
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

1

Mining The Successful Binary Combinations: Methodology and
A Simple Case Study

Yuval Cohen1,2

 1 Department of Industrial Engineering, The Open University of Israel,

Raanana, 43107, Israel

2 Department of Industrial Engineering, Afeka Tel-Aviv Academic College of Engineering,
Tel-Aviv, 69107, Israel

Abstract
The importance of finding the characteristics leading to either a
success or a failure is one of the driving forces of data mining.
The various application areas of finding success/failure factors
cover vast variety of areas such as credit risk evaluation and
granting loans, micro array analysis, health factors and health
risk factors, and parameter combinations leading to a product
success. This paper presents a new approach for making
inferences about dichotomous data. The objective is to
determine rules that lead to a certain result. The method
consists of four phases: in the first phase, the data is processed
into a binary format of a truth table, in the second phase; rules
are found by utilizing an algorithm that minimizes Boolean
functions. In the third phase the rules are checked and filtered.
In the fourth phase, simple rules that involve one to two
features are revealed.
Keywords: Data Mining, Project Success, Rule Extraction,
Knowledge Acquisition, Heuristics, Binary Data, Type
dichotomy.

1. Introduction
The Rules of success and failure as well as
characterization of parameters that lead to desired results
have immense importance in today's business world. For
example, finding the underlying rules for credit-risk
evaluation, insurance-application evaluation, and project
evaluation are all very important management science
problems [1, 2]. Though great advances had been
achieved in this area, the search for techniques for
finding such rules is as fervent as ever. The need to
extract knowledge from data has spawned increasing
efforts in trying to infer rules from databases [3]. For
example, in the last two decades, the fields of neural
networks and data mining have grown considerably.

This paper is taking a step forward in this direction.
It offers a new approach in dealing with dichotomous
data (fields with one of two values). Specifically, it

characterizes combinations of features that lead to one of
two results we call a success or a failure.

The paper presents a technique for rule extraction
with three major constraints that differentiate it from the
general data mining techniques:
1. All the data fields must be made dichotomous (0/1

values)
2. The population of records is classified into two groups:

Success=1, and Failure=0.
3. The rules always associate records with the group

defined as 1 (the Success group).

The presented approach finds the rules

characterizing the desired combinations and expresses
these rules in the most efficient way. In the business
world, various phenomena could be classified as either
success or failure. For example, a success could be when
a customer in a supermarket purchases a bottle of wine,
when an entrepreneur gets a loan, or when corporate
sales grow over 50%. In other cases, phenomena could
be classified into two values with no clear winner. For
example, a population classified into patients under 21
years and patients over 21 years. The Success group in
this latter case is chosen based on our interest in the
group, or arbitrarily.

The question of interest is: "what are the rules that
lead to a success or a failure?" Or in different words:
what variables are associated with such success?

For example, if the purpose is to characterize
customers that purchase wine, the question is what
variables are associated with them. The variables could
be the customer's gender, the customer's age, other
products that were purchased, the time of day, the total
bill amount in dollars, etc.

Notice however, that while gender or a product
purchase is a 0/1 variable by nature, other variables are
not. Thus, we have to segment the other variables into

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
www.IJCSI.org

2

0/1 groups by determining a threshold. For example,
customers under 30 years of age and over 30 years, or
bills under $ 100 and over $ 100.

Let us look at another case where a patient clinic has
to allocate time slots for patient callers who schedule
appointments with the doctors. The appointments could
be either 15 minutes or 30 minutes appointments.

The clinic management is interested in categorizing
the patients into two groups, asking the patients several
yes/no questions should help determine whether to
allocate 15 minutes or 30 minutes. Dichotomous
variables could be whether the patient is smoking or not,
whether body temperature is at least 2 degrees above
normal, whether the patient is over 60 or not, etc.

Note that in such cases, the combination of values
has a crucial importance. For example, the combination
of a smoking person that is over 60 years old could
trigger classification into a 30 minute appointment with
the Dr., whereas a young smoking person and an old
non-smoking person could be allocated 15 minutes
appointments each.

Since we constrained ourselves in this paper to
binary variables, the rules could be expressed as
combinations (or strings) of ones and zeros of the
corresponding variables. For example, if we are trying to
characterize beer consumers, using their smoking habits,
age, and gender, it is reasonable to define variables:

 X= smoking/non (smoking=1, non=0).
Y =gender (male=1, female=0),
Z=age over or under 30 (under=1, over=0).
 So if we found that all the smoking males under 30

in the sample are beer consumers, it could be expressed
as (X=1, Y=1, Z=1) or 111 or simply XYZ. When a rule
contains a zero we use the NOT=' sign (e.g., X NOT=X').
For example, if we try to characterize healthy people we
may find that all the non-smokers under 30 are healthy
(X=0 and Z=1) expressed as X'Z. So X'Z is the rule that
has been found.

When there are several rules of "success" the rules
are expressed using the "+" sign serving as Boolean "or".
For example, if it is found that all organic food buyers
are either women or non-smokers, using the classification
above, the organic food buyers are characterized as either
X=0, or Y=0, or simply X' + Y'. This expression is the
rule we were looking for.

However, the way to the desired rule, is the really
important part. This part is described through a four-
phase mechanism that identifies rules from binary data.
The rest of the paper is arranged as follows: Section 2
discusses some related literature; Section 3 describes the
phases in subsections 3.1 to 3.4. In section 4 we provide
a case study, and use it in sub sections 4.1 to 4.4 to
illustrate the four phases respectively.

2. Related Literature
One of the learning techniques that generates a set of
rules for integer and binary data (but still needs extensive
set of training examples) is the technique of forming a
decision tree, [4, 5, 6]. The ID3 and C4.5 algorithms by
Quinlan [7, 8] serve as good examples of learning
algorithms that are suitable for building rules.
However, Quinlan's algorithm needs large amounts of
data for the learning process and cannot cope with bad or
missing data. A very critical view of the above methods
appears in [9].
Some implementations of classifying and characterizing
desired combinations of attributes is shown in the
literature. Credit-risk evaluation for granting loans based
on the client characteristics is dealt in [1, 2, 10]. Viaene
et. al. [11] are dealing with classifying customers for
insurance fraud detection.
The Logit model [12,13,14,15,16] is the most common
and well known regression based approach for discrete
and binary data. While it cannot deal with the effect of
combinations, it does find the effect of each single
independent variable (the main effects). Logit differs
from regular regression by handling data in which the
dependent variable is binary or even discrete ordinal and
the independent variables can be either continuous or
categorical. The main idea is to find a relationship
between predetermined values of independent variables
and the probability that the dependent variable is a
success (or that it is a failure). Logit model utilizes a
regression procedure and maximum likelihood principle,
to estimate the main effect of each independent variable.
However, the Logit model can not deal with the effect of
combinations of variables and so, is not suitable for the
case studied in this paper.
In this paper and in some of the previous methods
forming Winning rules is based on the "general principle
of inductive learning often called Ockham's razor: The
most likely hypothesis is the simplest that is consistent
with all observations." [5] p. 534. An Ockham algorithm
is "an algorithm that is capable of finding consistent
hypothsis that achieves a significant compression of the
data it represents" [5] p. 560. Ockham algorithms are
further discussed in [17]. This paper utilizes a unified
algorithm of Quine [18, 19] and McCluskey [20, 21] that
is an Ockham algorithm. The algorithm is discussed and
explained thoroughly in chapter 4 of Kohavi [22]. This
algorithm is a generalization of Karnaugh maps devised
by Karnaugh [23] for small problems. It is not surprising
that the map method of Karnaugh is also an Ockham
algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

3

3. Proposed Methodology
The methodology of the proposed technique is divided
into four phases:

1. Get the data and construct a Truth Table
2. Form Winning Rules - Using algorithms by

Quine [18, 19] and McCluskey [20, 21]
3. Filter outliers and non-efficient elements
4. Check for main effects and effects of all pairs of

combinations.

The first phase involves getting the data inverting the
non-binary data into binary data constructing the Truth
Table. Getting the data may involve sampling. The Truth
Table tells us what combinations have proven successful,
and what combinations have been failures.
The second phase forms rules by describing the Truth
table as compactly as possible. This is done by adjusting
an algorithm by Quine [18, 19] and McCluskey [20, 21]
that minimizes logical functions in general.
The third phase, is implementing a filter based on the
Pareto principle to eliminate inefficient rules from phase
2.
The fourth phase, checks for rules that cover many
instances, but may have been rejected in step 2 due to
exceptions or lack of data.
Each of the phases would be discussed in more details
below.

3.1 First phase: Truth Table Construction
The purpose of this step is to classify the observed data
records into one of two groups (success or failure). If the
data is coming from a mechanical or digital system where
the same inputs always result in the same output the first
phase is fairly simple:

Phase I for a fully determined system

Stage 1: Get the data
Stage 2: Process the data into dichotomous values
(using a threshold when necessary).
Stage 3: Construct a truth table

Missing combinations in the data are spots of uncertainty
and in typical conservative treatment should be
considered as losing combinations (just to be on the safe
side). Table 1 is an illustration of a very simple truth
table.
The described process in Table 1 is deterministic, but in
many cases the process or the system may be stochastic.
For example consider purchase of a product, human
reaction, and most business phenomena – for each
process/phenomenon - repeating the same input may
result in different output reaction.

Table 1. Truth table for the rule:

 (if X=0 and Y=0 Then Z=1) or in short: X'Y'

Input Output
X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

When such a non-deterministic system is involved, some
preparatory stage must precede the construction of truth
table, and the procedure is altered as follows:
Phase I for a system with uncertain response

Step 1: Get the data
Step 2: Process the data into dichotomous values
(using a threshold
 when necessary)
Step 3: Construct a frequency table with the
following fields: Binary combination, # successes, #
failures, and
% successes: # successes / (# successes + # failures)
Step 4: Classify Winning binary combinations of data
using threshold values of:
 "% successes" and "# successes".
Step 5: Construct truth table

3.2 Second Phase: Minimizing The Boolean
Function
The truth table holds every combination that was
classified as a success. For k dichotomous attributes, the
truth table has 2k entries. This is a very long and
inefficient way of describing the rules of success or
failure. Moreover, it grows exponentially. We need better
rules that will capture the common features of large
groups of combinations. Like other methods, the
proposed method is based on Ockham's razor philosophy:
The most likely hypothesis is the simplest that is
consistent with all observations." (See section 2: Related
Literature.) Thus, an Ockham type algorithm by Quine
[18, 19] and McCluskey [20, 21] is adopted by the
authors. This algorithm comes from the realm of digital
design and when applied to the truth table it generates
minimal Boolean function of that table. Minimal Boolean
function of a truth table is a function that describes the
table using minimal number of terms. Minimizing
Boolean functions is an Ockham algorithm since minimal
Boolean function is by definition the simplest function.
Minimizing Boolean functions include the pursuit of
powerful rules with fewest variables as possible. This
could be explained in a more intuitive way as follows:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
www.IJCSI.org

4

Suppose for example, that we seek combinations of
characteristics that are associated with lung patients that
developed cancer. Furthermore, suppose that all these
combinations contain cigarette smokers and there are
only very few smokers without cancer. Classifying
smoking as the rule for cancer is the most efficient rule in
this case. Smoking is one variable. Rules based on a
single variable are the most efficient way to describe
large groups. In general rules with pair of variables are
less efficient then rules with one variable since they
cover fewer success combinations. Rules with three
variables cover less combinations then rules with two
variables, and so on. In general, the rule is stronger and
more efficient when it contains fewer variables.
In the early days of digital design, logical variables were
constructed using physical gates and vacuum bulbs.
Digital designers were struggling to minimize the cost of
representing a truth table. The only way to do this was to
minimize logical functions. While small functions with
up to 5 variables were minimized using the prevalent
Karnaugh maps [23], the algorithm for the general case is
much less known and combines two algorithms: the first
by Quine [18, 19] and the second by McCluskey [20, 21]
into one framework. The framework and the details of
the algorithm along with examples and discussion are
presented in Kohavi [22].

3.3 Third Phase: Filtering rules
The result of phase two is a set of rules that exactly
matches the original truth table. While this is much more
compact then a truth table, it still may have quite a few
specific rules for isolated cases. Like most real world
systems, the Pareto rule holds in this case. Namely, 20%
of the rules describe 80% of the success cases. Moreover,
the desirability of keeping a rule that describe less then
1% of the cases is usually low enough to ignore this rule
altogether. This brings us to the third phase where non
desirable rules are filtered out.

All we have to do for the third phase is to set a level
of rule acceptance. Say we chose the rule acceptance
level to be 5%, then any rule that does not describe at
least 5% of the cases is filtered out.

While the third phase filters out inefficient rules, it
may happen that a very efficient rule with only one or
two variables has not been revealed so far. For this to
happen it is enough that one combination (or more)
belonging to the rule is missing, or was not recorded by a
mistake. These cases are treated in the fourth phase.

3.4 Fourth Phase: Checking for Main and
Secondary Effects
Main effects are rules of a single variable (that is, a
single attribute). Effects of pair of attributes are
secondary effects.

Many efficient rules could be missing due to missing
data and exceptions. The fourth phase is checking for
such cases and amends them. This phase is relatively
simple. Checking for main effects requires only that we
collect for each variable: (1) the % of successes when the
variable is one, and (2) the % when the variable is zero.
Exceeding a predetermined percentage (e.g., 95%
successes when the variable is 1) would inaugurate a new
rule (with the predetermined of at least 95% accuracy).
We also check for every pair of variables and their
success/failure percentage. Note that the complexity of
checking combinations grows immensely and that the
power of the resultant rules drops significantly with the
growing number of attributes. It is therefore that we do
not recommend going beyond pairs for this brute force
enumeration.

4. Case Study
The purpose of the case study is to illustrate the stages of
the proposed methodology. Due to the obvious space
constraints, a small case study is chosen. Thus, a major
advantage of the third phase (dealing with many
attributes) is bypassed. However, the case study
illustrates all the other important points.

In this case study we are trying to characterize
the type of project managers that lead their project to a
success.

4.1 Phase I
However, Between the indicators that characterize
human personalities it is very convenient for our case
study to adopt the model by Gustav Jung [24] based on
four dichotomies. These four dichotomies are answers to
the four questions: (1) Where do you focus your
attention? (2) In what way do you take in information?
(3) In what way do you make decisions? (4) Hoe do you
deal with the outer world? [25]

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

5

The answers to these questions are described on
dichotomous scale:
1. Extraversion vs. Introversion
2. Sensing vs. Intuition
3. Thinking vs. Feeling
4. Judging vs. Perceiving

We shall use the following definitions:
E=1 if a candidate is Extravert, and zero otherwise.
S=1 if a candidate is Sensing, and zero otherwise.
T=1 if a candidate is Thinking, and zero otherwise
J=1 if a candidate Judging, and zero otherwise.

Phase I aims at constructing the truth table. Since
we have k=4 dichotomous attributes we have 24=16
possible combinations. The case study database
consisted of records of successfully completed projects
of a large consulting (undisclosed) company and their
managers. Successful project is defined as one that was
completed on time, on budget and within specifications.
The managers were asked to take a short Myers Briggs
test to reveal their four dichotomies. For each
combination of traits, the number of successful projects
is counted and percentage is calculated in Table 2. Next
step is to extract rules (classify the "successful" binary
combinations) using threshold values of "% successes"
and "# successes".

In case of total randomness, each of the 16
combinations would average 1/16 of the observations or
close to 6.25% of the cases. Therefore, the threshold
should be set higher than that. In the case study we set
the threshold at 7% (or 70 observations). Setting the
threshold is somewhat arbitrary decision based on the
analyst discretion. However, in many cases the Pareto
rule may work, where we set the threshold to
differentiate between the higher 20% (or so) and the rest
of the pack.

The following truth table (Table 3) is calculated by
simply converting all values in the right side of Table 2
that are under the threshold to zero and those above the
threshold to one (remember that the threshold is 7%).

4.2 Phase II: Extracting Rules
The aim of this stage is to form rules based on the truth
table. We applied the method by Quine [18, 19] and
McCluskey [20, 21] to get the following rules: (The
method is explained thoroughly in Kohavi [22].) Project
managers of successful consulting projects are
characterized by the following combinations:
1) Extravert, Thinking
2) Extravert, Sensing, Perceiving

The mathematical notation for the rules is based on initial
letters of the dichotomous fields: For example, E=1
means extraversion, and E=0 means introversion.

This may be written for short as E=Extraversion, and for
the other fields: S=Sensing, T=Thinking, J=Judging.
Also, we use ∪ for Boolean "or" and ∩ for Boolean
"and".

Table 2: Success frequency table for all combinations

%

success

Binary combination

Number
of

Judging
Perceive

Thinking
Feeling

Sensing
iNtuition

Extravert
Introvert

Success-
-ful
Projects 1=J 1=T 1=S 1=E

 0=P 0=F 0=N 0=I

0.2% 2 0 0 0 0
0.1% 1 1 0 0 0
0.6% 6 0 1 0 0
1.6% 16 1 1 0 0
0.5% 5 0 0 1 0
2.7% 27 1 0 1 0
3.2% 32 0 1 1 0
3.1% 31 1 1 1 0
1.0% 10 0 0 0 1
3.6% 36 1 0 0 1
10% 102 0 1 0 1
18% 180 1 1 0 1

4% 40 0 0 1 1
14% 140 1 0 1 1
20% 202 0 1 1 1

17% 170 1 1 1 1

 Total

100% 1000 8 8 8 8

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
www.IJCSI.org

6

Writing the letter means that its value is one, adding the
apostrophe (') to the letter means that its value is zero.
For example, "E" to represents E=1, adding 'the
apostrophe (') as in "E' " represents E=0. Thus, the rule
is:
Y = (E∩T) ∪ (E∩S∩J).

It is customary to replace ∪ by the "+" sign and treat ∩
as a multiplication resulting in:

 Y = (E∩T) ∪ (E∩S∩J) = ET+ESJ (1)

Table 3: Truth Table for Table 2 (with Threshold of 7%)

Result

Binary combination

Judging
Perceive

Thinking
Feeling

Sensing
iNtuition

Extravert
Introvert

1=success
0=Failure 1=J 1=T 1=S 1=E

 0=P 0=F 0=N 0=I

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 1 0 1 0
0 0 1 1 0
0 1 1 1 0
0 0 0 0 1
0 1 0 0 1
1 0 1 0 1
1 1 1 0 1
0 0 0 1 1
1 1 0 1 1
1 0 1 1 1

1 1 1 1 1

Since this is a relatively small problem (with k<6) the
same results of the Quine & McCluskey algorithm
could be achieved and verified graphically using a
Karnaugh map (see figure 1). Karnaugh map is a
graphical tool for minimizing Boolean functions.
Karnaugh map is composed of a matrix, in which each
entry corresponds to a single combination. The value of
each entry is binary (1 or 0, for success or failure).

Forming the matrix starts with splitting the binary
attributes of the problem into two separate groups: a
variable group for the columns and the rest of the
attributes for the rows. For example, in figure 1, four
binary attributes: E, S, T, J are divided into E, S for the
columns, and T, J for the rows. Each column
corresponds to a single combination of values of E and
S (one of: 00,01,10,11).

Each row in figure 1 corresponds to a single
combination of values of T and J (one of: 00,01,10,11).
Y=ET+ESJ =

(1) Extravert, Thinking Or
(2) Extravert, Sensing, Judging.

ES' ESE'S E'S'

1101 00

Fig. 1 Karnaugh map for the case study. The circles corre
rules.

The value of each entry in the Karnaugh map
1) is the result (success/failure) of
combination formed by the column and the
example, the upper left corner has the fir
corresponding to E'S'=00, and first row corres
to T'J'=00. So the upper left corner entry corr
E'S'T'J'=0000. Its value is zero correspon
failure. As another example, the lower rig
corresponds to ES'TJ''=1010 and its v
represents a success. The column and
combinations are ordered in the map so tha
any pair of neighboring columns (or rows) th
be only one change of one field (bit).
For example, between (0,0) and (0,1) there
change. An example for an illegal adjacenc
and (1,0) since there are two bit changes be
two.
 Circling the largest groups of "1" that cover
and nothing but the "1" give the desired
example, circling the four "1" on the bott
corner, corresponds to the common values of

0 0 0 00 T'J'

1 0 0 01 T'J

1 0 0 11 TJ

1 0 0 10 TJ'

ESJ
 ET

10

spond to the

 (in figure
the value
 row. For
st column
ponding

esponds to
ding to a
ht corner
alue "1"
row state
t between
ere would

is one bit
y is (0,1)
tween the

all the "1"
rules. For
om- right
 all entries

0

0

1

1

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

7

in this group: in this case E=1, T=1. (E∩T). The circled
groups (rules) can only have 2 or 4 or 8 entries and
fully contained circles are dominated by the bigger
group which is also the more general rule.
It is therefore, that Karnaugh maps could handle only
up to 5 of attributes (for more on Karnaugh maps see
Kohavi (1978)). Note that the method of Quine and
McCluskey minimizes the binary function in the
general case for any number of attributes.

4.3 Phase III: Filtering Out Rules
The filtering procedure is described using the following
procedure:
I. Make a list of the rules, compute their corresponding
percentage of the original success cases:
A. original successes:
P(ET)= 10%+18%+20%+17% = 65%, (2)

 P(ESJ)=14%+17%=31% (3)

Total_Successes = P(ET)+P(ESJ)-P(ESTJ) =
AC+ABC'D=65%+31%-17% = 79% (4)

B. Percent of the original successes:
 ET: 65/79=82% (5)

 ESJ: 31/79=39% (6)

II. Sort the list by the percentage (The case study is too

small, so it is sorted already).
III. Set the coverage level - the percentage of successes

that you like to describe with rules.For illustration,
we shall describe two cases: (1) coverage of 80% and
(2) 90%.

IV. Follow the steps of the loop below:
A) From the remaining rules, choose the rule with

greatest percentage.
B) Increase the "Success Coverage" by the chosen

rule percentage.
C) Reduce the percentage of the remaining rules by

their overlap with the chosen group of rules.
D) If the "Success Coverage" exceeds the threshold

from step III - Stop;
Otherwise delete the chosen rule from the list of

remaining rules and go to A.
For example:

• The ET rule satisfies the threshold of 85% (it
covers 82%>80% of the successes)

• The ET rule is not enough for the 90% threshold
(82%<90%). We choose the next rule ESJ and we
reach a coverage of 100% of the successes (which
must be satisfactory).

4.4 Phase IV: Main and Secondary Effects
To In this phase we revisit sequentially the percentage of
cases for each attribute or pair of attributes and decide
which of them may have been ignored due to minor
inconsistencies that can be tolerated. The case study is
used for illustrating the fourth phase.
A. Revisiting the main effects

Since there are four attributes in the case study there
are eight rules of single attribute to consider: E, E, S, S',
T, T', J and J' (explicitly: E=1, E=0, S=1, S=0, T=1, T=0,
J=1, J=0).

For example, consider the rule E meaning E=1
(Extravert) in our case study. From Table 2 this rule
covers: 878 cases (87.8% of the population). However,
this rule is inconsistent with the following entries in
Tables 3: ES'T'J', EST'J', ES'T'J. So using the rule E=1
(Extravert), have the following probability of error (using
Table 1, and "#" to replace the word "number"):
P(Added Error) =

= (Deviation from expected #)/(expected #)

Deviation = (Expected #)-(ES'T'J', EST'J', ES'T'J cases)
Expected # = (3 cases)(total/2k)) = 3*(1000/16)=187
cases.
ES'T'J', EST'J', ES'T'J cases = 86 cases
So,
P(Added Error) = (187-86)/187 = 54%. (7)

The overall error is the added error multiplied by its

weight: (3/8)*(0.54)+(5/8)*(0)= 20%
In general the probability of error has to be weighed

against the simplicity it brings (i.e. the number of rules it
saves. In this case it saves one rule by replacing the two
rules: ET, ESJ. So we have to weigh adding 20% error
against saving one rule. These computations and decision
repeat for all 8 potential rules.

B. Revisiting effects of all attribute pairs
Since there are four binary attributes (E,S,T,J) in the case
study we have to consider the following 24 pair
combinations: ES, E'S, ES', E'S', ET, E'T ET', E'T', EJ,
E'J, EJ', E'J', ST, S'T, ST', S'T', SJ, S'J, SJ', S'J', TJ, T'J,
TJ', T'J'.

ET is already part of the rules. For each pair, the
computations are analogous to the computations of the
single attribute.

For example, consider the rule EJ for the case study.
Like all rules of attribute pairs it has four combinations:
1. ESTJ, meaning E=1,S=1,T=1,J=1 -included in Table 3
2. ES'TJ, meaning E=1,S=0,T=1,J=1 -included in Table 3
3. EST'J, meaning E=1,S=1,T=0,J=1 -included in Table 3
4. ES'T'J, meaning E=1,S=0,T=0,J=1 -Not included

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
www.IJCSI.org

8

For the added ES'T'J, the probability rule of added error
is (using "#" to replace the word "number"):
P(Added Error) =

=(Deviation from expected #)/(expected #)
Expected # = (total/2k)) = (1000/16) = 62 cases.
Deviation = (Expected #)-(ES'T'J cases)=
= 62-36 = 26 cases
P(Added Error) = 26/62 = 42%. (8)

The overall error is the added error multiplied by its
weight: (1/4)*(0.42)+(3/4)*(0) = 10.5%
If rule EJ replaces ESJ the only gain from the
replacement is the ability to ignore attribute S (Sensing).
The decision maker have to decide whether to ignore
Sensing and have 10.5% error probability, or to eliminate
this error probability by considering the Sensing.

5. Complexity as a Function of the Number
of Attributes
Let us define k as the number of attributes in the problem.
As the problem becomes bigger, k grows and the
consequences are as follows:
• In phase 1: The number of combinations (rows in the

truth table) is 2k. This is an exponential growth.
• In phase 2: If k>5 Karnaugh map can no longer

describe it. Instead, the Quine and McCluskey
algorithm must be applied. However, the complexity
of Quine and McCluskey algorithm grows
exponentially with k.

• In phase 3: As k grows the number of rules grows
considerably, and filtering out rules becomes more of
an issue. When it comes to human decision, too many
rules complicate things, and we may be willing to
trade the exactness of describing successes for
simplicity.

• In phase 4: The number of single attribute
computations is 2*k (each of the k attributes can be
either 1 or 0). The number of attribute pair
computations is the multiplication of all the value
combinations of the pair (22) by the number of pairs:

(k-1)+(k-2)+…1 = ((k-1)*k)/2.
For example, in 4.4.2 above, the number of pairs is:
 (22)*((k-1)*k)/2 = 4*((4-1)*4)/2 = 4*12/2 = 24 (9)

Overall, the number of computations is proportional to k2
(O(k2)). However, each single computation directly
depends on the number of combinations and thus, grows
exponentially with k.

6. Conclusions

This paper presents an approach for finding the
binary combinations leading to a specified result. The
approach is based on four phases and utilizes the fact that
some data could easily be transformed into binary data as
done in the first phase. In the second phase, we minimize
the Boolean function. The third phase filters out
superfluous outliers of the second phase, and the fourth
phase appends missing combinations missing from the
second phase. While the example in this paper is small,
the method is very efficient with much larger systems.

References
 [1] B. Baesens, R. Setino, C. Mues, J. Vanthienen, "Using

Neural Network Rule Extraction and decision tables for
credit-risk evaluation", Management Science, Vol. 49, No.
3, 2003, pp. 312-329.

[2] A. Steenackers, M. J. Goovaerts, "A credit scoring model
for personal loan, Insurance", Math Economics, Vol. 8,
1989, pp. 31-34.

[3] R. Andrews, J. Diederich, A. B. Tickle, "A survey and
critique of techniques for extracting rules from trained
neural networks", Knowledge Based Systems, Vol. 8, No.
6, 1995, pp. 373-389.

[4] T. Mitchell, "Decision tree learning", in T. Mitchell,
Machine Learning, McGraw-Hill, 1997, pp. 52-78.

[5] S. Russell, P. Norvig, J. F. Canny, J. Malik, and D. D.
Edwards, Artificial intelligence a modern approach,
(Prentice Hall Series in Artificial Intelligence). Englewood
Cliffs, NJ: Prentice Hall, 1995.

[6] P. Winston, "Learning by building identification trees", in
P. Winston, Artificial Intelligence, Addison-Wesley
Publishing Company, 1992, pp. 423-442.

[7] J. R. Quinlan, "Induction of decision trees", Machine
Learning, Vol. 1, 1986, pp. 81-106.

[8] J. R., Quinlan, C4.5 programs for machine learning,
Chambery, France: Morgan Kaufman, 1993.

[9] K. Chelst, "Can't See the Forest Because of the Decision
Trees: A Critique of Decision Analysis in Survey Texts",
Interfaces, Vol. 28, No. 2, 1998, pp. 80-98.

[10] N. Capon, Credit scoring systems, a critical analysis,
Journal of Marketing, Vol. 46, 1982, pp. 82-91.

[11] S. Viaene, D. A. Derrig, B. Baesens, G. Dedene, A
comparison of state of the art classification techniques for
the auto-mobile insurance claim fraud detection, The
Journal of Risk and Insurance, Vol. 69, No. 3, 2002, pp.
373-421.

[12] P. D. Allison, Logistic Regression Using the SAS System:
Theory and Application, Cary, NC: SAS Institute, 1991.

[13] P. D. Allison, Survival Analysis Using the SAS System: A
Practical Guide. 1995, Cary, NC: SAS Institute

[14] W. H. Greene, Econometric Analysis (Fourth edition).
Prentice Hall,2000.

[15] S. J. Long, and J. Freese, Regression Models for
Categorical Dependent Variables Using STATA, College
Station, TX: STATA Press, 2001.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

9

[16] S. J. Long, Regression Models for Categorical and Limited
Dependent Variables. Advanced Quantitative Techniques in
the Social Sciences. Sage Publications, 1997.

[17] H. J. William, and O. J. Berger, Ockham's razor and
Bayesian analysis, American Scientist. Vol. 80, No. 1,
1992, pp. 64-72.

[18] W. V. Quine, The problem of simplifying truth functions,
American Mathematics Monthly, Vol. 59 No.8, 1952, pp.
521-531.

[19] W. V. Quine, A way to simplify truth functions. American
Mathematics Monthly, Vol. 62 No.9, 1955, pp. 627-631.

[20] E. J McCluskey, Minimization of Boolean functions, Bell
System Technical Journal, Vol. 35 No. 6, 1956, pp.1417-
1444.

[21] E. J. McCluskey, and H. Schorr, "Essential multiple-output
prime implicants in mathematical theory of automata",
Proceedings of the Polytechnique Institute Brooklyn
Symposium, Vol. 12, 1962, pp. 437-457.

[22] Z. Kohavi, Switching and Finite Automata Theory (2nd
ed.), McGraw Hill, 1978.

[23] M. Karnaugh, "The map method for synthesis of
combinatorial logic circuits", Transactions of AIEE, Vol.
72 No. 9, 1953, pp. 593-599.

[24] C. G. Jung, Psychological types (Collected works of C. G.
Jung, volume 6). (3rd ed.). Princeton, NJ: Princeton
University Press. (Translated from German), 1971.

[25] A. Furnham, "The big five versus the big four: the
relationship between the Myers-Briggs Type Indicator
(MBTI) and NEO-PI five factor model of personality",
Personality and Individual Differences, Vol. 21, No. 2,
1996, pp. 303-307.

Yuval Cohen received: PhD in Industrial Engineering (IE) from
the University of Pittsburgh in 1998, M.Sc. in IE 1992 from the
Technion (IIT), and a BSc. In IE in 1988 from Ben-Gurion
University.; He worked as an Industrial Engineer at Tefen-USA
during 1988 while finishing his PhD. He was a senior operations
analyst at FedEx Ground 1988-2002, A senior lecturer at the
open University of Israel 2002-Current; And A senior lecturer at
Afeka Tel-Aviv college of engineering since 2009. He wrote many
papers on various IE subjects. He is interested in operations
research and data mining and is a member of INFORMS and IIE.

.

	Introduction
	Related Literature
	Proposed Methodology
	First phase: Truth Table Construction
	Second Phase: Minimizing The Boolean Function
	Third Phase: Filtering rules
	Fourth Phase: Checking for Main and Secondary Effects

	Case Study
	Phase I
	Phase II: Extracting Rules
	Phase III: Filtering Out Rules
	Phase IV: Main and Secondary Effects

	Complexity as a Function of the Number of Attributes

