
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

40

Soft-Checkpointing Based Coordinated
Checkpointing Protocol for Mobile Distributed

Systems

Parveen Kumar1
, Rachit Garg2

1Meerut Institute of Engineering & Technology, Department of Computer Science & Engineering, Meerut (INDIA)- 250005

2Singhania University, Department of Computer Science & Engineering, Pacheri Bari (Rajasthan), India

Abstract: Minimum-process coordinated checkpointing is a

suitable approach to introduce fault tolerance in mobile distributed

systems transparently. It may require blocking of processes, extra

synchronization messages or taking some useless checkpoints. All-

process checkpointing may lead to exceedingly high checkpointing

overhead. To optimize both matrices, the checkpointing overhead

and the loss of computation on recovery, we propose a hybrid

checkpointing algorithm, wherein an all-process coordinated

checkpoint is taken after the execution of minimum-process

coordinated checkpointing algorithm for a fixed number of times. In

the minimum-process coordinated checkpointing algorithm; an

effort has been made to optimize the number of useless checkpoints

and blocking of processes using probabilistic approach and by

computing an interacting set of processes at beginning. We try to

reduce the loss of checkpointing effort when any process fails to

take its checkpoint in coordination with others. We reduce the size

of checkpoint sequence number piggybacked on each computation

message.

1. Introduction

Mobile Hosts (MHs) are increasingly becoming common in

distributed systems due to their availability, cost, and mobile

connectivity. An MH is a computer that may retain its connectivity

with the rest of the distributed system through a wireless network

while on move. An MH communicates with the other nodes of the

distributed system via a special node called mobile support station

(MSS). A “cell” is a geographical area around an MSS in which it

can support an MH. An MSS has both wired and wireless links and

it acts as an interface between the static network and a part of the

mobile network. Static nodes are connected by a high speed wired

network [1].

 A checkpoint is a local state of a process saved on the

stable storage. In a distributed system, since the processes in the

system do not share memory, a global state of the system is defined

as a set of local states, one from each process. The state of channels

corresponding to a global state is the set of messages sent but not

yet received. A global state is said to be “consistent” if it contains

no orphan message; i.e., a message whose receive event is recorded,

but its send event is lost [5]. To recover from a failure, the system

restarts its execution from the previous consistent global state saved

on the stable storage during fault-free execution. This saves all the

computation done up to the last checkpointed state and only the

computation done thereafter needs to be redone.

 In coordinated or synchronous checkpointing,

processes take checkpoints in such a manner that the resulting

global state is consistent. Mostly it follows the two-phase commit

structure [2], [5], [6], [7], [10], [15]. In the first phase, processes

take tentative checkpoints, and in the second phase, these are made

permanent. The main advantage is that only one permanent

checkpoint and at most one tentative checkpoint is required to be

stored. In the case of a fault, processes rollback to the last

checkpointed state [6]. The Chandy-Lamport [5] algorithm is the

earliest non-blocking all-process coordinated checkpointing

algorithm.

 The existence of mobile nodes in a distributed system

introduces new issues that need proper handling while designing a

checkpointing algorithm for such systems [1], [4], [14], [16]. These

issues are mobility, disconnections, finite power source, vulnerable

to physical damage, lack of stable storage etc. Prakash and Singhal

[14] proposed a nonblocking minimum-process coordinated

checkpointing protocol for mobile distributed systems. They

proposed that a good checkpointing protocol for mobile distributed

systems should have low overheads on MHs and wireless channels;

and it should avoid awakening of an MH in doze mode operation.

The disconnection of an MH should not lead to infinite wait state.

The algorithm should be non-intrusive and it should force minimum

number of processes to take their local checkpoints. In minimum-

process coordinated checkpointing algorithms, some blocking of the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

41

processes takes place [3], [10], [11], or some useless checkpoints

are taken [4], [15].

 In minimum-process coordinated checkpointing

algorithms, a process Pi takes its checkpoint only if it a member of

the minimum set (a subset of interacting process). A process Pi is in

the minimum set only if the checkpoint initiator process is

transitively dependent upon it. Pj is directly dependent upon Pk only

if there exists m such that Pj receives m from Pk in the current

checkpointing interval [CI] and Pk has not taken its permanent

checkpoint after sending m. The ith CI of a process denotes all the

computation performed between its ith and (i+1)th checkpoint,

including the ith checkpoint but not the (i+1)th checkpoint.

 Cao and Singhal [4] achieved non-intrusiveness in the

minimum-process algorithm by introducing the concept of

mutable checkpoints. Kumar and Kumar [21] proposed a

minimum-process coordinated checkpointing algorithm for mobile

distributed systems, where the number of useless checkpoints and

the blocking of processes are reduced using a probabilistic

approach. Singh and Cabillic [20] proposed a minimum-process

non-intrusive coordinated checkpointing protocol for deterministic

mobile systems, where anti-messages of selective messages are

logged during checkpointing. Higaki and Takizawa [8], and Kumar

et al [17] proposed hybrid checkpointing protocols where MHs

checkpoint independently and MSSs checkpoint synchronously.

Neves et al. [13] gave a time based loosely synchronized

coordinated checkpointing protocol that removes the overhead of

synchronization and piggybacks integer csn (checkpoint sequence

number). Pradhan et al [19] had shown that asynchronous

checkpointing with message logging is quite effective for

checkpointing mobile systems.

 In the present study, we present a hybrid scheme,

where an all process checkpoint is enforced after executing

minimum-process algorithm for a fixed number of times as in [22].

In the first phase, the MHs in the minimum set are required to take

soft checkpoint only. Soft Checkpoint is stored on the disk of the

MH and is similar to mutable checkpoint [4]. In the minimum-

process algorithm, a process takes its forced checkpoint only if it is

having a good probability of getting the checkpoint request;

otherwise, it buffers the received messages as in [21].

2. The Proposed Checkpointing Algorithm

2.1 System Model
The system model is similar to [3], [4]. A mobile computing system

consists of a large number of MH’s and relatively fewer MSS’s. The

distributed computation we consider consists of n spatially

separated sequential processes denoted by P0, P1, ..., Pn-1, running

on fail-stop MH’s or on MSS’s. Each MH or MSS has one process

running on it. The processes do no share common memory or

common clock. Message passing is the only way for processes to

communicate with each other. Each process progresses at its own

speed and messages are exchanged through reliable channels,

whose transmission delays are finite but arbitrary. We assume the

processes to be non-deterministic.

2.2 Basic Idea
Similar to [3], [21], [22], initiator process collects the dependency

vectors of all processes and computes the tentative minimum set.

Suppose, during the execution of the checkpointing algorithm, Pi

takes its checkpoint and sends m to Pj. Pj receives m such that it has

not taken its checkpoint for the current initiation and it does not

know whether it will get the checkpoint request or not. If Pj takes its

checkpoint after processing m, m will become orphan. In order to

avoid such orphan messages, we use the following technique as

mentioned in [21].

 If Pj has sent at least one message to a process, say Pk,

and Pk is in the tentative minimum set, there is a good probability

that Pj will get the checkpoint request. Therefore, Pj takes its

mutable checkpoint before processing m [4]. In this case, most

probably, Pj will get the checkpoint request and its mutable

checkpoint will be converted into permanent one. Alternatively, this

message is buffered Pj. Pj will process m only after taking its

tentative checkpoint or after getting commit as in [22].

In minimum-process checkpointing, some processes may not be

included in the minimum set for several checkpoint initiations due

to typical dependency pattern; and they may starve for

checkpointing. In the case of a recovery after a fault, the loss of

computation at such processes may be unreasonably high [22]. In

Mobile Systems, the checkpointing overhead is quite high in all-

process checkpointing [14]. Thus, to balance the checkpointing

overhead and the loss of computation on recovery, we design a

hybrid checkpointing algorithm for mobile distributed systems,

where an all-process checkpoint is taken after certain number of

minimum-process checkpoints. We enforce the all-process

checkpointing protocol after executing the minimum-process

algorithm for fifteen number of times.

 In coordinated checkpointing, if a single process fails

to take its checkpoint; all the checkpointing effort goes waste,

because, each process has to abort its tentative checkpoint. In order

to take the tentative checkpoint, an MH needs to transfer large

checkpoint data to its local MSS over wireless channels. Hence, the

loss of checkpointing effort may be exceedingly high. Therefore, we

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

42

propose that in the first phase, all concerned MHs will take soft

checkpoint only. Soft checkpoint is similar to mutable checkpoint

[4], which is stored on the memory of MH only. In this case, if some

process fails to take checkpoint in the first phase, then MHs need to

abort their soft checkpoints only. The effort of taking a soft

checkpoint is negligible as compared to the tentative one. When the

initiator comes to know that all relevant processes have taken their

soft checkpoints, it asks all relevant processes to come into the

second phase, in which, a process converts its soft checkpoint into

tentative one. Finally, the initiator issues the commit request.

2.3 Data Structures
Here, we describe the data structures used in the proposed

checkpointing protocol. A process that initiates checkpointing is

called initiator process and its local MSS is called initiator MSS.

Data structures are initialized on completion of a checkpointing

process if not mentioned explicitly. A process is in the cell of an

MSS if it is running on the MSS or on an MH supported by it. It

also includes the processes running on MH’s, which have been

disconnected from the MSS but their checkpoint related information

is still with this MSS.

i) Each process Pi maintains the following data structures, which

are preferably stored on local MSS:

d_vecti[]: a bit vector of size n; ; d_vecti[j] =1 implies Pi is

directly dependent upon Pj for the current CI;

pr_blocki: a flag which indicates that Pi is in blocking

state;

pr_c_statei: a flag; set to ‘1’ on soft or mutable checkpoint

or on the receipt of a message of higher csn

during checkpointing;

mutablei: a flag; set to ‘1’ on mutable checkpoint; reset on

commit/abort or on tentative checkpoint;

pr_sendvi[]: a bit vector of size n; pr_sendvi[j]=1 implies Pi

has sent at least one message to Pj in the current

CI;

pr_sendi: a flag indicating that Pi has sent at least one

message since last checkpoint;

pr_csn four bits checkpoint sequence no; initially, for a

process pr_csn and pr_next_csn are [0000] and

[0001] respectively; pr_csn is incremented as

follows: pr_csn=pr_next_csn;

pr_next_csn=modulo 16 (++pr_next_csn) ;

ii) Initiator MSS (any MSS can be initiator MSS) maintains the

following Data structures:

mset[]: a bit vector of size n; mset[k]=1 implies Pk belongs

to the minimum set; computation of minimum set

on the bases of dependency vectors of all processes

is given in [21].

R1[]: a bit vector of length n; R[i] =1 implies Pi has

taken its soft checkpoint in the first phase;

R2[]: a bit vector of length n; R2[i] =1 implies Pi has

taken its tentative checkpoint in the second phase;

Timer1: a flag; initialized to ‘0’ when the timer is set; set

to ‘1’ when maximum allowable time for

collecting coordinated checkpoint expires;

iii) MSS (say MSSp) maintains the following data structures:

mss_localp[]: a bit vector of length n; mss_localp [i]=1

implies Pi is running in the cell of MSSp;

mss_loc_tentp[]: a bit vector of length n; mss_loc_tentp[i]=1

implies Pi has taken its

tentative checkpoint at MSSp;

mss_loc_softp[]: a bit vector of length n; mss_loc_softp[i]=1

implies Pi has taken its

 soft checkpoint in the first phase and Pi is

local to MSSp;

mss_tent_reqp[]: a bit vector of length n; mss_tent_reqp[i]=1

implies tentative

 checkpoint request has been sent to

process Pi and Pi is local to MSSp;

mss_soft_reqp[]: a bit vector of length n; mss_soft_reqp[i]=1

implies soft checkpoint

request has been sent to process Pi in the

first phase and Pi is local to

 MSSp;

mss_fail_bit: a flag; set to ‘1’ when some relevant

process in its cell fails to take its

checkpoint;

Pin: initiator process identification;

g_chkpt: a flag; set to ‘1’ on the receipt of ddv[]

request; It controls multiple

checkpoint initiations;

rec_mset a flag; set to 1 on the receipt of mset[]

from the initiator MSS; set to ‘0’ on

commit/abort;

new_set[] a bit vector of length n; it contains all new

processes found for the minimum set at the

MSS; on each checkpoint request: if

(tnew_set≠) new_set=new_settnew_set;

Tnew_set[] a bit vector of length n; it contains the new

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

43

processes found for the minimum set while

executing a particular checkpoint request.

When a process, say Pi, takes its soft

checkpoint, it may find some process Pj

such that Pi is dependent upon Pj and Pj is

not in the tentative minimum set known to

the local MSS;

2.4 An Example
We explain the proposed minimum-process checkpointing

algorithm with the help of an example. In Figure 1, at time t1, P1

initiates checkpointing process and sends request to all processes for

their dependency vectors. At time t2, P1 receives the dependency

vectors from all processes and computes the tentative minimum

(mset[]) set as in [21], which in case of Figure 1 is {P0, P1, P2}]. P1

sends this tentative minimum set to all processes and takes its own

soft checkpoint. A process takes its soft checkpoint if it is a member

of the tentative minimum set. When P0 and P2 get the mset[], they

find themselves in the mset[]; therefore, they take their soft

checkpoints. When P3, P4 and P5 get the mset[], they find that they

do not belong to mse[], therefore, they do not take their soft

checkpoints.

P1 sends m8 after taking its soft checkpoint and P0 receives m8 before

getting the mset[].When P1 sends m8 to P0, P1 also piggybacks

pr_csni and pr_c_statei along with m. When P0 receives m8 it finds

that csn[i]<m.pr_csni and m.pr_c_statei=1.P0 concludes that P1 has

taken its checkpoint for some new initiation. P0 also finds rec_mset

= 0 implies P0 has not received the mset[] for the new initiatition. In

this case, P0 buffers m8 and processes it only after taking its soft

checkpoint. After taking its soft checkpoint, P1 sends m11 to P3. At

the time of receiving m11, P3 has received the mset[] and it P3 is not

the member of the tentative minimum set (mset[]). P3 finds that it

has sent m3 to P2 and P2 is a member of tentative minimum set

(mset[]). Therefore, P3 concludes that most probably, it will get the

checkpoint request in the current initiation; therefore, it takes its

mutable checkpoint before processing m11. When P2 takes its soft

checkpoint, it finds that it is dependent upon P3, due to m3, and P3 is

not in the tentative minimum set [mset[]]; therefore, P2 sends

checkpoint request to P3. On receiving the checkpoint request, P3

converts its mutable checkpoint into soft one. It should be noted that

the soft checkpoint and mutable checkpoint are similar. Mutable

checkpoint is a forced checkpoint and soft checkpoint is a regular

checkpoint taken due to checkpoint request. In order to convert the

mutable checkpoint into soft checkpoint, we only need to change

the data structure (mss_local_soft[3]=1).

After taking its checkpoint, P2 sends m13 to P4. P4 finds that it has

not sent any message to a process of tentative minimum set. It takes

the bitwise logical AND of pr_sendv4[] and mset[] and finds the

resultant vector to be all zeroes (pr_sendv4[]=[000001];

mset[]=[111000]). P4 concludes that most probably, it will not get

the checkpoint request in the current initiation; therefore, P4 does

not take mutable checkpoint but buffers m13. P4 processes m13 only

after getting the tentative checkpoint request. P5 processes m14,

because, it has not sent any message since last permanent

checkpoint (pr_send5=0) . After taking its checkpoint, P1 sends m12

to P2. P2 processes m12, because, it has already taken its checkpoint

in the current initiation. At time t3, P1 receives positive responses to

soft checkpoint requests from all relevant processes (not shown in

the Figure 1) and issues tentative checkpoint request along with the

exact minimum set [P0, P1, P2, P3] to all processes. On receiving

tentative checkpoint request, all relevant processes convert their soft

checkpoints into tentative ones and inform the initiator. A process,

not in the minimum set, discards its mutable checkpoint, if any, or

processes the buffered messages, if any. Finally, at time t4, initiator

P2 issues commit. On receiving commit following actions are

taken. A process, in the minimum set, converts its tentative

checkpoint into permanent one and discards its earlier permanent

checkpoint, if any.

2.5 The Minimum Process Checkpointing Algorithm

2.5.1 Checkpoint Initiation
Each process Pi can initiate the checkpointing procedure. If MHi

wants to initiate checkpointing, it sends the request to its local MSS,

called initiator MSS, that initiates and coordinates checkpointing

procedure on behalf of MHi.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

44

 The initiator MSS sends a request to all MSSs (MSSs

of the mobile system under consideration) to send the d_vect[]

vectors of the processes in their cells. All d_vect[] vectors are at

MSSs and thus no initial checkpointing messages or responses

travel wireless channels. On receiving the d_vect[] request, an

MSS records the identity of the initiator MSS (say mss_id=

mss_idin) and sends back the d_vect[] of the processes in its cell,

and sets timer1. If the initiator MSS receives a request for d_vect[]

from some other MSS (say mss_id= mss_idin2) and mss_idin is lower

than mss_idin2,the, current initiation (having mss_id= mss_idin) is

discarded and the new one (having mss_id= mss_idin2) is continued.

Similarly, if an MSS receives d_vect[] requests from two MSSs,

then it discards the request of the initiator MSS with lower mss_id.

Otherwise, on receiving d_vect[] vectors of all processes, the

initiator MSS (MSSin) computes mset[], sends soft checkpoint

request to all MSSs. On receiving positive responses from all

relevant processes, MSSin issues tentative checkpoint request to all

processes in the minimum set. If some process, fails to take soft

checkpoint in the first phase, MSSin issues abort() request to all

MSSs. When, MSSin comes to know that all concerned processes

have taken their tentative checkpoint, it issues commit() request to

all MSSs.

Concurrent executions of the minimum-process checkpointing

algorithms may exhaust the limited battery life and congest the

wireless channels. Therefore, the concurrent executions of the

proposed protocol are not allowed. The proposed protocol is

distributed in nature; because, any process can initiate

checkpointing. In case of concurrent initiations, only one is allowed

to proceed. Hence, concurrent initiations of the proposed protocol

do not cause its concurrent executions.

2.5.2 Reception of a Checkpoint Request
When an MSS (say MSSp) receives the soft checkpoint request

along with the mset[] from MSSin in the first phase, it asks the

relevant processes in its cell to take the soft checkpoint and stores

them in mss_soft_reqp[]. The soft checkpoint of an MH is stored on

the disk of the MH. When a process (say Pi) takes its soft

checkpoint at MSSp; it is stored in mss_loc_softp[]. When it comes

to know that all the relevant processes in its cell have taken their

soft checkpoints(mss_soft_reqp[]= mss_loc_softp[]) or some process

failed to take its soft checkpoint, MSSp sends the response to MSSin.

On receiving mset[] or tnew_set[] along with the checkpoint

request, an MSS, say MSSj, updates tminset[] on the basis of mset[]

or req.tnew_set[]. It sends the soft checkpoint request to any process

Pi if Pi belongs to the mset[] or req.tnew_set[], Pi is running in its

cell (mss_localj[i]=1) and Pi has not been issued soft checkpoint

request (mss_loc_softj[i]=0). If Pi has already taken its mutable

checkpoint (mutablei=1), it simply converts its mutable checkpoint

into soft checkpoint (mss_loc_softj[i]=1). On getting the soft

checkpoint request, Pi takes its soft checkpoint. Pi processes the

buffered messages, if any. For a disconnected MH, that is a

member of the minimum set, the MSS that has its disconnected

checkpoint, considers its disconnected checkpoint as the required

checkpoint.

On receiving mset[], if MSSj finds a process Pk such that Pk is in

blocking state and bitwise logical AND of mset[] and pr_sendvk[] is

not all zeroes, Pk takes the mutable checkpoint, processes the

buffered messages, if any.

 On issuing checkpoint request to a process, says Pi,

MSSj computes tnew_set[]. It contains the new processes for the

minimum set. When a process Pi takes its soft checkpoint, it checks

its dependency vector and the tentative minimum set computed so

far known at the local MSS. If there is any process Pj such that Pi is

dependent upon Pj and Pj is not in the tentative minimum set, then Pj

is the new process found for the minimum set. A process Pj is in

tnew_set[] only if Pj does not belong to the tminset[], and Pi is

directly dependent upon Pj. If tnew_set[] is not empty, MSSj sends

the checkpoint request to processes in tnew_set[]. MSSj also updates

new_set[] and tminset[] on the basis of tnew_set[].

2.5.3Computation Message Received During
Checkpointing
Suppose, Pi receives m from Pj, different cases are described as

follows:

Case1. Pj has taken some permanent checkpoint after sending m.

 If (m.pr_ csnj < csn[j]) then Pi processes m.

Case2. If (Pi is in its blocking state (pr_blocki=1)) then (m is

buffered for the blocking period of Pi)

Case3. Pi has not entered the checkpoint state

(pr_cstatei=0).Following sub-cases are possible:

 (a) Pj has not taken any checkpoint before seding m.

 If (m.pr_own_csnj = csn[j]) then Pi processes m.

 (b) Pj is in checkpointing state at the time of sending m

but Pi has not sent

 any message since last committed checkpoint.

If ((m.pr_c_state)  (pr_sendi==0)) then (Pi sets pr_c_statei,

 updates pr_csni and processes m).

(c) If ((m.pr_c_state)  (pr_sendi==1)  (!rec_mset==1)) then (Pi

sets

 pr_blocki and buffers m).

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

45

If((m.pr_c_state)  (pr_sendi==1)  (rec_mset==1) (Bitwise

logical AND of mset[] and sendvi[] is not all zeroes)) then (Pi takes

mutable checkpoint before processing m, sets pr_c_state=1, and

pr_own_csn=1).

If ((m.pr_c_state)  (pr_sendi==1)  (rec_mset==1)  (Bitwise

logical AND of mset[] and pr_sendvi[] is all zeroes)) then (Pi sets

pr_blocki flag and buffers m).

Case4. Pi has entered the checkpoint state (pr_c_statei=1)

Pi processes m.

2.5.4 Termination

When an MSS learns that all of its relevant processes have taken

their soft/tentative checkpoints successfully or at least one of its

relevant process has failed to take its soft/tentative checkpoint, it

sends the response message along with new_set to the initiator

MSS. If, after sending the response message, an MSS receives the

checkpoint request along with tnew_set, and learns that there is at

least one process in the tnew_set running in its cell and it has not

taken the soft checkpoint, the MSS requests such process to take

checkpoint. It again sends the response message to the initiator

MSS. Initiator MSS commits only if every relevant process takes its

tentative checkpoint.

 When the initiator MSS receives a response from some

MSS, it updates its mset[] on the basis of new_set received with the

response. Finally, initiator MSS sends commit/abort to all processes.

On receiving commit: if a process, say Pi, belongs to the minimum

set, it converts its tentative checkpoint into permanent one and

discards its earlier permanent checkpoint, if any; otherwise, it

processes the buffered messages, if any or discards its mutable

checkpoint, if any.

2.6 All Process Checkpointing Algorithm

Our all process checkpointing algorithm is an updating of Elnozahy

et al [7]. Initiator MSS sends soft checkpoint request to all MSSs.

On receiving the soft checkpoint request, an MSS sends the request

to all processes in its cell. A process takes its soft checkpoint if it

has not taken the same during the current initiation. A process, after

taking its tentative checkpoint or knowing its inability to take the

checkpoint, informs its local MSS. When an MSS learns that all of

its processes have taken their soft checkpoints, it informs the

initiator MSS. When the initiator MSS receives positive response

from all MSSs, it issues tentative checkpoint request to all MSSs.

If any process fails to take soft checkpoint, initiator MSS issues

abort request. Finally, initiator MSS issues commit request.

 When a process sends a computation message, it

appends its pr_csn with the message. When a process, say Pi,

receives a computation message m from some other process, say Pj,

Pi takes the soft checkpoint before processing the message if

m.pr_csn > csn[j] ; otherwise, it simply processes the message.

3. Conclusions

We propose a hybrid checkpointing algorithm, wherein, an all-

process coordinated checkpoint is taken after the execution of

minimum-process coordinated checkpointing algorithm for a fixed

number of times. In minimum-process checkpointing, we try to

reduce the number of useless checkpoints and blocking of

processes. We have proposed a probabilistic approach to reduce the

number of useless checkpoints. Thus, the proposed protocol is

simultaneously able to reduce the useless checkpoints and blocking

of processes at very less cost of maintaining and collecting

dependencies and piggybacking checkpoint sequence numbers onto

normal messages. Concurrent initiations of the proposed protocol do

not cause its concurrent executions. We try to reduce the loss of

checkpointing effort when any process fails to take its checkpoint in

coordination with others.

References

1) Acharya A. and Badrinath B. R., “Checkpointing
Distributed Applications on Mobile Computers,”
Proceedings of the 3rd International Conference on
Parallel and Distributed Information Systems, pp. 73-80,
September 1994.

2) Cao G. and Singhal M., “On coordinated checkpointing in
Distributed Systems”, IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec
1998.

3) Cao G. and Singhal M., “On the Impossibility of Min-
process Non-blocking Checkpointing and an Efficient
Checkpointing Algorithm for Mobile Computing
Systems,” Proceedings of International Conference on
Parallel Processing, pp. 37-44, August 1998.

4) Cao G. and Singhal M., “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing
systems,” IEEE Transaction On Parallel and Distributed
Systems, vol. 12, no. 2, pp. 157-172, February 2001.

5) Chandy K. M. and Lamport L., “Distributed Snapshots:
Determining Global State of Distributed Systems,” ACM
Transaction on Computing Systems, vol. 3, No. 1, pp. 63-
75, February 1985.

6) Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B.,
“A Survey of Rollback-Recovery Protocols in Message-
Passing Systems,” ACM Computing Surveys, vol. 34, no.
3, pp. 375-408, 2002.

7) Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The
Performance of Consistent Checkpointing,” Proceedings
of the 11th Symposium on Reliable Distributed Systems,
pp. 39-47, October 1992.

8) Higaki H. and Takizawa M., “Checkpoint-recovery
Protocol for Reliable Mobile Systems,” Trans. of
Information processing Japan, vol. 40, no.1, pp. 236-244,
Jan. 1999.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

46

9) J.L. Kim, T. Park, “An efficient Protocol for
checkpointing Recovery in Distributed Systems,” IEEE
Trans. Parallel and Distributed Systems, pp. 955-960,
Aug. 1993.

10) Koo R. and Toueg S., “Checkpointing and Roll-Back
Recovery for Distributed Systems,” IEEE Trans. on
Software Engineering, vol. 13, no. 1, pp. 23-31, January
1987.

11) Parveen Kumar, R K Chauhan, “A Coordinated
Checkpointing Protocol for Mobile Computing Systems”,
International Journal of Information and Computing
Science, Vol. 9, No. 1, pp. 18-27, 2006.

12) Lalit Kumar, M. Misra, R.C. Joshi, “Low overhead
optimal checkpointing for mobile distributed systems”
Proceedings. 19th International Conference on IEEE Data
Engineering, pp 686 – 88, 2003.

13) Neves N. and Fuchs W. K., “Adaptive Recovery for
Mobile Environments,” Communications of the ACM,
vol. 40, no. 1, pp. 68-74, January 1997.

14) Prakash R. and Singhal M., “Low-Cost Checkpointing
and Failure Recovery in Mobile Computing Systems,”
IEEE Transaction On Parallel and Distributed Systems,
vol. 7, no. 10, pp. 1035-1048, October1996.

15) Weigang Ni, Susan V. Vrbsky and Sibabrata Ray, “
Pitfalls in nonblocking checkpointing” World Science’s
journal of Interconnected Networks. Vol. 1 No. 5, pp. 47-
78, March 2004.

16) Parveen Kumar, Lalit Kumar, R K Chauhan, “A low
overhead Non-intrusive Hybrid Synchronous
checkpointing protocol for mobile systems”, Journal of
Multidisciplinary Engineering Technologies, Vol.1, No. 1,
pp 40-50, 2005.

17) Lalit Kumar, Parveen Kumar, R K chauhan “Logging
based Coordinated Checkpointing in Mobile Distributed
Computing Systems”, IETE journal of research, vol. 51,
no. 6, 2005.

18) Lamports L., “Time, clocks and ordering of events in
distributed systems” Comm. ACM, 21(7), 1978, pp 558-
565.

19) Pradhan D.K., Krishana P.P. and Vaidya N.H., “Recovery
in Mobile Wireless Environment: Design and Trade-off
Analysis,” Proceedings 26th International Symposium on
Fault-Tolerant Computing, pp. 16-25, 1996.

20) Pushpendra Singh, Gilbert Cabillic, “A Checkpointing
Algorithm for Mobile Computing Environment”, LNCS,
No. 2775, pp 65-74, 2003.

21) Lalit Kumar Awasthi, P.Kumar, “A Synchronous
Checkpointing Protocol for Mobile Distributed Systems:
Probabilistic Approach” International Journal of
Information and Computer Security, Vol.1, No.3 pp 298-
314, 2007.

22) Parveen Kumar, “A Low-Cost Hybrid Coordinated
Checkpointing Protocol for Mobile Distributed Systems”,
Mobile Information Systems pp 13-32, Vol. 4, No. 1,
2007.

