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Geometric Programming Problem with Co-Efficients and
Exponents Associated with Binary Numbers

Abstract
Geometric programming (GP) provides a power tool for solving
a variety of optimization problems. In the real world, many
applications of geometric programming (GP) are engineering
design problems in which some of the problem parameters are
estimating of actual values. This paper develops a solution
procedure to solve nonlinear programming problems using GP
technique by splitting the cost coefficients, constraint
coefficients and exponents with the help of binary numbers.
The equivalent mathematical programming problems are
formulated to find their corresponding value of the objective
function based on the duality theorem. The ability of
calculating the cost coefficients, constraint coefficients and
exponents developed in this paper might help lead to more
realistic modeling efforts in engineering design areas. Standard
nonlinear programming software has been used to solve the
proposed optimization problem. Two numerical examples are
presented to illustrate the method.

Keywords: Geometric programming, Posynomial, Binary

number, Duality theorem, Optimization.

1. Introduction
Geometric programming (GP) a technique developed for
solving algebraic non-linear programming problems
subject to linear or nonlinear constraints is useful in the
study of a variety of optimization problems. Dufffin,
Peterson and Zener [8] put a foundation stone to solve
wide range of engineering problems by developing basic
theories of geometric programming and its application in
their text book. Geometric programming derives its name
from its intimate connection with geometrical concepts
because the method is based on geometric inequality and
their properties that relate sums and products of positive
numbers. The application of geometric inequality has
also been very useful in the construction of the
condensation technique for posynomial problems [21,
26]. The notion of a condensed posynomial problem is
introduced by Duffin [8] and from then, it has played an
important role in the method that they use to approach
the resolution to the problem from the primal
perspective. One of the remarkable properties of

geometric programming is that a problem with highly
nonlinear constraints can be stated equivalently as one
with only linear constraints. This is because there is a
strong duality theorem for geometric programming
problems. If the primal problem is in the posynomial
form then a global minimizing solution to that problem
can be obtained by solving the dual maximization. The
dual constraints are linear and linearly constrained
programs are generally easier to solve than ones with
nonlinear constraints. GP problem has a dual impact in
the area of integrated circuit design [4, 10, 20],
manufacturing system design [3, 8], project management
[28], maximization of long run and short run profit [18],
generalized geometric programming problem with non-
positive variables [34] and goal programming model [1].
Several algorithms due to Beightler and Phillips [2],
Fang et al. [9], Kortanek et al. [13], Peterson [22],
Rajgopal and Bricker [25] and Jhu and Kortanek [35]
strengthen the solution of complicated GPP for the exact
known value of the cost and constraint coefficients.
Sensitive analysis of various optimal solutions due to
Dembo [6], Dinkel and Tretter [7] and Kyparisis [15]
using GP technique simplifies certain engineering design
problem in which some of the problem parameters are
estimating of actual values [2]. Entropy based problem
due to Samanta and Mazumder [27] extend the
application of GP to variety of entropy based
transportation problem. In a recent paper Jana Mazumder
[11] applied GP techniques to solve the entropy
maximization problem and GP with Fuzzy parameters
due to Liu [19] accelerate the work in this direction. As a
few works on signomial geometric programming (SGP)
have been made, various authors are concentrating to
solve such problem. Some of the recent works due to
Shen et al. [29] and Shen and Zharg [30] are accelerating
to improve the global optimization algorithm for solving
certain SGP problems. As the engineering design
problems are complex in nature, the generalized GP
techniques have been applied to solve such problems.
Works on branch and pruning approach on GGP by Shen
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and Jiao [31], linearization method of global
optimization due to Shen [32] and Qu et al. [24] are some
of the recent applications for solving GP problems. The
monomial GP with fuzzy relation due to Shivanian and
Khorram [33] and maximum likelihood estimation
problem proposed by Lim et al. [16] are the most recent
works on GPP.

In this paper we restrict attention to posynomial
geometric programs and develop a solution procedure by
splitting the cost coefficients, constraint coefficients and
exponents using binary numbers. This result will provide
the decision makers with more information for making
better decisions.

The organization of this paper is as follows:
following introduction, mathematical formulations and
methodology for solving GPP with binary coefficients
have been discussed to find the objective value of the
problem in section-2. Transformation of the problem into
binary model has been discussed in section-3. Dual form
of GPP has been discussed in section-4. Some illustrative
examples are given in section-5 for understanding the
problems and finally in section-6 some conclusions are
drawn from the discussion.

2. Mathematical Formulation
A typical constrained posynomial geometric
programming problem is presented as follows:

Z = f0(x) =  C0t  xj
a0tj

subject to

fi(x) =  Cit  xj
aitj < 1,

i = 1,2,…, m (2.1)
xj > 0,  j = 1, 2,3, …, n.

The posynomial f0 (x) is an objective function
containing T0 number of terms where as the posynomial
fi (x), i = 1, 2, .., m  contains Ti terms with m inequality
constraints. By the definition of posynomial all the co-
efficients Cit,  i = 0, 1, 2, …, m  and  t  = 1, 2, …, Ti  are
positive and the exponents a0tj and aitj are arbitrary
constants. Writing the right hand side of the geometric
programming problem given by (2.1) in more general
form, we have

Z = f0(x) =  C0t xj
a0tj

subject  to

fi(x) =  Cit  xj
aitj < bi

i = 1, 2, …, m (2.2)
xj > 0,  j = 1, 2, …n.

where all bi are positive real numbers. If bi = 1
for all i then this modified geometric program becomes
the original one given by (2.1).

Since bi in the model (2.2) may not be equal to
constant 1 then dividing the constant coefficients Cit by
bi  i then it is transformed to the standard form

  Z = f0(x) =  C0t  xj
a0tj

subject  to

fi(x) =  Cit(bi)
-1
 xj

aitj < 1

i = 1, 2, …, m (2.3)
xj > 0, j = 1, 2, …n.

In this paper our aim is to solve the above problem by
splitting the coefficients and exponents of the variables
using binary numbers. In order to solve this problem it is
necessary to transform the problem to the standard
mathematical programming problem using corresponding
binary expressions. The following section explains the
detail procedure for converting the problem using binary
numbers in the different uses.

3. Transformation of the Problem into
Binary Model
The proposed GP given by (2.1) and (2.2) can be
reformulated by splitting any of Cot, Cit, and aitj to the 3 to
8 terms using binary numbers.
Case– 1: When Cot has 3 terms.

 Z=  (a1
t
 z1(1 – z2) + a2

t
 (1 –z1)z2

+ a3
t
 (1-z1) (1 – z2))  xj

aotj

subject  to

 (a1
t
 z1(1 – z2) + a2

t
 (1 –z1)z2

+ a3
t
 (1-z1) (1 – z2)) xj

aitj < 1

i = 1, 2,....,m (3.1)
z1 + z2 < 1 (3.2)

Case -2: When Cot  has 4 terms
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Z=  (a1
t
 z1(1 – z2) + a2

t
 (1 –z1)z2

+ a3
t
 (1-z1) (1 – z2)+ a4

t
z1z2) xj

aotj

subject to

 (a1
t
 z1(1 – z2) + a2

t
 (1 –z1)z2+ a3

t
 (1-z1) (1 – z2)

+ a4
t
z1z2) xj

aitj < 1, i = 1, 2, …., m (3.3)

z1 + z2 < 1 (3.4)
Case -3 : When C0t  has 5 terms.

Z =  (a1
t
 z1(1 – z2) (1 – z3)

+ a2
t
 (1 –z1)z2(1 – z3) + a3

t
 (1-z1) (1 – z2) z3

+ a4
t
 (1-z1) (1 – z2) (1 – z3 )

+ a5
t
z1z2 z3) xj

aotj

subject to

 (a1
t
 z1(1 – z2) (1 – z3) + a2

t
 (1 –z1)z2(1 – z3)

+ a3
t
 (1-z1) (1 – z2) z3+ a4

t
 (1-z1) (1 – z2)(1 – z3)

+ a5
t
z1z2 z3) xj

aitj < 1,

i = 1, 2, ….m (3.5)
z1z2(1 – z3) = 0 (3.6)
z2z3(1 – z1) = 0 (3.7)
z1z3(1 – z2) = 0 (3.8)
Case -4 : When Cot  has 6 terms.

  Z =  (a1
t
 z1(1 – z2) (1 – z3)

+ a2
t
 (1 –z1)z2(1 –z3) + a3

t
 (1-z1) (1 – z2) z3

+ a4
t
 z1z2 (1 – z3) + a5

t
z1z3(1 –z2)

+ a6
t
z2z3(1 –z1)) xj

aotj

subject  to

 (a1
t
 z1(1 – z2) (1 – z3) + a2

t
 (1 –z1)z2(1 –z3)

+ a3
t
 (1-z1) (1 – z2) z3+ a4

t
 z1z2 (1 – z3)

+ a5
t

z1z3(1 –z2)+ a6
t

z2z3(1 –z1))

 xj
aitj < 1, i = 1, 2, ….m (3.9)

z1z2z3 = 0 (3.10)
(1-z1) (1-z2) (1-z3) = 0 (3.11)
Case -5 : When C0t  has 7 terms

  Z =  (a1
t
 z1(1 – z2) (1 – z3)

+ a2
t
 (1 –z1)z2(1 –z3) + a3

t
 (1-z1) (1 – z2) z3

+ a4
t
 z1z2 (1 – z3) + a5

t
z1z3(1 –z2)+ a6

t
z2z3(1 –z1)

+ a7
t
(1 – z1) (1 – z2) (1 – z3))  xj

aotj

subject  to

 (a1
t
 z1(1 – z2) (1 – z3) + a2

t
 (1 –z1)z2(1 –z3)

+ a3
t
 (1-z1) (1 – z2) z3+ a4

t
 z1z2 (1 – z3)

 + a5
t
z1z3(1 –z2)+ a6

t
z2z3(1 –z1)

+ a7
t
(1 – z1) (1 – z2) (1 – z3))  xj

aitj < 1,

i = 1, 2, ….,m (3.12)
z1z2z3 = 0 (3.13)

Case -6: When Cot  has 8 terms.

 Z =  (a1
t
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t
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+ a3
t
 (1-z1) (1 – z2) z3+ a4

t
 z1z2 (1 – z3)

+ a5
t

z1z3(1 –z2)+ a6
t

z2z3(1 –z1)

+ a7
t
(1 – z1) (1 – z2) (1 – z3)

+ a8
t

z1z2 z3) xj
aotj < 1,

i = 1, 2, ….m (3.15)
z1z2z3 = 0 (3.16)

4. Dual form of GPP
Since model (2.2) is the conventional geometric

programming problem then it can be solved directly by
using primal based algorithm or dual based algorithm
[22]. Methods due to Rajgopal and Bricker [25],
Beightler and Phillips [2] and Duffin [8] projected in
their analysis that the dual problem has the desirable
features of being linearly constrained and having an
objective function with attractive structural properties
with more suitable solution. According to Duffin [8],
Beightler and Phillips [2] one can transform the program
of (2.2) into the corresponding dual geometric problem
as follows:

Z = ( )
w0t

 ( )
wit

( wit)
( wit)

 w0t =1 (4.1)

 aitj wit =0 , j = 1, 2, ……..n.  (4.2)

wit > 0 t, i. (4.3)
The model (4.1) is the useful dual problem and

it can be solved using the method relating to the dual
theorem.

5. Illustrative Examples
To illustrate the methodology proposed in this

paper for solving a GPP when splitting the cost
coefficients, constraint coefficients and the exponents of
the decision variables using binary numbers, a few
numerical examples are considered.

Example: 1

Let us consider the geometric programming problem

which has the following mathematical form:

z = cx1

p
+ +x1x2  (5.1)

subject  to ax1 + x2 < 1

x1, x2 > 0

Primal Solution
Case -1: Splitting c, p, a into 3 terms we have

min = c * x1  p + 3 / (x23)+x1* x2; (5.2)
a * x1 + x2 <= 1;
c = 5 * (1-z1) * (1-z2) + (1-z1) * z2

+ 3 * z1 * (1-z2) (5.3)
p=-(1-z3)*(1-z4)–3*(1-z3)*z4-2*z3*(1-z4) (5.4)
a=3*(1-z5)*(1-z6)+(1-z5)*z6+2*z5*(1-z6) (5.5)
z1 + z2 ≤ 1
z3 + z4 ≤ 1
z5 + z6 ≤ 1
Case–2: Splitting c, p, a into 4 terms we have

min = c * x1  p + 3 / (x2  3) + x1 * x2 (5.6)

a * x1 + x2 ≤ 1
c=5*(1-z1)*(1-z2)+(1-z1)*z2+3*z1*(1-z2)+4*z1*z2 (5.7)
p=-(1-z3)*(1-z4)–3*(1-z3)*z4-2*z3*(1-z4)-4*z3*z4 (5.8)
a=3*(1-z5)*(1-z6)+(1-z5)*z6+2*z5*(1-z6)+4*z5*z6 (5.9)
z1 + z2 <= 1
z3 + z4 <= 1
z5 + z6 <= 14
Case- 3 : Splitting c, p, a into 5 terms we have

min = c * x1  p + 3 / (x2  3) + x1 * x2  (5.10)
a * x1 + x2 <= 1
c=5*z1*(1-z2)*(1-z3)+z2*(1-z1)*(1-z3)+3*z3*(1-z1)*(1-
z2)+4*(1-z1)*(1-z2)*(1-z3)+6*z1*z2 z3 (5.11)
p=-z4*(1-z5)*(1-z6)–3*z5*(1-z4)*(1-z6)-2*z6*(1-z4)*(1-
z5)–(1-z4)*(1-z5)*(1-z6)-4*z4*z5*z6 (5.12)
a=3*z7*(1-z8)*(1-z9)+z8*(1-z7)*(1-z9)+2*z9*(1-z7)*(1-z8)
+5*(1-z7)*(1-z8)*(1-z9)+6*z7*z8*z9 (5.13)
z1 * z2 * (1-z3) = 0
z2 * z3 * (1-z4) = 0
z1 * z3 * (1-z2) = 0
z4*z5*(1-z6)=0
z5 * z6 * (1-z4) = 0;
z4 * z6 * (1-z5) = 0;
z7 * z8 * (1-z9) = 0;
z8 * z9 * (1-z7) = 0;
z7 * z9 * (1-z8) = 0;
Case -4: Splitting c, p, a into 6 terms we have

min =c*x1p+3/(x2  3)+x1*x2; (5.14)
a * x1 + x2 <= 1;

j=1

 n
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Cit bi
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m
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x
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c=5*z1*(1-z2)*(1-z3)+z2*(1-z1)*(1-z3)+3*z3*(1-z1)*(1-
z2)+4z1*z2*(1-z3)+6z1*z3*(1-z2)+2*z2*z3*(1-z1); (5.15)
p=-z4*(1-z5)*(1-z6)–3*z5*(1-z4)*(1-z6)-2*z6*(1-z4)*(1-
z5)–z4*z5*(1-z6)–4z4*z6*(1-z5)-5*z5*z6*(1-z4); (5.16)
a=3*z7*(1-z8)*(1-z9)+z8*(1-z7) *(1-z9)+2*z9*(1-z7)*(1-
z8)+5*z7*z8*(1-z9)+6*z7*z9*(1-z8)+4*z8*z9*(1-z7);

(5.17)
z1 * z2 * z3 = 0;
(1-z1) * (1-z2) * (1-z3) = 0;
z4 * z5 * z6 = 0;
(1-z4) * (1-z5) * (1-z6) = 0;
z7 * z8 * z9 = 0;
(1-z7) * (1-z8) * (1-z9) = 0;
Case-5: Splitting c, p, a into 7 terms we have

min=c*x1p+3/(x23)+x1*x2; (5.18)
a*x1+x2≤1;
c=5*z1*(1-z2)*(1-z3)+z2*(1-z1)*(1-z3)+3*z3*(1-z1)*(1-
z2)+4z1*z2*(1-z3)+6z1*z3*(1-z2)+2*z2*z3*(1-z1)+(1-z1)*
(1-z2)*(1-z3); (5.19)
p=-z4*(1-z5)*(1-z6)–3*z5*(1-z4)*(1-z6)-2*z6*(1-z4)*(1-
z5)–z4*z5*(1-z6)–4z4*z6*(1-z5)-5*z5*z6*(1-z4)-(1-z4)*(1-
z5)*(1-z6); (5.20)
a=3*z7* (1-z8)*(1-z9)+z8*(1-z7)*(1-z9)+2*z9*(1-z7)*(1-
z8)+5*z7*z8*(1-z9)+6*z7*z9*(1-z8)+4*z8*z9*(1-z7)+4*(1-
z7)*(1-z8)*(1-z9); (5.21)
z1 * z2 * z3 = 0;
z4 * z5 * z6 = 0;
z7 * z8 * z9 = 0;
Case-6: Splitting c, p, a into 8 terms we have

min=c*x1p+3/(x23)+ x1*x2;   (5.22)
a * x1 + x2 <= 1;
c=5*z1*(1-z2)*(1-z3)+z2*(1-z1)*(1-z3)+3*z3*(1-z1)*(1-
z2)+4*z1*z2*(1-z3)+6z1*z3*(1-z2)+2*z2*z3*(1-z1)+(1-z1)
*(1-z2)*(1-z3)+2*z1*z2*z3; (5.23)
p=-z4*(1-z5)*(1-z6)–3*z5*(1-z4)*(1-z6)-2*z6*(1-z4)*(1-
z5)–z4*z5*(1-z6)–4z4*z6*(1-z5)-5*z5*z6*(1-z4)-(1-z4)*(1-
z5)*(1-z6)–2*z4*z5*z6 ; (5.24)
a=3*z7*(1-z8)*(1-z9)+z8*(1-z7)*(1-z9)+2*z9*(1-z7)*(1-
z8)+5*z7*z8*(1-z9)+6*z7*z9*(1-z8)+4*z8*z9*(1-z7)+4*(1-
z7)*(1-z8)*(1-z9)+2*z7*z8*z9; (5.25)
z1*z2*z3=0;
z4*z5*z6=0;
z7*z8*z9=0;
Using Lingo Software we have found that the solution in
each case gives z=11.01098,c=1,p=-1,a=1,
x1= 0.2069792, x2 = 0.7930208.

Dual Solution
max =(1/w01)w01*(3/w02)w02*(1/w03)w03*(1/w11)
w11*(1/ w12)w12*(w11+w12)(w11+w12); (5.26)

w01 + w02 + w03 = 1;
-w01 + w03 + w11 = 0;
-3 * w02 + w03 + w12 = 0;
w01, w02, w03, w11, w12 > 0;

In this case we shall find z = 11.01098,
w01 = 0.4387805, w02 = 0.5463127,w03=0.1490681E – 01,
w11 = 0.4238737, w12 = 1.624031.

Example: 2
Let us consider the geometric programming

problem which has the following mathematical form:
Z = cx1+10x2+4x3+2x4 (5.27)

subject  to ax1

p
x4

-2
 + x2

2
x4

-2 ≤ 1
100x1

-1
x2

-1
x3

-1 ≤ 1
x1, x2, x3, x4 > 0

Primal Solution
Case-1: Splitting c, p, a into 3 terms we have
min=c*x1+10*x2+4*x3+2*x4; (5.28)

a*x1p*x4-2+x22*x4-2≤ 1;

100*x1-1*x2-1+x3-1≤1;
c=5*(1-z1)*(1-z2)+(1-z1)*z2+3*(1-z2)*z1; (5.29)
p=-(1-z3)*(1-z4)–3*(1-z3)*z4 -2*(1-z4)*z3; (5.30)
a=3*(1-z5)*(1-z6)+(1-z5)*z6 +2*(1-z6)*z5; (5.31)
z1 + z2 <= 1;
z3 + z4 <= 1;
z5 + z6 <= 1;
Case-2: Splitting c, p, a into 4 terms we have
min=c*x1+10*x2+4*x3+2*x4; (5.32)

a*x1p*x4-2+x22*x4-2≤1;

100*x1-1*x2-1*x3-1≤1;
c=5*(1-z1)*(1-z2)+(1-z1)*z2+3*(1-z2)*z1+4*z1*z2; (5.33)
p=-(1-z3)*(1-z4)–3*(1-z3)*z4-2*(1-z4)*z3-4*z3*z4; (5.34)
a=3*(1-z5)*(1-z6)+(1-z5)*z6+2*(1-z6)*z5+4*z5*z6; (5.35)
z1 + z2 <= 1;
z3 + z4 <= 1;
z5 + z6 <= 1;
Case-3: Splitting c, p, a into 5 terms we have
min=c*x1+10*x2 + 4 * x3 + 2 * x4; (5.36)

a*x1p*x4-2+x22*x4-2≤1;

100*x1-1*x2-1*x3-1≤1;
c=5*z1*(1-z2)*(1-z3)+z2*(1-z1)*(1-z3)+3*z3*(1-z1)*(1-
z2)+3*(1-z1)*(1-z2)*(1-z3)+5*z1*z2*z3; (5.37)
p=z4*(1-z5)*(1-z6)–3*z5*(1-z4)*(1-z6)-2*z6*(1-z4)*(1-z5)
-3*(1-z4)*(1-z5)*(1-z6)–2*z4*z5*z6; (5.38)
a=z7*(1-z8)*(1-z9)+z8*(1-z7)*(1-z9)+2*z9*(1-z7)*(1-z8)+
4*(1-z7)*(1-z8)*(1-z9)+3*z7*z8*z9 ; (5.39)
z1 * z2 * (1-z3) = 0;
z2 * z3 * (1-z4) = 0;
z1 * z3 * (1-z2) = 0;
z4 * z5 * (1-z6) = 0;
z5 * z6 * (1-z4) = 0;
z4 * z6 * (1-z5) = 0;

min :
x
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z7 * z8 * (1-z9) = 0;
z8 * z9 * (1-z7) = 0;
z7 * z9 * (1-z8) = 0;
Case-4: Splitting c, p, a into 6 terms we have
min=c*x1+10*x2+4*x3+2*x4; (5.40)

a*x1p*x4-2+x22*x4-2≤1;

100*x1-1*x2-1*x3-1≤1;
c=5*z1*(1-z2)*(1-z3)+z2*(1-z1)*(1-z3)+3*z3*(1-z1)*(1-
z2)+3*z1*z2*(1-z3)+z1*z3*(1-z2)+ z2*z3*(1-z1); (5.41)
p=z4*(1-z5)*(1-z6)–3*z5*(1-z4)*(1-z6)-2*z6*(1-z4)*(1-z5)
-2*z4*z5*(1-z6)-3*z4*z6(1-z5)–z5*z6*(1-z4) ; (5.42)
a= z7*(1-z8)*(1-z9)+z8*(1-z7)*(1-z9)+2*z9*(1-z7)*(1-z8)+
4*z7*z8*(1-z9)+3*z7*z9*(1-z8)+4*z8*z9*(1-z7);  (5.43)
z1*z2*z3=0;
(1-z1)*(1-z2)*(1-z3)=0;
z4*z5*z6=0;
(1-z4)*(1-z5)*(1-z6)=0;
z7*z8*z9=0;
(1-z7)*(1-z8)*(1-z9)=0;
Case-5: Splitting c, p, a into 7 terms we have
min = c * x1 + 10 * x2 + 4 * x3 + 2 * x4; (5.44)

a * x1  p * x4  - 2 + x2  2 * x4  -2 < = 1;

100 * x1  -1 * x2  - 1 * x3  -1 < = 1;
c=5*z1*(1-z2)*(1-z3)+z2*(1-z1)*(1-z3)+3*z3*(1-z1)*(1-
z2)+3*z1*z2*(1-z3)+5*z1*z3*(1-z2)+2*z2*z3*(1-z1)+(1-
z1)+(1-z1)*(1-z2)*(1-z3); (5.45)
p=-z4*(1-z5)*(1-z6)–3*z5*(1-z4)*(1-z6)-2*z6*(1-z4)*(1-
z5)-3*z4*z5*(1-z6)-2*z4*z6*(1-z5)–z5*z6*(1-z4)–(1-z4)*
(1-z5)*(1-z6); (5.46)
a=z7*(1-z8)*(1-z9)+z8*(1-z7)*(1-z9)+2*z9*(1-z7)*(1-z8)+
4*z7*z8*(1-z9)+3*z7*z9*(1-z8)+4*z8*z9*(1-z7)+4*(1-z7)
*(1-z8)*(1-z9); (5.47)
z1 * z2 * z3 = 0;
z4 * z5 * z6 = 0;
z7 * z8 * z9 = 0;
Case-6: Splitting c, p, a into 8 terms we have
min = c * x1 + 10 * x2 + 4 * x3 + 2 * x4; (5.48)

a * x1  p * x4  - 2 + x2  2 * x4  -2 < = 1;

100 * x1  -1 * x2  - 1 * x3  -1 < = 1;
c=5*z1*(1-z2)*(1-z3)+z2*(1-z1)*(1-z3)+3*z3*(1-z1)*(1-
z2)+3*z1*z2*(1-z3)+5*z1*z3*(1-z2)+2*z2*z3*(1-z1)+(1-z1)
*(1-z2)*(1-z3)+z1*z2*z3; (5.49)
p=-z4*(1-z5)*(1-z6)-3*z5*(1-z4)*(1-z6)-2*z6*(1-z4)*(1-z5)
-3*z4*z5*(1-z6)-2*z4*z6*(1-z5)-z5*z6*(1-z4)-(1-z4)*(1-
z5)*(1-z6)-2*z4*z5*z6 ; (5.50)
a=z7*(1-z8)*(1-z9)+z8*(1-z7)*(1-z9)+2*z9*(1-z7)*(1-z8)+
4*z7*z8*(1-z9)+3*z7*z9*(1-z8)+4*z8*z9*(1-z7)+4*(1-
z7)*(1-z8)*(1-z9)+2*z7*z8*z9; (5.51)
z1 * z2 * z3 = 0;
z4 * z5 * z6 = 0;
z7 * z8 * z9 = 0;

Using Lingo Software we have found that the solution in
each case gives  z = 50.60611,  c= 1, a = 1, p = -3,
x1=16.86890,x2=1.405717, x3 = 4.217114, x4 = 1.405791.

Dual Solution:
max=(1/w01)  w01*(10/w02)w02*(4/ w03)w03*(2/ w04)
w04*(1/ w11)w11*(1/w12)w12*(w11+w12)(w11+w12)*

100w21; (5.52)

w01 + w02 + w03 + w04 = 1;
w01 + (-3) * w11 – w21 = 0;
w02 + 2 * w12 – w21 = 0;
w03 – w21 = 0;
w04 - 2 * w11 - 2 * w12 = 0;
w01, w02 w03, w04 w11, w12 w21 > 0;
In this case we find z = 50.60611,w01 = 0.3333372, w02

= 0.2777762,w03 = 0.3333285,w04= 0.5555811E - 01,
w11=0.2903339E-05,w12=0.2777615E-01,
w21=0.3333285.

6. Conclusions
Since 1960 geometric programming problem has
undergone several changes. In most of the engineering
problems the parameters are considered as deterministic.
In this paper we have discussed the problems by splitting
the cost coefficients, constraint coefficients and
exponents using binary numbers. Geometric
programming has already shown its power in practice in
the past. In many real world geometric programming
problem the parameters may not be known precisely due
to insufficient information and hence this paper will help
the wider applications in the field of engineering
problems.
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