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Abstract: Minimum-process coordinated checkpointing is a 

suitable approach to introduce fault tolerance in mobile distributed 

systems transparently. It may require blocking of processes, extra 

synchronization messages or taking some useless checkpoints. All-

process checkpointing may lead to exceedingly high checkpointing 

overhead. To optimize both matrices, the checkpointing overhead 

and the loss of computation on recovery, we propose a hybrid 

checkpointing algorithm, wherein an all-process coordinated 

checkpoint is taken after the execution of minimum-process 

coordinated checkpointing algorithm for a fixed number of times. In 

the minimum-process coordinated checkpointing algorithm; an 

effort has been made to optimize the number of useless checkpoints 

and blocking of processes using probabilistic approach and by 

computing an interacting set of processes at beginning. We try to 

reduce the loss of checkpointing effort when any process fails to 

take its checkpoint in coordination with others. We reduce the size 

of checkpoint sequence number piggybacked on each computation 

message.   

1. Introduction 

Mobile Hosts (MHs) are increasingly becoming common in 

distributed systems due to their availability, cost, and mobile 

connectivity. An MH is a computer that may retain its connectivity 

with the rest of the distributed system through a wireless network 

while on move.  An MH communicates with the other nodes of the 

distributed system via a special node called mobile support station 

(MSS).     A “cell” is a geographical area around an MSS in which it 

can support an MH. An  MSS has both wired and wireless links and 

it acts as an interface between the static network and a part of the 

mobile network. Static nodes are connected by a high speed wired 

network [1]. 

 A checkpoint is a local state of a process saved on the 

stable storage.  In a distributed system, since the processes in the 

system do not share memory, a global state of the system is defined 

as a set of local states, one from each process. The state of channels 

corresponding to a global state is the set of messages sent but not 

yet received. A global state is said to be “consistent” if it contains 

no orphan message; i.e., a message whose receive event is recorded, 

but its send event is lost [5]. To recover from a failure, the system 

restarts its execution from the previous consistent global state saved 

on the stable storage during fault-free execution. This saves all the 

computation done up to the last checkpointed state and only the 

computation done thereafter needs to be redone. 

 In coordinated or synchronous checkpointing, 

processes take checkpoints in such a manner that the resulting 

global state is consistent. Mostly it follows the two-phase commit 

structure [2], [5], [6], [7], [10], [15]. In the first phase, processes 

take tentative checkpoints, and in the second phase, these are made 

permanent. The main advantage is that only one permanent 

checkpoint and at most one tentative checkpoint is required to be 

stored. In the case of a fault, processes rollback to the last 

checkpointed state [6]. The Chandy-Lamport [5] algorithm is the 

earliest non-blocking all-process coordinated checkpointing 

algorithm. 

 The existence of mobile nodes in a distributed system 

introduces new issues that need proper handling while designing a 

checkpointing algorithm for such systems [1], [4], [14], [16]. These 

issues are mobility, disconnections, finite power source, vulnerable 

to physical damage, lack of stable storage etc. Prakash and Singhal 

[14] proposed a nonblocking minimum-process coordinated 

checkpointing protocol for mobile distributed systems. They 

proposed that a good checkpointing protocol for mobile distributed 

systems should have low overheads on MHs and wireless channels; 

and it should avoid awakening of an MH in doze mode operation. 

The disconnection of an MH should not lead to infinite wait state. 

The algorithm should be non-intrusive and it should force minimum 

number of processes to take their local checkpoints. In minimum-

process coordinated checkpointing algorithms, some blocking of the 
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processes takes place [3], [10], [11], or some useless checkpoints 

are taken [4], [15]. 

 In minimum-process coordinated checkpointing 

algorithms, a process Pi takes its checkpoint only if it a member of 

the minimum set (a subset of interacting process). A process Pi is in 

the minimum set only if the checkpoint initiator process is 

transitively dependent upon it. Pj is directly dependent upon Pk only 

if there exists m such that Pj receives m from Pk in the current 

checkpointing interval [CI] and Pk has not taken its permanent 

checkpoint after sending m. The ith CI  of a process denotes all the 

computation performed between its ith and (i+1)th checkpoint, 

including the ith checkpoint  but not the (i+1)th checkpoint. 

 Cao and Singhal [4] achieved non-intrusiveness in the 

minimum-process algorithm    by introducing the concept of 

mutable    checkpoints. Kumar and Kumar [21] proposed a 

minimum-process coordinated checkpointing algorithm for mobile 

distributed systems, where the number of useless checkpoints and 

the blocking of processes are reduced using a probabilistic 

approach. Singh and Cabillic [20] proposed a minimum-process 

non-intrusive coordinated checkpointing protocol for deterministic 

mobile systems, where anti-messages of selective messages are 

logged during checkpointing. Higaki and Takizawa [8], and Kumar 

et al [17] proposed hybrid   checkpointing protocols where MHs 

checkpoint independently and MSSs checkpoint synchronously. 

Neves et al. [13] gave a time based loosely synchronized 

coordinated checkpointing protocol that removes the overhead of 

synchronization and piggybacks integer csn (checkpoint sequence 

number). Pradhan et al [19] had shown that asynchronous 

checkpointing with message logging is quite effective for 

checkpointing mobile systems. 

 In the present study, we present a hybrid scheme, 

where an all process checkpoint is enforced after executing 

minimum-process algorithm for a fixed number of times as in [22]. 

In the first phase, the MHs in the minimum set are required to take 

soft checkpoint only. Soft Checkpoint is stored on the disk of the 

MH and is similar to mutable checkpoint [4].  In the minimum-

process algorithm, a process takes its forced checkpoint only if it is 

having a good probability of getting the checkpoint request; 

otherwise, it buffers the received messages as in [21].  

2. The Proposed Checkpointing Algorithm 

2.1 System Model 
The system model is similar to [3], [4]. A mobile computing system 

consists of a large number of MH’s and relatively fewer MSS’s. The 

distributed computation we consider consists of n spatially 

separated sequential processes   denoted by P0, P1, ..., Pn-1, running 

on fail-stop MH’s or on MSS’s. Each MH or MSS has one process 

running on it.  The processes do no share common memory or 

common clock. Message passing is the only way for processes to 

communicate with each other. Each process progresses at its own 

speed and messages are exchanged through reliable channels, 

whose transmission delays are finite but arbitrary. We assume the 

processes to be non-deterministic.  

2.2 Basic Idea 
Similar to [3], [21], [22], initiator process collects the dependency 

vectors of all processes and computes the tentative minimum set.  

Suppose, during the execution of the checkpointing algorithm, Pi 

takes its checkpoint and sends m to Pj. Pj receives m such that it has 

not taken its checkpoint for the current initiation and it does not 

know whether it will get the checkpoint request or not. If Pj takes its 

checkpoint after processing m, m will become orphan. In order to 

avoid such orphan messages, we use   the following technique as 

mentioned in [21].  

 If Pj has sent at least one message to a process, say Pk, 

and Pk is in the tentative minimum set, there is a good probability 

that Pj will get the checkpoint request. Therefore, Pj takes its 

mutable checkpoint before processing m [4]. In this case, most 

probably, Pj will get the checkpoint request and its mutable 

checkpoint will be converted into permanent one. Alternatively, this 

message is buffered Pj. Pj will process m only after taking its 

tentative checkpoint or after getting commit as in [22].  

In minimum-process checkpointing, some processes may not be 

included in the minimum set for several checkpoint initiations due 

to typical dependency pattern; and they  may starve for 

checkpointing. In the case of a recovery after a fault, the loss of 

computation at such processes may be unreasonably high [22]. In 

Mobile Systems, the checkpointing overhead is quite high in all-

process checkpointing [14]. Thus, to balance the checkpointing 

overhead and the loss of computation on recovery, we design a 

hybrid checkpointing algorithm for mobile distributed systems, 

where an all-process checkpoint is taken after certain number of 

minimum-process checkpoints. We enforce the all-process 

checkpointing protocol after executing the minimum-process 

algorithm for fifteen number of times.  

 In coordinated checkpointing, if a single process fails 

to take its checkpoint; all the checkpointing effort goes waste, 

because, each process has to abort its tentative checkpoint. In order 

to take the tentative checkpoint, an MH needs to transfer large 

checkpoint data to its local MSS over wireless channels. Hence, the 

loss of checkpointing effort may be exceedingly high. Therefore, we 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010 
ISSN (Online): 1694-0784 
ISSN (Print): 1694-0814 
 

 

42

propose that in the first phase, all concerned MHs will take soft 

checkpoint only. Soft checkpoint is similar to mutable checkpoint 

[4], which is stored on the memory of MH only. In this case, if some 

process fails to take checkpoint in the first phase, then MHs need to 

abort their soft checkpoints only. The effort of taking a soft 

checkpoint is negligible as compared to the tentative one. When the 

initiator comes to know that all relevant processes have taken their 

soft checkpoints, it asks all relevant processes to come into the 

second phase, in which, a process converts its soft checkpoint into 

tentative one. Finally, the initiator issues the commit request.          

2.3 Data Structures 
Here, we describe the data structures used in the proposed 

checkpointing protocol. A process that initiates checkpointing is 

called initiator process and its local MSS is called initiator MSS. 

Data structures are initialized on completion of a checkpointing 

process if not mentioned explicitly. A process is in the cell of an 

MSS if it is running on the MSS or on an MH supported by it. It 

also includes the processes running on MH’s, which have been 

disconnected from the MSS but their checkpoint related information 

is still with this MSS.   

i)   Each process Pi maintains the following data structures, which     

are preferably stored on local MSS: 

d_vecti[]:    a bit vector of size n; ; d_vecti[j] =1 implies Pi is 

directly dependent upon Pj for the current CI;  

pr_blocki:  a flag which indicates that Pi  is in blocking 

state;   

pr_c_statei: a flag; set to ‘1’ on soft or mutable  checkpoint 

or on the receipt of a message of higher csn 

during checkpointing;  

mutablei: a flag; set to ‘1’ on mutable checkpoint; reset on 

commit/abort or on tentative checkpoint;   

pr_sendvi[]: a bit vector of size n; pr_sendvi[j]=1 implies Pi 

has sent at least one message to Pj in the current 

CI; 

pr_sendi: a flag  indicating that Pi has sent at least one 

message since last checkpoint; 

pr_csn  four bits checkpoint sequence no; initially, for a 

process pr_csn and pr_next_csn are [0000] and 

[0001] respectively; pr_csn  is incremented as 

follows: pr_csn=pr_next_csn; 

pr_next_csn=modulo 16 (++pr_next_csn) ; 

 
ii) Initiator MSS (any MSS can be initiator MSS) maintains the 

following Data structures: 

mset[]: a bit vector of size n; mset[k]=1 implies Pk belongs 

to the minimum set; computation of minimum set 

on the bases of dependency vectors of all processes 

is given in [21].  

R1[]:         a bit vector of length n; R[i] =1 implies  Pi has 

taken  its soft checkpoint in the first phase;  

R2[]:         a bit vector of length n; R2[i] =1 implies  Pi has 

taken  its tentative  checkpoint in the second phase; 

Timer1: a flag; initialized to ‘0’ when   the timer is set; set 

to ‘1’ when   maximum allowable time for 

collecting coordinated  checkpoint expires; 

 
iii)   MSS (say MSSp) maintains the following data structures:   

mss_localp[]: a bit vector of length n; mss_localp [i]=1 

implies   Pi is running in the cell of  MSSp;  

mss_loc_tentp[]: a bit vector of length n; mss_loc_tentp[i]=1 

implies Pi has taken its  

tentative checkpoint at MSSp; 

mss_loc_softp[]: a bit vector of length n; mss_loc_softp[i]=1 

implies  Pi has taken its 

  soft checkpoint in the first phase and Pi is 

local to MSSp; 

mss_tent_reqp[]: a bit vector of length n; mss_tent_reqp[i]=1 

implies tentative 

 checkpoint request has been sent to   

process  Pi and Pi is local to MSSp; 

mss_soft_reqp[]: a bit vector of length n; mss_soft_reqp[i]=1 

implies soft checkpoint  

request has been sent to   process  Pi in the 

first phase and Pi is local to 

 MSSp; 

mss_fail_bit: a flag; set     to ‘1’ when some relevant 

process in its cell fails to take its   

checkpoint;    

Pin: initiator process identification; 

g_chkpt: a flag;  set to ‘1’ on the  receipt of   ddv[] 

request; It controls  multiple  

checkpoint initiations; 

rec_mset a flag; set to 1 on the receipt of mset[] 

from the initiator MSS; set to ‘0’ on 

commit/abort; 

new_set[] a bit vector of length n; it contains all new 

processes found for the minimum set at the 

MSS; on each checkpoint request: if 

(tnew_set≠) new_set=new_settnew_set; 

Tnew_set[] a bit vector of length n; it contains the new 
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processes found for the minimum set while 

executing  a particular checkpoint request. 

When a process, say Pi, takes its soft 

checkpoint, it may find some process Pj 

such that Pi is dependent upon Pj and Pj is 

not in the tentative minimum set known to 

the local MSS; 

 

2.4 An Example 
We explain the proposed minimum-process checkpointing 

algorithm with the help of an example. In Figure 1, at time t1, P1 

initiates checkpointing process and sends request to all processes for 

their dependency vectors. At time t2, P1 receives the dependency 

vectors from all processes and computes the tentative minimum 

(mset[]) set as in [21], which in case of Figure 1 is   {P0, P1, P2}]. P1 

sends this tentative minimum set to all processes and takes its own 

soft checkpoint. A process takes its soft checkpoint if it is a member 

of the tentative minimum set. When P0 and P2 get the mset[], they 

find themselves in the mset[]; therefore, they take their soft 

checkpoints.   When P3, P4 and P5 get the mset[], they find that they 

do not belong to mse[], therefore, they do not take their soft 

checkpoints. 

 
 
P1 sends m8 after taking its soft checkpoint and P0 receives m8 before 

getting the mset[].When P1 sends m8 to P0, P1 also piggybacks  

pr_csni and pr_c_statei along with m. When P0 receives m8 it finds 

that csn[i]<m.pr_csni and m.pr_c_statei=1.P0 concludes that P1 has 

taken its checkpoint for some new initiation. P0 also finds rec_mset 

= 0 implies P0 has not received the mset[] for the new initiatition. In 

this case, P0 buffers m8 and processes it only after taking its soft 

checkpoint. After taking its soft checkpoint, P1 sends m11 to P3. At 

the time of receiving m11, P3 has received the mset[] and it P3 is not 

the member of the tentative minimum set (mset[]). P3 finds that it 

has sent m3 to P2 and P2 is a member of tentative minimum set 

(mset[]).  Therefore, P3 concludes that most probably, it will get the 

checkpoint request in the current initiation; therefore, it takes its 

mutable  checkpoint before processing m11. When P2 takes its soft 

checkpoint, it finds that it is dependent upon P3, due to m3, and P3 is 

not in the tentative minimum set [mset[]]; therefore, P2 sends 

checkpoint request to P3. On receiving the checkpoint request, P3 

converts its mutable checkpoint into soft one. It should be noted that 

the soft checkpoint and mutable checkpoint are similar. Mutable 

checkpoint is a forced checkpoint and soft checkpoint is a regular 

checkpoint taken due to checkpoint request. In order to convert the 

mutable checkpoint into soft checkpoint, we only need to change 

the data structure (mss_local_soft[3]=1). 

  

After taking its checkpoint, P2 sends m13 to P4. P4 finds that it has 

not sent any message to a process of tentative minimum set. It  takes 

the bitwise logical AND of pr_sendv4[] and mset[] and finds the 

resultant vector to be all zeroes (pr_sendv4[]=[000001]; 

mset[]=[111000]). P4 concludes that most probably, it will not get 

the checkpoint request in the current initiation; therefore, P4 does 

not take mutable checkpoint but buffers m13. P4 processes m13 only 

after getting the tentative checkpoint  request. P5 processes m14, 

because, it has not sent any message since last permanent 

checkpoint (pr_send5=0) .  After taking its checkpoint, P1 sends m12 

to P2. P2 processes m12, because, it has already taken its checkpoint 

in the current initiation. At time t3, P1 receives positive responses to 

soft checkpoint requests from all relevant processes (not shown in 

the Figure 1) and issues tentative checkpoint request  along with the 

exact minimum set [P0, P1, P2, P3 ] to all processes. On receiving 

tentative checkpoint request, all relevant processes convert their soft 

checkpoints into tentative ones and inform the initiator. A process, 

not in the minimum set, discards its mutable  checkpoint, if any, or 

processes the buffered messages, if any. Finally, at time t4,  initiator 

P2 issues commit.   On receiving commit following actions are 

taken. A process, in the minimum set, converts its tentative 

checkpoint into permanent one and discards its earlier permanent 

checkpoint, if any.  

2.5 The Minimum Process Checkpointing Algorithm 

2.5.1  Checkpoint Initiation 
Each process Pi can initiate the checkpointing procedure.   If MHi 

wants to initiate checkpointing, it sends the request to its local MSS, 

called initiator MSS, that initiates and coordinates checkpointing 

procedure on behalf of MHi.  
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 The initiator MSS sends a request to all MSSs (MSSs 

of the mobile system under consideration) to send the d_vect[]  

vectors of   the processes in their cells. All d_vect[]  vectors are at 

MSSs and thus no initial checkpointing messages or responses 

travel wireless channels. On receiving the d_vect[]   request, an 

MSS records the identity of the initiator MSS (say mss_id= 

mss_idin) and sends back the d_vect[]   of the  processes in its cell, 

and sets timer1. If the initiator MSS receives a request for d_vect[]   

from some other MSS (say mss_id= mss_idin2) and mss_idin is lower 

than mss_idin2,the, current initiation (having mss_id= mss_idin) is 

discarded and the new one (having mss_id= mss_idin2) is continued. 

Similarly, if an MSS receives d_vect[]   requests from two MSSs, 

then it discards the request of the initiator MSS with lower mss_id. 

Otherwise, on receiving d_vect[]  vectors of all processes, the 

initiator MSS (MSSin) computes mset[], sends soft checkpoint 

request to all MSSs. On receiving positive responses from all 

relevant processes, MSSin issues tentative checkpoint request to all 

processes in the minimum set. If some process, fails to take soft 

checkpoint in the first phase, MSSin issues abort()  request to all 

MSSs. When, MSSin comes to know that all concerned processes 

have taken their tentative checkpoint, it issues commit() request to 

all MSSs.  

Concurrent executions of the minimum-process checkpointing 

algorithms may exhaust the limited battery life and congest the 

wireless channels. Therefore, the concurrent executions of the 

proposed protocol are not allowed. The proposed protocol is 

distributed in nature; because, any process can initiate 

checkpointing. In case of concurrent initiations, only one is allowed 

to proceed. Hence, concurrent initiations of the proposed protocol 

do not cause its concurrent executions.  

2.5.2  Reception of a Checkpoint Request 
When an MSS (say MSSp) receives the soft checkpoint request 

along with the mset[] from MSSin in the first phase, it asks the 

relevant processes in its cell to take the soft checkpoint and stores 

them in mss_soft_reqp[]. The soft checkpoint of an MH is stored on 

the disk of the MH. When a process (say Pi) takes its soft 

checkpoint at MSSp; it is stored in mss_loc_softp[]. When it comes 

to know that all the relevant processes in its cell have taken their 

soft checkpoints(mss_soft_reqp[]= mss_loc_softp[]) or some process                                                     

failed to take its soft checkpoint, MSSp sends the response to MSSin. 

On receiving mset[] or tnew_set[]  along with the checkpoint 

request, an MSS, say MSSj, updates tminset[] on the basis of mset[] 

or req.tnew_set[]. It sends the soft checkpoint request to any process 

Pi  if Pi belongs to the mset[] or  req.tnew_set[], Pi is running in its 

cell (mss_localj[i]=1) and Pi has not been issued soft checkpoint 

request (mss_loc_softj[i]=0).  If Pi has already taken its mutable 

checkpoint (mutablei=1), it simply converts its mutable checkpoint 

into soft checkpoint (mss_loc_softj[i]=1). On getting the soft 

checkpoint request, Pi takes its soft checkpoint. Pi processes the 

buffered messages, if any.  For a disconnected MH, that is a 

member of the minimum set, the MSS that has its disconnected 

checkpoint, considers its disconnected checkpoint as the required 

checkpoint.   

On receiving mset[], if MSSj finds a process Pk such that Pk is in 

blocking state and bitwise logical AND of mset[] and pr_sendvk[]  is 

not all zeroes, Pk takes the mutable checkpoint, processes the 

buffered messages, if any. 

 On issuing checkpoint request to a process, says Pi, 

MSSj computes tnew_set[]. It contains the new processes for the 

minimum set. When a process Pi takes its soft checkpoint, it checks 

its dependency vector and the tentative minimum set computed so 

far known at the local MSS. If there is any process Pj such that Pi is 

dependent upon Pj and Pj is not in the tentative minimum set, then Pj 

is the new process found for the minimum set.   A process Pj is in 

tnew_set[] only if Pj does not belong to the tminset[], and Pi is 

directly dependent upon Pj. If tnew_set[] is not empty, MSSj sends 

the checkpoint request to processes in tnew_set[]. MSSj also updates 

new_set[] and tminset[] on the basis of tnew_set[]. 

 
2.5.3Computation Message Received During 
Checkpointing 
Suppose,  Pi receives m from Pj, different cases are described as 

follows:   

Case1. Pj has taken some permanent checkpoint after sending m. 

         If (m.pr_ csnj < csn[j]) then  Pi processes m.  

Case2.  If (Pi is in its blocking state (pr_blocki=1)) then ( m is 

buffered for the blocking period  of Pi ) 

 

Case3. Pi has not entered the checkpoint state 

(pr_cstatei=0).Following sub-cases are possible: 

                   (a) Pj has not taken any checkpoint before seding m. 

                    If (m.pr_own_csnj = csn[j]) then  Pi processes m.  

 

                  (b) Pj is in checkpointing state at the time of  sending m 

but Pi has not sent     

                        any message since last committed checkpoint. 

If ((m.pr_c_state)   (pr_sendi==0)) then (  Pi sets pr_c_statei,    

      updates pr_csni and processes m). 

(c) If ((m.pr_c_state)   (pr_sendi==1)  (!rec_mset==1)) then ( Pi 

sets   

      pr_blocki and buffers m). 
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If((m.pr_c_state)   (pr_sendi==1)  (rec_mset==1) ( Bitwise 

logical AND of mset[] and sendvi[] is not all zeroes )) then (Pi takes 

mutable  checkpoint before processing m, sets pr_c_state=1, and  

pr_own_csn=1).  

If ((m.pr_c_state)  (pr_sendi==1)  (rec_mset==1)  ( Bitwise 

logical AND of mset[] and pr_sendvi[] is  all zeroes )) then ( Pi sets 

pr_blocki flag and  buffers m). 

Case4. Pi has entered the  checkpoint state (pr_c_statei=1)  

Pi processes m.  

2.5.4  Termination 
 
When an MSS learns that all of its relevant processes have taken 

their soft/tentative checkpoints successfully or at least one of its 

relevant  process has failed to take its soft/tentative checkpoint, it 

sends the response message along with new_set   to the initiator 

MSS. If, after sending the response message, an MSS receives the 

checkpoint request along with tnew_set, and learns that there is at 

least one process in the tnew_set  running in its cell and it has not 

taken the soft checkpoint, the MSS requests such process to take 

checkpoint. It again sends the response message to the initiator 

MSS. Initiator MSS commits only if every relevant process takes its 

tentative checkpoint. 

 When the initiator MSS receives a response from some 

MSS, it updates its mset[] on the basis of new_set  received with the 

response. Finally, initiator MSS sends commit/abort to all processes. 

On receiving commit: if a process, say Pi, belongs to the minimum 

set, it converts its tentative checkpoint into permanent one and 

discards its earlier permanent checkpoint, if any; otherwise, it 

processes the buffered messages, if any or discards its mutable 

checkpoint, if any.   

2.6 All Process Checkpointing Algorithm 

 
Our all process checkpointing algorithm is an updating of  Elnozahy 

et al [7]. Initiator MSS sends soft checkpoint request to all MSSs. 

On receiving the soft checkpoint request, an MSS sends the request 

to all processes in its cell. A process takes its soft  checkpoint if it 

has not taken the same  during the current initiation. A process, after 

taking its tentative checkpoint or knowing its inability to take the 

checkpoint, informs its local MSS. When an MSS learns that all of 

its processes have taken their soft checkpoints, it informs the 

initiator MSS. When the initiator MSS receives positive response 

from all   MSSs, it issues tentative checkpoint request to all MSSs. 

If any process fails to take soft checkpoint, initiator MSS issues 

abort request. Finally, initiator MSS issues commit request.     

  When a process sends a computation message, it 

appends its pr_csn with the message. When a process, say Pi, 

receives a computation message m from some other process, say Pj, 

Pi takes the soft checkpoint before processing the message if 

m.pr_csn > csn[j] ; otherwise, it simply processes the message.  

3. Conclusions 

We propose a hybrid checkpointing algorithm, wherein, an all-

process coordinated checkpoint is taken after the execution of 

minimum-process coordinated checkpointing algorithm for a fixed 

number of times. In minimum-process checkpointing, we try to 

reduce the number of useless checkpoints and blocking of 

processes. We have proposed a probabilistic approach to reduce the 

number of useless checkpoints. Thus, the proposed protocol is 

simultaneously able to reduce the useless checkpoints and blocking 

of processes at very less cost of maintaining and collecting 

dependencies and piggybacking checkpoint sequence numbers onto 

normal messages. Concurrent initiations of the proposed protocol do 

not cause its concurrent executions. We try to reduce the loss of 

checkpointing effort when any process fails to take its checkpoint in 

coordination with others. 
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