the business 
world, various phenomena could be classified as either 
success or failure. For example, a success could be when 
a customer in a supermarket purchases a bottle of wine, 
when an entrepreneur gets a loan, or when corporate 
sales grow over 50%. In other cases, phenomena could 
be classified into two values with no clear winner. For 
example, a population classified into patients under 21 
years and patients over 21 years. The Success group in 
this latter case is chosen based on our interest in the 
group, or arbitrarily. 

The question of interest is: "what are the rules that 
lead to a success or a failure?" Or in different words: 
what variables are associated with such success?  

For example, if the purpose is to characterize 
customers that purchase wine, the question is what 
variables are associated with them. The variables could 
be the customer's gender, the customer's age, other 
products that were purchased, the time of day, the total 
bill amount in dollars, etc. 

Notice however, that while gender or a product 
purchase is a 0/1 variable by nature, other variables are 
not. Thus, we have to segment the other variables into 
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0/1 groups by determining a threshold. For example, 
customers under 30 years of age and over 30 years, or 
bills under $ 100 and over $ 100.  

Let us look at another case where a patient clinic has 
to allocate time slots for patient callers who schedule 
appointments with the doctors. The appointments could 
be either 15 minutes or 30 minutes appointments.  

The clinic management is interested in categorizing 
the patients into two groups, asking the patients several 
yes/no questions should help determine whether to 
allocate 15 minutes or 30 minutes. Dichotomous 
variables could be whether the patient is smoking or not, 
whether body temperature is at least 2 degrees above 
normal, whether the patient is over 60 or not, etc. 

Note that in such cases, the combination of values 
has a crucial importance.  For example, the combination 
of a smoking person that is over 60 years old could 
trigger classification into a 30 minute appointment with 
the Dr., whereas a young smoking person and an old 
non-smoking person could be allocated 15 minutes 
appointments each. 

Since we constrained ourselves in this paper to 
binary variables, the rules could be expressed as 
combinations (or strings) of ones and zeros of the 
corresponding variables. For example, if we are trying to 
characterize beer consumers, using their smoking habits, 
age, and gender, it is reasonable to define variables: 

 X= smoking/non (smoking=1, non=0).  
Y =gender (male=1, female=0),  
Z=age over or under 30 (under=1, over=0). 
 So if we found that all the smoking males under 30 

in the sample are beer consumers, it could be expressed 
as (X=1, Y=1, Z=1) or 111 or simply XYZ. When a rule 
contains a zero we use the NOT=' sign (e.g., X NOT=X').  
For example, if we try to characterize healthy people we 
may find that all the non-smokers under 30 are healthy 
(X=0 and Z=1) expressed as X'Z.   So X'Z is the rule that 
has been found. 

When there are several rules of "success" the rules 
are expressed using the "+" sign serving as Boolean "or".  
For example, if it is found that all organic food buyers 
are either women or non-smokers, using the classification 
above, the organic food buyers are characterized as either 
X=0, or Y=0, or simply X' + Y'. This expression is the 
rule we were looking for.  

However, the way to the desired rule, is the really 
important part. This part is described through a four-
phase mechanism that identifies rules from binary data. 
The rest of the paper is arranged as follows: Section 2 
discusses some related literature; Section 3 describes the 
phases in subsections 3.1 to 3.4. In section 4 we provide 
a case study, and use it in sub sections 4.1 to 4.4 to 
illustrate the four phases respectively. 

2. Related Literature 
One of the learning techniques that generates a set of 
rules for integer and binary data (but still needs extensive 
set of training examples) is the technique of forming a 
decision tree, [4, 5, 6]. The ID3 and C4.5 algorithms by 
Quinlan [7, 8] serve as good examples of learning 
algorithms that are suitable for building rules.  
However, Quinlan's algorithm needs large amounts of 
data for the learning process and cannot cope with bad or 
missing data. A very critical view of the above methods 
appears in [9]. 
Some implementations of classifying and characterizing 
desired combinations of attributes is shown in the 
literature. Credit-risk evaluation for granting loans based 
on the client characteristics is dealt in [1, 2, 10].  Viaene 
et. al. [11] are dealing with classifying customers for 
insurance fraud detection. 
The Logit model [12,13,14,15,16] is the most common 
and well known regression based approach for discrete 
and binary data. While it cannot deal with the effect of 
combinations, it does find the effect of each single 
independent variable (the main effects).  Logit differs 
from regular regression by handling data in which the 
dependent variable is binary or even discrete ordinal and 
the independent variables can be either continuous or 
categorical. The main idea is to find a relationship 
between predetermined values of independent variables 
and the probability that the dependent variable is a 
success (or that it is a failure). Logit model utilizes a 
regression procedure and maximum likelihood principle, 
to estimate the main effect of each independent variable. 
However, the Logit model can not deal with the effect of 
combinations of variables and so, is not suitable for the 
case studied in this paper. 
In this paper and in some of the previous methods 
forming Winning rules is based on the "general principle 
of inductive learning often called Ockham's razor: The 
most likely hypothesis is the simplest that is consistent 
with all observations." [5] p. 534. An Ockham algorithm 
is "an algorithm that is capable of finding consistent 
hypothsis that achieves a significant compression of the 
data it represents" [5] p. 560.  Ockham algorithms are 
further discussed in [17]. This paper utilizes a unified 
algorithm of Quine [18, 19] and McCluskey [20, 21] that 
is an Ockham algorithm. The algorithm is discussed and 
explained thoroughly in chapter 4 of Kohavi [22]. This 
algorithm is a generalization of Karnaugh maps devised 
by Karnaugh [23] for small problems. It is not surprising 
that the map method of Karnaugh is also an Ockham 
algorithm.  
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3. Proposed Methodology 
The methodology of the proposed technique is divided 
into four phases: 

1.  Get the data and construct a Truth Table 
2.  Form Winning Rules - Using algorithms by 

Quine [18, 19] and McCluskey [20, 21]  
3.  Filter outliers and non-efficient elements 
4.  Check for main effects and effects of all pairs of 

combinations. 
 
The first phase involves getting the data inverting the 
non-binary data into binary data constructing the Truth 
Table.  Getting the data may involve sampling. The Truth 
Table tells us what combinations have proven successful, 
and what combinations have been failures.  
The second phase forms rules by describing the Truth 
table as compactly as possible. This is done by adjusting 
an  algorithm by Quine [18, 19] and McCluskey [20, 21] 
that minimizes logical functions in general. 
The third phase, is implementing a filter based on the 
Pareto principle to eliminate inefficient rules from phase 
2. 
The fourth phase, checks for rules that cover many 
instances, but may have been rejected in step 2 due to 
exceptions or lack of data. 
Each of the phases would be discussed in more details 
below.  

3.1 First phase: Truth Table Construction 
The purpose of this step is to classify the observed data 
records into one of two groups (success or failure). If the 
data is coming from a mechanical or digital system where 
the same inputs always result in the same output the first 
phase is fairly simple: 
 
Phase I for a fully determined system 

Stage 1: Get the data 
Stage 2: Process the data into dichotomous values 
(using a threshold when necessary). 
Stage 3: Construct a truth table 

 
Missing combinations in the data are spots of uncertainty 
and in typical conservative treatment should be 
considered as losing combinations (just to be on the safe 
side). Table 1 is an illustration of a very simple truth 
table. 
The described process in Table 1 is deterministic, but in 
many cases the process or the system may be stochastic. 
For example consider purchase of a product, human 
reaction, and most business phenomena – for each 
process/phenomenon - repeating the same input may 
result in different output reaction. 
 

 
Table 1. Truth table for the rule: 

 (if X=0 and Y=0 Then Z=1) or in short: X'Y' 
 

Input Output 
X Y Z
0 0 1 
0 1 0 
1 0 0 
1 1 0 

 
When such a non-deterministic system is involved, some 
preparatory stage must precede the construction of truth 
table, and the procedure is altered as follows: 
Phase I for a system with uncertain response 

Step 1: Get the data 
Step 2: Process the data into dichotomous values 
(using a threshold  
      when necessary ) 
Step 3: Construct a frequency table with the 
following fields: Binary combination, # successes, # 
failures, and  
% successes: # successes / (# successes + # failures) 
Step 4: Classify Winning binary combinations of data 
using threshold values of: 
 "% successes" and  "# successes". 
Step 5: Construct truth table 

 

3.2 Second Phase: Minimizing The Boolean 
Function  
The truth table holds every combination that was 
classified as a success. For k dichotomous attributes, the 
truth table has 2k entries. This is a very long and 
inefficient way of describing the rules of success or 
failure. Moreover, it grows exponentially. We need better 
rules that will capture the common features of large 
groups of combinations. Like other methods, the 
proposed method is based on Ockham's razor philosophy: 
The most likely hypothesis is the simplest that is 
consistent with all observations." (See section 2: Related 
Literature.) Thus, an Ockham type algorithm by Quine 
[18, 19] and McCluskey [20, 21] is adopted by the 
authors. This algorithm comes from the realm of digital 
design and when applied to the truth table it generates 
minimal Boolean function of that table. Minimal Boolean 
function of a truth table is a function that describes the 
table using minimal number of terms. Minimizing 
Boolean functions is an Ockham algorithm since minimal 
Boolean function is by definition the simplest function. 
Minimizing Boolean functions include the pursuit of 
powerful rules with fewest variables as possible. This 
could be explained in a more intuitive way as follows: 
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Suppose for example, that we seek combinations of 
characteristics that are associated with lung patients that 
developed cancer.  Furthermore, suppose that all these 
combinations contain cigarette smokers and there are 
only very few smokers without cancer. Classifying 
smoking as the rule for cancer is the most efficient rule in 
this case. Smoking is one variable. Rules based on a 
single  variable are the most efficient way to describe 
large groups. In general rules with pair of variables are 
less efficient then rules with one variable since they 
cover fewer success combinations. Rules with three 
variables cover less combinations then rules with two 
variables, and so on. In general, the rule is stronger and 
more efficient when it contains fewer variables. 
In the early days of digital design, logical variables were 
constructed using physical gates and vacuum bulbs. 
Digital designers were struggling to minimize the cost of 
representing a truth table. The only way to do this was to 
minimize logical functions. While small functions with 
up to 5 variables were minimized using the prevalent 
Karnaugh maps [23], the algorithm for the general case is 
much less known and combines two algorithms: the first 
by Quine [18, 19] and the second by McCluskey [20, 21] 
into one framework. The framework and the details of 
the algorithm along with examples and discussion are 
presented in Kohavi [22]. 

3.3 Third Phase: Filtering rules 
The result of phase two is a set of rules that exactly 
matches the original truth table. While this is much more 
compact then a truth table, it still may have quite a few 
specific rules for isolated cases. Like most real world 
systems, the Pareto rule holds in this case. Namely, 20% 
of the rules describe 80% of the success cases. Moreover, 
the desirability of keeping a rule that describe less then 
1% of the cases is usually low enough to ignore this rule 
altogether. This brings us to the third phase where non 
desirable rules are filtered out.  

All we have to do for the third phase is to set a level 
of rule acceptance. Say we chose the rule acceptance 
level to be 5%, then any rule that does not describe at 
least 5% of the cases is filtered out. 

While the third phase filters out inefficient rules, it 
may happen that a very efficient rule with only one or 
two variables has not been revealed so far. For this to 
happen it is enough that one combination (or more) 
belonging to the rule is missing, or was not recorded by a 
mistake. These cases are treated in the fourth phase. 
 

3.4 Fourth Phase: Checking for Main and 
Secondary Effects  
Main effects are rules of a single variable (that is, a 
single attribute). Effects of pair of attributes are 
secondary effects.   

Many efficient rules could be missing due to missing 
data and exceptions. The fourth phase is checking for 
such cases and amends them. This phase is relatively 
simple. Checking for main effects requires only that we 
collect for each variable: (1) the % of successes when the 
variable is one, and (2) the % when the variable is zero. 
Exceeding a predetermined percentage (e.g., 95% 
successes when the variable is 1) would inaugurate a new 
rule (with the predetermined of at least 95% accuracy). 
We also check for every pair of variables and their 
success/failure percentage. Note that the complexity of 
checking combinations grows immensely and that the 
power of the resultant rules drops significantly with the 
growing number of attributes. It is therefore that we do 
not recommend going beyond pairs for this brute force 
enumeration. 

 

4. Case Study 
The purpose of the case study is to illustrate the stages of 
the proposed methodology. Due to the obvious space 
constraints, a small case study is chosen. Thus, a major 
advantage of the third phase (dealing with many 
attributes) is bypassed. However, the case study 
illustrates all the other important points.  

In this case study we are trying to characterize 
the type of project managers that lead their project to a 
success. 

 

4.1 Phase I 
However, Between the indicators that characterize 
human personalities it is very convenient for our case 
study to adopt the model by  Gustav Jung [24] based on 
four dichotomies. These four dichotomies are answers to 
the four questions: (1) Where do you focus your 
attention? (2) In what way do you take in information?  
(3) In what way do you make decisions? (4) Hoe do you 
deal with the outer world? [25]  
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The answers to these questions are described on 
dichotomous scale: 
1. Extraversion vs. Introversion 
2. Sensing vs. Intuition 
3. Thinking vs. Feeling 
4. Judging vs. Perceiving 
 
We shall use the following definitions: 
E=1 if a candidate is Extravert, and zero otherwise. 
S=1 if a candidate is Sensing, and zero otherwise. 
T=1 if a candidate is Thinking, and zero otherwise  
J=1 if a candidate Judging, and zero otherwise. 
 

Phase I aims at constructing the truth table. Since 
we have k=4 dichotomous attributes we have 24=16 
possible combinations.  The case study database 
consisted of records of successfully completed projects 
of a large consulting (undisclosed) company and their 
managers. Successful project is defined as one that was 
completed on time, on budget and within specifications. 
The managers were asked to take a short Myers Briggs 
test to reveal their four dichotomies. For each 
combination of traits, the number of successful projects 
is counted and percentage is calculated in Table 2. Next 
step is to extract rules (classify the "successful" binary 
combinations) using threshold values of "% successes" 
and "# successes". 

In case of total randomness, each of the 16 
combinations would average 1/16 of the observations or 
close to 6.25% of the cases. Therefore, the threshold 
should be set higher than that. In the case study we set 
the threshold at 7% (or 70 observations). Setting the 
threshold is somewhat arbitrary decision based on the 
analyst discretion. However, in many cases the Pareto 
rule may work, where we set the threshold to 
differentiate between the higher 20% (or so) and the rest 
of the pack. 

The following truth table (Table 3) is calculated by 
simply converting all values in the right side of Table 2 
that are under the threshold to zero and those above the 
threshold to one (remember that the threshold is 7%).  

4.2 Phase II: Extracting Rules  
The aim of this stage is to form rules based on the truth 
table. We applied the method by Quine [18, 19] and 
McCluskey [20, 21] to get the following rules: (The 
method is explained thoroughly in Kohavi [22].) Project 
managers of successful consulting projects are 
characterized by the following combinations: 
1) Extravert, Thinking   
2) Extravert, Sensing, Perceiving   
 

The mathematical notation for the rules is based on initial 
letters of the dichotomous fields: For example,  E=1 
means extraversion, and E=0 means introversion.  
 
This may be written for short as E=Extraversion, and for 
the other fields: S=Sensing, T=Thinking, J=Judging. 
Also, we use ∪ for Boolean "or" and ∩ for Boolean 
"and". 
 

Table 2: Success frequency table for all combinations 
 

% 
# 
success 

 
 

Binary combination 
 

 
Number 
of  

Judging 
Perceive 

Thinking 
Feeling 

Sensing 
iNtuition 

Extravert 
Introvert 

 

Success- 
-ful 
Projects 1=J 1=T 1=S 1=E 

  0=P  0=F 0=N 0=I  

0.2% 2 0 0 0 0 
0.1% 1 1 0 0 0 
0.6% 6 0 1 0 0 
1.6% 16 1 1 0 0 
0.5% 5 0 0 1 0 
2.7% 27 1 0 1 0 
3.2% 32 0 1 1 0 
3.1% 31 1 1 1 0 
1.0% 10 0 0 0 1 
3.6% 36 1 0 0 1 
10% 102 0 1 0 1 
18% 180 1 1 0 1 

4% 40 0 0 1 1 
14% 140 1 0 1 1 
20% 202 0 1 1 1 

17% 170 1 1 1 1 

       Total 

100% 1000 8 8 8 8 
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Writing the letter means that its value is one, adding the 
apostrophe (') to the letter means that its value is zero. 
For example, "E" to represents E=1, adding 'the 
apostrophe (') as in "E'  " represents E=0.  Thus, the rule 
is: 
Y = (E∩T) ∪ (E∩S∩J).   

It is customary to replace ∪ by the "+" sign and treat ∩ 
as a multiplication resulting in: 

 

  Y = (E∩T) ∪ (E∩S∩J) = ET+ESJ   (1) 
 
 

Table 3: Truth Table for Table 2 (with Threshold of 7%) 
 

Result 

 
 

Binary combination 
 

  
Judging 
Perceive 

Thinking 
Feeling 

Sensing 
iNtuition  

Extravert 
Introvert 

1=success 
0=Failure 1=J 1=T 1=S 1=E 

 0=P  0=F 0=N 0=I  

0 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 1 1 0 0 
0 0 0 1 0 
0 1 0 1 0 
0 0 1 1 0 
0 1 1 1 0 
0 0 0 0 1 
0 1 0 0 1 
1 0 1 0 1 
1 1 1 0 1 
0 0 0 1 1 
1 1 0 1 1 
1 0 1 1 1 

1 1 1 1 1 
 

 
Since this is a relatively small problem (with k<6) the 
same results of the Quine & McCluskey algorithm 
could be achieved and verified graphically using a 
Karnaugh map (see figure 1).  Karnaugh map is a 
graphical tool for minimizing Boolean functions. 
Karnaugh map is composed of a matrix, in which each 
entry corresponds to a single combination. The value of 
each entry is binary (1 or 0, for success or failure).  

Forming the matrix starts with splitting the binary 
attributes of the problem into two separate groups: a 
variable group for the columns and the rest of the 
attributes for the rows. For example, in figure 1, four 
binary attributes: E, S, T, J are divided into E, S for the 
columns, and T, J for the rows. Each column 
corresponds to a single combination of values of E and 
S (one of: 00,01,10,11).  

Each row in figure 1 corresponds to a single 
combination of values of T and J (one of: 00,01,10,11). 
Y=ET+ESJ =  

(1) Extravert, Thinking Or  
(2) Extravert, Sensing, Judging. 

 

ES' ESE'S E'S' 
 

1101 00  

Fig. 1  Karnaugh map for the case study. The circles corre
rules. 

The value of each entry in the Karnaugh map
1) is the result (success/failure) of 
combination formed by the column and the
example, the upper left corner has the fir
corresponding to E'S'=00, and first row corres
to T'J'=00. So the upper left corner entry corr
E'S'T'J'=0000. Its value is zero correspon
failure. As another example, the lower rig
corresponds to ES'TJ''=1010 and its v
represents a success. The column and 
combinations are ordered in the map so tha
any pair of neighboring columns (or rows) th
be only one change of one field (bit). 
For example, between (0,0) and (0,1) there 
change. An example for an illegal adjacenc
and (1,0) since there are two bit changes be
two.  
 Circling the largest groups of "1" that cover 
and nothing but the "1" give the desired 
example, circling the four "1" on the bott
corner, corresponds to the common values of

 

0 0 0 00 T'J' 

1 0 0 01 T'J 

1 0 0 11 TJ 

1 0 0 10 TJ' 

ESJ 
 ET

 

10  

spond to the 

 (in figure 
the value 
 row. For 
st column 
ponding  

esponds to 
ding to a 
ht corner 
alue "1" 
row state 
t between 
ere would 

is one bit 
y is (0,1) 
tween the 

all the "1" 
rules. For 
om- right 
 all entries 

 

0 

0 

1 

1 
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in this group: in this case E=1, T=1. (E∩T). The circled 
groups (rules) can only have 2 or 4 or 8 entries and 
fully contained circles are dominated by the bigger 
group which is also the more general rule. 
It is therefore, that Karnaugh maps could handle only 
up to 5 of attributes (for more on Karnaugh maps see 
Kohavi (1978)). Note that the method of Quine and 
McCluskey minimizes the binary function in the 
general case for any number of attributes. 
 

4.3 Phase III: Filtering Out Rules  
The filtering procedure is described using the following 
procedure: 
I. Make a list of the rules, compute their corresponding 
percentage of the original success cases: 
A. original successes:  
P(ET)= 10%+18%+20%+17% = 65%,  (2) 
 
   P(ESJ)=14%+17%=31%                              (3) 
 
Total_Successes  = P(ET)+P(ESJ)-P(ESTJ) = 
AC+ABC'D=65%+31%-17% = 79%     (4) 
 
B. Percent of the original successes: 
  ET:  65/79=82%    (5) 
 
               ESJ: 31/79=39%    (6) 
      
II. Sort the list by the percentage (The case study is too 

small, so it is sorted already). 
III. Set the coverage level - the percentage of successes 

that you like to describe with rules.For illustration, 
we shall describe two cases: (1) coverage of 80% and  
(2) 90%. 

IV. Follow the steps of the loop below: 
A) From the remaining rules, choose the rule with 

greatest percentage. 
B) Increase the "Success Coverage" by the chosen 

rule percentage. 
C) Reduce the percentage of the remaining rules by 

their overlap with the chosen group of rules.  
D) If the "Success Coverage" exceeds the threshold 

from step III - Stop;  
Otherwise delete the chosen rule from the list of 

remaining rules and go to A.  
For example: 

•  The ET rule satisfies the threshold of 85% (it 
covers 82%>80% of the successes) 

•  The ET rule is not enough for the 90% threshold 
(82%<90%). We choose the next rule ESJ and we 
reach a coverage of 100% of the successes (which 
must be satisfactory). 

 

4.4 Phase IV: Main and Secondary Effects 
To In this phase we revisit sequentially the percentage of 
cases for each attribute or pair of attributes and decide 
which of them may have been ignored due to minor 
inconsistencies that can be tolerated. The case study is 
used for illustrating the fourth phase. 
A. Revisiting the main effects 

Since there are four attributes in the case study there 
are eight rules of single attribute to consider: E, E, S, S', 
T, T', J and J' (explicitly: E=1, E=0, S=1, S=0, T=1, T=0, 
J=1, J=0 ). 

For example, consider the rule E meaning E=1 
(Extravert) in our case study. From Table 2 this rule 
covers: 878 cases (87.8% of the population). However, 
this rule is inconsistent with the following entries in 
Tables 3: ES'T'J', EST'J', ES'T'J. So using the rule E=1 
(Extravert), have the following probability of error (using 
Table 1, and "#" to replace the word "number"): 
P(Added Error) =  

= (Deviation from expected #)/(expected #) 
 
Deviation  = (Expected #)-(ES'T'J', EST'J', ES'T'J cases) 
Expected # = (3 cases)(total/2k)) = 3*(1000/16)=187 
cases. 
ES'T'J', EST'J', ES'T'J cases = 86 cases 
So, 
P(Added Error) = (187-86)/187 = 54%.                 (7) 

 
The overall error is the added error multiplied by its 

weight: (3/8)*(0.54)+(5/8)*(0)= 20% 
In general the probability of error has to be weighed 

against the simplicity it brings (i.e. the number of rules it 
saves. In this case it saves one rule by replacing the two 
rules: ET, ESJ. So we have to weigh adding 20% error 
against saving one rule. These computations and decision 
repeat for all 8 potential rules. 

 
B. Revisiting effects of all attribute pairs 
Since there are four binary attributes (E,S,T,J) in the case 
study we have to consider the following 24 pair 
combinations: ES, E'S, ES', E'S', ET, E'T ET', E'T', EJ, 
E'J, EJ', E'J', ST, S'T, ST', S'T', SJ, S'J, SJ', S'J', TJ, T'J, 
TJ', T'J'. 

ET is already part of the rules. For each pair, the 
computations are analogous to the computations of the 
single attribute. 

For example, consider the rule EJ for the case study. 
Like all rules of attribute pairs it has four combinations:  
1. ESTJ, meaning E=1,S=1,T=1,J=1 -included in Table 3  
2. ES'TJ, meaning E=1,S=0,T=1,J=1 -included in Table 3 
3. EST'J, meaning E=1,S=1,T=0,J=1 -included in Table 3 
4. ES'T'J, meaning E=1,S=0,T=0,J=1 -Not included 
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For the added  ES'T'J, the probability rule of added error 
is (using "#" to replace the word "number"): 
P(Added Error) =  

=(Deviation from expected #)/(expected #) 
Expected # = (total/2k)) = (1000/16) = 62 cases. 
Deviation  = (Expected #)-(ES'T'J cases)= 
= 62-36 = 26 cases 
P(Added Error) = 26/62 = 42%.       (8) 
 
The overall error is the added error multiplied by its 
weight: (1/4)*(0.42)+(3/4)*(0) = 10.5% 
If rule EJ replaces ESJ the only gain from the 
replacement is the ability to ignore attribute S (Sensing). 
The decision maker have to decide whether to ignore 
Sensing and have 10.5% error probability, or to eliminate 
this error probability by considering the Sensing. 

 

5. Complexity as a Function of the Number 
of Attributes 
Let us define k as the number of attributes in the problem. 
As the problem becomes bigger, k grows and the 
consequences are as follows: 
• In phase 1: The number of combinations (rows in the 

truth table) is 2k. This is an exponential growth. 
• In phase 2: If k>5 Karnaugh map can no longer 

describe it. Instead, the Quine and McCluskey 
algorithm must be applied. However, the complexity 
of Quine and McCluskey algorithm grows 
exponentially with k.  

• In phase 3: As k grows the number of rules grows 
considerably, and filtering out rules becomes more of 
an issue. When it comes to human decision, too many 
rules complicate things, and we may be willing to 
trade the exactness of describing successes for 
simplicity.  

• In phase 4: The number of single attribute 
computations is 2*k (each of the k attributes can be 
either 1 or 0). The number of attribute pair 
computations is the multiplication of all the value 
combinations of the pair (22) by the number of pairs:  

(k-1)+(k-2)+…1 =  ((k-1)*k)/2.  
For example, in 4.4.2 above, the number of pairs is: 
 (22)*((k-1)*k)/2 = 4*((4-1)*4)/2 = 4*12/2 = 24  (9) 
 

Overall, the number of computations is proportional to k2 
(O(k2)). However, each single computation directly 
depends on the number of combinations and thus, grows 
exponentially with k.  

6. Conclusions 

This paper presents an approach for finding the 
binary combinations leading to a specified result. The 
approach is based on four phases and utilizes the fact that 
some data could easily be transformed into binary data as 
done in the first phase. In the second phase, we minimize 
the Boolean function. The third phase filters out 
superfluous outliers of the second phase, and the fourth 
phase appends missing combinations missing from the 
second phase. While the example in this paper is small, 
the method is very efficient with much larger systems. 
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