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Abstract

The stability and convergence of the neural networks are the
fundamental characteristics in the Hopfield type networks. Since
time delay is ubiquitous in most physical and biological systems,
more attention is being made for the delayed neural networks.
The inclusion of time delay into a neural model is natural due to
the finite transmission time of the interactions. The stability
analysis of the neural networks depends on the Lyapunov
function and hence it must be constructed for the given system.
In this paper we have made an attempt to establish the
logarithmic stability of the impulsive delayed neural networks by
constructing suitable Lyapunov function.
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1. Introduction

In recent year’s dynamic characteristics of the neural
networks has become a focal subject of intensive research
studies. Time delay is ubiquitous in most physical and
biological systems. In the case of information propagation
through a neural network, time delay has been
demonstrated to have a substantial influence on the
temporal characteristics of the oscillatory behavior of the
neural circuits. Jiang [14] proved that time delay can
induce multistability, desynchronization, amplitude death
and change of pattern in certain dynamical systems. Time
delay estimation has diverse application such as in the
radar, sonar, seismology, communication system and
biomedicine. Shaltaf [23] used constant time delay neural
networks to study classification, approximation of
nonlinear relation, interpolation and system identification.
The main objective of stability analysis is to find the
global exponential stability. It has been established that
the sufficient conditions are obtained for the existence and
global exponential stability of a unique periodic solution
of a class of neural networks with variable and unbounded
delays and impulses by using Mawhin’s continuous
theorem of coincidence degree theory and by constructing

Lyapunov function by Yongkun Li [32]. Global
exponential stability and periodic solution of Cohen-
Grossberg neural networks with continuously distributed
delays have been vividly analysed by Li, Y.K [16]. In
most situations the delays are variable and unbounded.
These types of delay terms suitable for practical neural
networks are called unbounded delays. The similar results
are also reflected in the studies of [9], [4], [7], [34], [33].
The neural networks can be classified by two categories
that are either continuous or discrete but the neural
network having not purely continuous or discrete is said to
be impulsive neural networks. The characteristic of
impulsive neural network is studied by [11], [10], [3],
[20], [19].

In the present paper we have made an attempt to study
the logarithmic stability of neural networks of periodic
solution of a class of neural networks with impulses. The
delays used in the neural networks are variable and
unbounded. The sufficient conditions are obtained by
global logarithmic stability of unique periodic solution of
a class of neural networks with variable and by Mawhin’s
theorem of coincidence degree theory. With reference to
this, we determine the unbounded delays, impulses and
Lyapunov functions.

Though a lot of works on the stability analysis of
delayed neural networks have been made, but the recent
survey undertaken by Xu and Lam [24] on sufficient
stability of time delay has a great significance in this
direction. The delay dependent stability criteria for the
linear retarded and neural system with multiple delays
have been studied by Park [8] by employing Lyapunov
functional approach. More work on the stability analysis
on delayed neural system can be found in [13], [31], [30],
[15]. Yousefi and Lohmann [2] have studied the instability
of neural networks in similarity transformation based
model reduction method extend the modification of
different reductions methods.
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In a recent work Tan and Tan [25] have discussed the
exponential stability of neural network where they have
considered the variable coefficients and several time
varying delays for establishing the uniqueness of the
stability of neural networks using periodic activation
function with delays. In the high order recurrent neural
network Qiu [21] have studied the global stability with
time varying delay using bounded activation function.

The organization of the paper is as follows; following
the introduction we have used some notations, definitions
and results in 2" section. In section 3 the existence of
periodic solution are discussed. In section 4 the global
exponential stability of periodic solution are presented
while in section 5 global logarithmic stability of periodic
solution are depicted. Finally in section 6 present the
conclusion.

2. Preliminaries
The normal neural networks with variable and unbounded
time delays and impulses can be defined by integro-
differential equation

af,(x 1)
b, f (x, (t—

1]

7;(©))
%IMG‘9
i f, (xjo(s))ds

dw) —ﬂx(t)+z

H

(2.1)
t>0,t=t,,i=12.... n
AX; () = L (t)) = —raxi(t), 1=1,2, ...
and k=1,2,.n
Where AX; (t,) =X;(t, —x,(t,) are the impulses at
moments t,and 0 <, <t, < ...... is strictly increasing
sequence.
Such that limt, =+ oo
t—>o
Where xi(t) is the state of i neuron; i = 1, 2, ...n and n is
the number of neurons.
A, B, C are connection matrices and
8y 8y ay, b, Dby b,
_ 8y Ay 850 B= b, by... b,,
anl anz ann bnl bnz bnn

I =(Iy, Ip,....1,)" = constant input vector
f,(x)
f,(x)
f(x) =
f, (%)
f(x) is the activation function of the neurons
& e 0
0 a,.. O
D=
0 0.. a

Whereg;>0andi=1, 2, ...... n
The delays 0 < 7; <7 where ij=12,...
function.

kij :[0,00) > [0,0)(i, j=12,.n)  are

continuous on [0,0) and satisfy

n are bounded

piecewise

(P1) [logask y(s)ds = p; (), (i, j) =1.2,.n
0

Where p;;(«) are continuous function in [0,5),6 >0
and p;(0)=1

(P2) [ k,(s)ds =1

andj sk ds<+oo

andi,j=1,2,....n
The condition P1 implies condition P2.

Though X! (t, ) does not exist but x!(t, )= X-’(tk_)
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Though X/(t, ) does not exist but X!(t, ) = Xi'(tk’)
The initial condition in (2.1) is of the form x;(s) = ¢ (s),
s<0, ¢ is bounded and continuous on (- o, 0].

Let us assume that:

(A)The delays 0 < 7 < 7(i, ] =1,2,....n) are bounded

Function with periodic @ and a; >0,i=1,2,.n

(B) kij are the piecewise continuous function where i,j=1,2,..n
C)ffeCRR),j=12, ... n is Lipschitzian constant and
Lj >0,[f0)-f )<L x-y/forallx,y e R

(D)M; > 0 such that |fj(x)] < M; for j=1, 2,...n, XxeR where

M is a positive constant.

(E)There exist a positive integer m such that

tem =t W
vitk+m)=yx<lfork=1,2...nandi=1,2,.... n

(F) Hggtkgt (1— Yik ) i=1,2,...... n are periodic of @
Let the impulsive system
X' (O)=xO)Ft X1 (1)), ... X(t-T (), t £ L, , kK =1,2,..n

ana AX(X)],, = 1, (X(t)

where x € R", f: R x R" — R" is continuous.

(22)

k=1,2,... X('[;) and x('[l;) exist and x('[l;) = x(t) and
x(t)satisfies (2.2) in (o, ) and impulsive point t, situated in
(o,) is discontinuous.

Definition 2.1.

The periodic solution x*(t) of equation (2.1) is said to be
globally exponentially stable if there exist constants o > 0
and >0 such that

1%, (t)-x @)< Bl g—x*(t)]| e | for all t > 0,
where
4,(s)—x (t)

lp — x*(t)] = max su
1<i<n se(-,0)

To reduce the existence of solution of equation (2.1) for a

delay differential equation without impulses

YOyt 16— "3 ot TTo-rubty
+h, f; H (1_7jk)yj(t_7ij(t)) +G _wkij(t_s)fj

Oﬂk <t—Tij (t)

and f(t + w, X (t = TaD), ......X (X = (D))= f(t, X (t = 72)(1))

........ X (t—1a(1)))

L:R">R", k=1,2,....... are continuous
7; €([to, ),[0, 0)) are Lebesgue measurable periodic

function of period @ andt— 7; (t)> wast— «,i=1,2,...n.
and there exist a positive integer g such that

tk+q =+ w

|k+q(X) = |k(X) with tkeR

tir > b, liMyo t= 0

M)l =xE) At )

Forty=0(k=1,2,....)
O,o]ln{t}={t,t, ......  to}

Here t, is said to be a point of jumping.
Forany c > t,
Let r, =mininf{t—z, (t)}

I<i<n t>o

[Ta-7)y;)ds [+ [J@-) 1 t>0,i=12....n

0<t, <s O<t, <t
2.4)
with initial condition y;(t) = ¢i(t), t <0.
Theorem 2.1.
Let H (1_7/ik) and i=1,2,....n are periodic function
o<t <t
of w then

(i) Ify = (Y1 Y2, .....yn) is a solution of (2.4) then

x=| T Q= )¥areeeeeroom [1@=7a)¥ [isa
Oty <t 0t <t
solution of (2.1)
(DX = (X, vevenennn, Xn) is a solution of (2.1) then
y=| [T @-ya) X[ T Q=) %, |is
0<t, <1 O<t <t

Let PC_ is the set of functions ¢ : [r,, o] — R then these are realsg|ytion of (2.4)

valued absolute continuous in [ty, txs1] N (fs, ©).

So t, placed in (r;, o) may be discontinuous. So for any ¢ > 0 and fe . _ _ _
PC, a function x e ([r, =), R) denoted by X (t, o, ¢) is the solution oIPrOOf D As X H(l Yk )y'

(2.2) on (o, =) and it satisfying the initial condition
x(t) = (1), $(0) > 0, tefr, o]

Hence x(t) is absolutely continuous on each interval
(t, tes1) < (rs, o) and for any te [o, ],

(2.3)

O<ty <t

is absolutely continuous on the interval (ty, ty+1)
and forany t=t, k=1,2,...... then
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X= H (1_7/1k)y1’ """"" H (1_7/“k)y”

O<t <t <t <t
satisfy the system (2.1)
For every tye{ty}

X; (t;): lim H(1_7ij )Yi (t): H(1_7ij )Yi (tk)

k 0<t; <t 0<t; <t

Xi(tk)= H (1_7ij )yi(tk)

Xi (tk+ ) = (1_ Vi )Xi (tk ) (2.5)

Which proves (i).
Since x; (t) is absolutely continuous on each interval
(tk, tk+1) andk=1,2,....
Then
+ -1 +
Y, (tk ): I1 (1_7ij) X; (tk )

0<t; <t

:oslt:t[ (1_%1 EAR

Yi (tk_) = Oﬂl:t[(l_ Yii )_1 X; (tk_) =Y, (tk )

which implies y;(t) is continuous on [0, «) and also y;(t) is
absolute continuous on [0, %) and

y= H (1_7/ik)_1xi’ """ H(l_y“k)_lxn Is a

0ty <t O<ty <t
solution of (2.4).

3. Existence of Periodic Solutions

Now we will study the existence of periodic solution by
Mawhin’s continuation theorem.

Let X, Y are real Banach spaces.

L: Dom L < X — Y is a linear mapping.

N: X — Y is a continuous mapping.

The mapping L is said to be Fredholm mapping of index
zero.

DimKer L = condimImL < o0 and Im L is closed in Y and
there exist continuous projector P : X — X and Q:Y—Y
such that Im P = Ker L, Ker = Im(I-Q)

SO L |pomt Mkerp: (I = P) X — ImL is invertible.

Hence we denote the inverse of mapping by Kp. If Q is an
open bounded subset of X then the mapping N is said to

be L-compact on Qif QN (ﬁ) is bounded and Kp(l — Q)

N: QQ — X is compact.

Since Im Q is isomorphic to Ker L, there exists an
isomorphism J: ImQ — Ker L. In order to prove the
existence we required the following lemma.

Lemma 3.1.

Let Q — X be an open bounded setand let N: X — Y be a

continuous operator and it is L-compact on {2 .
(i)for each A€ (0, 1), x € 0 Q m DomL, Lx #ANX
(ii)for each xoQ m Ker L, QN x = 0 and

deg (JON, Q n KerL, 0) =0

So, Lx = Nx has at least one solution in €2 ~ DomL
Theorem 3.1.

Let (A), (B), (C), (D), (E), (F) hold then the system (2.1)
has at least one @ periodic solution.

Proof: Now our aim is to prove the non-impulsive delay
differential system (2.4) has a @ periodic solution. By
continuation theorem of coincidence degree theory.
X=Z={xx{t) e CRRM:x({t+w)=x(),teR,

X = (X1, Xo, v Xn) '}
n

Xl =2 [,

k=1

X |, = sup|x (®)], k =1,2,......n
te[O,(u]

with the norm

X, Z are Banach spaces
W
LetLy=x"and P, =_L x(t)dt, x € X

Q, :Lw z(t)dt, z € Z and N,=(Gy(t),

Ga(t),....Ga(t)"yeX
SoKerL={y|ye X,y=h,heR"}

ImL = {x | x € X, J.OW X(s)ds =0} and

dim KerL =n=codim Im L

Itis clear that Im L is closed in Z and L is a fredholm
mapping of index zero. So P and Q are continuous
projectors satisfying
ImP=KerLandImL=KerQ=Im(I-Q)

Hence K, : ImL —> Ker P domL of L has the form

t 1 et ot
Ke(Z) = L Z(s)ds— — L J; Z(x)dsdt
Thus,

QN, :(lj'w G,(t)dt,...... ,lj'ow Gn(t)dt]T, yeX
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‘(s suppose that x (t) = (Xi(t), t(t),....... X(D))" € X is a
_[0 1(5) X solution of the equation (3.1) for »e(0, 1)
Integrating (3.1) over the interval [0, @], we have

and Ky (1 ~ Q)N = J‘;Gj.(s)ds [ ax(tdt=[" Og(l—%k)lil{% f{l_[(l—y,-k)xj (t)j

I; G”.(s)ds +; T, (qu (1_7 ,—k)X,- (t —Tjj (t))]

1 o 1 1)\ ew <t <t-Tj (t)
™ J'O IOGl(s)dsdt (———jfo G,(s)ds

® 2 6] ky(t=s)f, (] T@-r5)x @)sldt+1; T [@—r) *dlt
0<t,<s o<t <t
. ) (32)
3 _J- J-G ddt 3 (l—ljijj(S)dS Lettie[O a)];ét k=1,2,....m such
@ 2)° that X, (t.)_ sup x(t),i=12,..n.

teOa)

Then by equation (3.2) we have

1 I j G, (s)dsdt (l—%jfoan(S)dS
w _
Hence ON and Ky(I — Q)N are continuous and by Xi(ti)aB" Z.Lwol;lt(l_%k Z:l:au J(H( yjk)xj (t)J

— i Ost
Arzela Ascoli theorem QN (), Ky(I — Q) N (Q) are <

relatively compact for any open bounded set Q < X.
Therefore N is L-compact on Q for any open bounded +b” f] H (1_7/jk )Xj (t_Tij (t))
set Qc X. Osty <t-;(t)
So for a open bounded subset Q for the application of the
continuation theorem corresponding to the operator
equation Ly=ANy, L& (0, 1), we have f kn - S [H(l ik X d8:|dt+| fNH ~Yik dt}
)= -ax(0)s [10-4)° n
Ost<t _j H ~ Vi 1z[auf{]‘[(1—yjk)xj(t)J

n 0<t, <t j=1 o<t <t

Zlaij fj (H(l_ij)Xj ®)

j= 0t <t +o; f; H (1_ Yik )Xj (t-7; (t))

0ty <t=T;; (t)

" f{ I (1-y,.k>x,.<t—q,-<t>)]

O<t <t—;(t)

+ic, J:o k; (t—s)f, [ T1e-7,0%, (s)ds“ dt

0<t, <s

+¢, twkij(t—s)fj[H(l 7 (s ds]+Hl v T T2 ) "t

0<t, <s o<t <t 0<tk

(3.1
Wherex e Xandi=1,2, ....n
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b=max {|byl,i,j=1,2, ....n}

0<ty <t=T;; (t)
c=max {lcil, 1,j=1,2,. n}

So
- N ) n
xl(ti)z—a—[n(a+b+c)M+I]:—Ai,|:1,2, ....... n SIW TTa- 7)™ alf, [T0- 7, %,
i 0 o<t, <t I j=1 ! I0<tk<t :
(3.3)
Where
a=max {layl,i,j =1,2,...n} b, fi( I1 (1—7jk)xj(t—rij(t))J‘

0= 51320 QG I )

I=max {|l],i=1,2,...n} 0<t, <s

ds]

and N = max{ ( — Vi )dt 1=12,..... n} n H 7.k || |}exp ﬂa t)dt 1=12,...n

o<ty <t
o<t <t
Let( ) [O W] then
X; (t_.): t!BE)]Xi( )i=12,...n <N*[N(@a+b+c)M + I]J.:exp(/lait)dt =B,
Hence (3.5
N .
O L ) N [Therii=12...... n)}
(3.4) Ot <t

From equation (3.1) we have From (3, 4) and (3, 5) we have

‘ . Xi(t) exp (rait)< xi(ti) exp (Aait;) +
by t)erpliat ) “{Oﬂk}l‘”) [l wta]a

<Aexp(wa)+Bi=D;i=1,2,...... n

2131] fJ (H(l 7/Jk)X (t)) Since exp (Aait) =1 for e (0, 1), te [0, w] and x; (t) < D;,

Ot <t i=1,2,..........n, then from equation (3.3) and (3.5) we

get
+by fj[ [T a-rxt-7, (t))J X, (t)exp(2a;t)> x, (t_i)EXp(;fait_i)— OW (exp(2at)] | dt

0<ty <t-T; (t)

= -Aiexp (Wai)_Bi:—Dij,i:]., 2, ...,
+Gj ,tookij( _S)fi( H(l—ij)Xj(S)]ds] Hence xi (f) = - D;, i=1,2,.....n

0<t, <s

n
If A=) D, +E
where A is independent of L and Q = {x eX: || x(t) || < t}
+ H }/Ik eXp /Ia t) i=12,..n So Q satisfies the condition of Lemma 3.1.

0<t <t When X €0 Qn Ker L, X = (Xy, Xy,...... Xn)T is a constant
; vector in R" with || x || = A. Then
k

]
QNx:(%J:)Gldt ........ —J:)Gndtj ,XeX

Where

G =-ax +Ol<gt(1—%k)1§[aﬁ f j[ol;(l—mk)x,-)

[x (exp(za,t)] |
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oy fil T G-
Oty <t=T; (1)
+Gi mkij(t_x)fj H(1_7jk)xj S
O<t, <s
+ [[@-7) ™ ,i=12,.n
o<t <t

LetJ:ImQ > KerL,r—>r

If A is greater than x" JQN x < 0

soforx e o QnKerL,QNx=0

Letd (y:x)=—yx+ (1 -7v)JQON X

thenforx e QN Ker L, x" ¢ (¥,x) <0

So deg{JQON, QnKer L, 0} = deg{-—x, @ nKerL,0}=0

foreachx e 0 QKer L, QN x = 0 and

deg JON, Q nKerL,0)=0

Hence equation (2.4) has at least one @ -periodic solution

and system (2.1) has at least one @ periodic solution.
Before going to study the stability condition of

neural networks with time delay we have stating some of

the important results due to Mawhin [12] on coincidence

degree for perturbations of Fredholm mapping.

Proposition 3.1.

Let X, Z be a vector space, dom L a vector subspace of X

and L=domLc X > Z

a linear mapping. Its kernel L™(0) will be denoted by Ker

L and its range L (Dom L) by Im L.

Let P:X— X,Q:Z—Z be algebraic projectors such that the

following sequence is exact :

X—>domL—>Z—>Z

which mean that ImP=KerL and ImL=KerQ

If we define Lp:domLnKerP— ImL

as the restriction L|[domL~KerP of L to domL M Ker P,

then it is clear that Lp is an algebraic isomorphism we

shall define Kp : ImL — domL by K, = L'
Clearly, Kp is one-to-one and PKp =0

Therefore, on Im L,

LKp:L(l — P)Kp:Lp(l—P)Kp:Lpr:]. and, on dom L,
KpL=KpL(1-P)=KpLp(1-P)=1-P

Preposition. 3.2.
Let Coker L=Z/Im L be the quotient space of Z under the

equivalence relationz ~z' < z-2' € ImL

Thus, Coker L={z + ImL : z € Z} and we shall denote by
IT:Z — Coker L, z— z + ImL the canonical surjection.
Proposition. 3.3.

If there exist a one-to-one linear mapping A:CokerL—
Ker L then the equation Ly =y, y € Z is equivalent to

equation (I — P) x = (All+ Kp o) y where Kpg : Z — X is
defined by Kp o = Kp(l — Q).
More on this work refer Mawhin [12].

4. Global exponential stability of the periodic
solution

Suppose x*(t) = (x*1(t), X*5(t),........... x*,(0) " is a
Periodic of system (2.1). In this section some Lyapunov
functions are defined to study the exponentially stability
of this periodic solution.

Theorem 4.1.

Let A - F hold and

(i)There exist n positive constant & > 0, i = 1, 2,.....n such
that

n
ga,+ & (a,|+ by +[cy 1L, <0.i =1, 2,..n
j=1
(4.2)
(ii)The impulses operator I;(xi(t)), i = 1, 2,....n satisfy
L04(6) = =7 (it X; (1)), 0 <yu<Li= 1, 2,....n, ke Z*
Proof : We know that system (2.1) has an @ periodic
solution x*(t) = (XI (t), X;(t), ........ X:(t))T
Let x(t)=(x1(t),x2(t),...... X(1))" is arbitrary solution of

(2.1).1f ais o constant satisfying & > o > 0 such that for
i=1, 2,.....n then
n
T
é:i (_ a +a)+25iqaij‘+ea bij‘+‘cij‘pij (O‘))(j <0
j=1

(4.2)
Let y(t) = x(t) — x*(t) then the equation (2.1) becomes

dyi_(t)z_aiy +an:[a”g ( ))+b.,g (yj(t_rij(t)))

dt

+¢; _tw k;(t—s)g, (yj (s))] ds (4.3)

also Ayi(tk) =- Vikyi(tk)a i=12,..... n

and [yi(te + 0) = |1 — yid| yi(t) <] yi(t)l

where g(y(0) = fi06() — f, (X)) j =1, 2,
By assumption (C), we know that 0 <|gi(yi)| < Li lvil,

i=1, 2,.....n

The initial condition of (4.3) is y (s) = ¢(S) — x* (t)

Let the Lyapunov function V = (Vy, Vs, ...... V,)" defined
by Vi = e“|yi(t)], i=1,2,....n then from equation (4.3), we
get

avi(y)

at =e” sgny, {_ai Yi (t)+i[aijgj (yj (t))+bijgj (yj (t =T (t)))

Ky l-loy sl e
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e {(_ 2+l 0]+ 2Ly, 0]+
s)(yj(sjds}}
<(-a +a)<e y, X+an:L ﬂ IJHe Y, j
aTij(t) ' ea( ij )yj(t_z.u(t))‘
+‘cij‘ Lkij (t —S)ea(tfs) e Tyj(s)( ds} (4.4)
<(-a +al(t) ZLH a; |V, (t)

Vi (t -7 (0) +[c j_m ky (t— s je
Fort>0andt=#t.

Defining there curve p={w(l):w;=gl,1 >0,i=1, 2,...... n}
and theset Q(w) ={u:0<u<w,w e p}
Siw)={ueQ(w):ui=w;, 0<u<w}thenl>1,Q (w(l)

So the equation (4.3) is exponentially stable.

If there exist a constant B > 0 and o > 0, such that

ly® || < pe™| v || forall t>0and

fmax - maX{é: } gmm = mln{é:l}

1<i<n I<i<n

_(@+o)yl

’ émin
Then {|V| : [V| = €* |y(s)|, — 0 < s < 0} = Q (W(lg))
and |V; ()] = e* [yi(s)| < &ilg, —0<s<0,i=1,2,......n
so |Vi(t)| < &lp fort € [0, —0], 1 =1, 2, .......n
and if it is not true then there exist some i and t; (t; > 0)
such that |V; (ty)| = &ilo
D* Vi (t)] = 0 and |V; ()| < &lp for —o <t < t;,
j=1,2,.....n so from equation (4.4) we get

D*vi(tl){g —a,+a) ZKQ a|

afj]lo<0 (4.6)

‘bii Hyj (t-7 (t))‘ + ‘Cij U‘_too Ki (t-

+€

b, \

Vi(s)ds (45)

where ¢ > 0 is a constant.

+e“|b; ‘ + ‘cij ‘ pij
For t>0 and t # t
gives a contradiction

So |V, (t)] < &l for t>0,t#
and v, (t, +0)= em|yi (t, +O)| < eat|Yi (tk)| =V, (t,)
forkez”

and |y, (1) < Eloe ™ < (1+ )| S

min

,i=1,2..n

fort>0

where B = (1 + 6) ‘imax E_,min
Hence the periodic solution of system (4.3) is globally
exponentially stable.

5.Global Logarithmic stability of the periodic

solution

Theorem 5.1.If the theorem (4.1) holds then the system
(4.3) is logarithmically stable.

Proof:By assumption (C), we know that 0 < |g;(vi)I<Li |vil,
i=12,...n.

The initial condition of (4.3) is y(s) = ¢(s) — X*(t)

Let the Lyapunov function V=(V4,V,......V,)" defined by
V; = Logat |yi(t)], | =1, 2,.....n then from equation (4.3),

we get
+Zn:[aijgj(yj (t))+

%E(t) =logatsgny; {~a,y;(t) :
bij g j (yj (t - Tij (t)))

vy [ kgl —S)gj(yj(S))dS}}we“‘lyi (t)
< Logat{(— 8, +a)y, (t)|+gL,. [a, 1y, @)
OEAEEMO 3
ZLH.,He y,0)

+Logar; (t)‘bij‘l-oga( —Tjj Xt i( _Tij )|

+ley [

<(-a +a)V )+ z L [ay| v, )+ Logazly, |V, (t - 7, ()

+ ‘bij ‘ ‘yi (t

<(-a, +a)Logaty,(t)

it —s)Loga(t —s)Logazy, (s)‘ds] (5.1)

+ ‘cij U._too ki (t - s)(e“(“s) V, (s)ds‘ (5.2)
fort>0andt#t.
Defining the curve p={w(l):w;=&il1>0,i =1, 2,.......... n}

and the set Q(w) ={u:0<u<w, wep}
Si(w)={ue Q(w):ui=w;,0<u<w}then

1> 1, ow(l)) < i ).

So the equation (4.3) is Logarithmically stable.

If there exist a constant >0 and o>0, such that
Iy I <pe™ ||y forall t>0

and &, =Max{g | and &y, = min{g |

max d
I<i<n
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= @xollvl

émin
Where 6 >0 is a constant.
then {| V [:|V]| = logas | y (S) |, —o0< s <0} <O (wo(lo))
then |Vi(s)|= logass | v, (S)| < &ily, —0 £5<0,i=1,2,........ n
so| Vi (t)| < &l for tg[0, —0], ,i=1,2,........ n
and if it is not true then there exist some i and t; (t; >0)
such that | V,(tl) | = éiIO
D*|Vi(ty)[= 0 and |V;(1)[&il, for —o< t < t, j =1,2,....n
From equation (4.4) we get

D'V, (t,)< {gi(— a +0{)+Zn: K,(a, [+e“ |b;)

+ ¢ [ pij(a)&illo <O (5.3)
for t> 0 and t= ty gives a contradiction
So |Vi(t) | < &il, for t > 0,t =ty
and Vi(tk+0)=|agoct Iy,(tk+0) | g™ | y,(tk) | =Vi(tk) for KEZ+
and y; (t)|<&iloLog(—at)< (1+5)[[V || Smax Log (-at),
min
i=1, 2,....... n for t> 0 where = (1 +8) &max Emin
Hence the periodic solution of system (4.3) is globally
exponentially stable.
The following example explain the existence and stability
of neural network.
Example. 1.
Let us consider the Hopfield neural Network with time
delay
dv, (t)
Tdt —2.5 log 3ty(t) + 2g(y(t))+2.49(y.(t)-1)

t
+50 (2 (1) +1.50(2(0-1)+3 [ (t—1) gly(s))ds +3

where g(y(t))=log(3y(t) + 1), =3 fori=1
Using the above theorem through direct calculation we
have

% < (3+2.5)+{1.5+ 2.4 log (3y (t) +1)}+P;i(3)lle< & Io

for [;(3)l=] j log (log 3t +1)dt|=3 for y(t) = 3
0

for the finite value of t
dv,
E <6.5+2.4 log (3t+1)+3l,

which shows the network global logarithmic stable.

6. Conclusion

In this paper we have generalized the work of Youngkun
Li[32] to study the existence and global exponential
stability of Periodic solution of class of neural networks

and also studied the logarithmic stability of neural
networks. The sufficient condition generates the existence,
unique periodic solution and global logarithmic stability of
an equilibrium point by using Mawhin’s continuation
theorem.
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