
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

10

Specifying Data Bases Management Systems by Using RM-ODP
Engineering Language

Jalal laassiri1, Said elhajji2, Mohamed bouhdadi3, Ghizlane Orhanou4 and Youssef balouki5

 1 University Mohammed V-Agdal, Faculty of Sciences, Department of Mathematic and Informatics, Laboratory of Mathematic
and Informatics and Applications, Rabat ,BP 1014, Morocco

2University Mohammed V-Agdal, Faculty of Sciences Rabat

3University Mohammed V-Agdal, Faculty of Sciences Rabat

4University Mohammed V-Agdal, Faculty of Sciences Rabat

5University Mohammed V-Agdal, Faculty of Sciences Rabat

Abstract
Distributed systems can be very large and complex. The various
considerations that influence their design can result in a
substantial specification, which requires a structured framework
that has to be managed successfully. The purpose of the RM-
ODP is to define such a framework. The Reference Model for
Open Distributed Processing (RM-ODP) provides a framework
within which support of distribution, inter-working and
portability can be integrated. It defines: an object model,
architectural concepts and architecture for the development of
ODP systems in terms of five viewpoints. Which include an
information viewpoint.
Since the usage of Data bases management systems (DBMS) in
complex networks is increasing considerably, we are interested,
in our work, in giving DBMS specifications through the use of
the three schemas (static, dynamic, invariant).
The present paper is organized as follows. After a literature
review, we will describe then the subset of concepts considered
in this work named the database management system (DBMS)
object model. In the third section, we will be interested in the
engineering language and DMBS structure by describing
essentially DBMS objects. Finally, we will present DBMS
engineering specifications and makes the connection between
models and their instances. This introduces the basic form of the
semantic approach we have described here.
Keywords: RM-ODP, information viewpoint, engineering
viewpoint, schemas, Object DBMS.

1. State of the art
1.1. RM-ODP overview

The rapid growth of distributed processing has led to a
need of coordinating framework for the standardization of
Open Distributed Processing (ODP).
The open distributed processing (ODP) computational
viewpoint describes the functionality of a system and its

environment, in terms of a configuration of interacting
objects at system interfaces, independently of their
distribution. In addition, Quality of service (QoS)
contracts and service level agreements are an integral part
of any computational specification, which is specified in
ODP in terms of environment contracts.
The Reference Model for ODP (RM-ODP) is a framework
for the construction of open distributed systems [1]-[4]. It
creates an architecture supporting distribution, networking
and portability.
The foundations part [2] contains the definition of
concepts and analytical framework for normalized
description of (arbitrary) distributed processing systems.
These concepts are gathered in several categories
including basic modeling concepts, specification concepts,
organizational concepts, and structuring concepts.
The architecture part [3] contains specifications of the
required characteristics that qualify distributed processing
to be open. It defines a framework containing:
Five viewpoints called: enterprise, information,
computation, engineering and technology; which provide a
basis for the ODP systems specification.
A language for each viewpoint, defining concepts and
rules to specify ODP systems from the corresponding
viewpoint.
Specifications of functions required to support ODP
systems.
Transparency prescriptions, showing how to use the ODP
functions to achieve distribution transparency.
In other words, the first three viewpoints points do not
take into account neither distribution nor heterogeneity
inherent problems. This principle corresponds closely to
the concepts of PIM (Platform Independent Model) and
PSM (Platform Specific Model) models in MDA (Model

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010
www.IJCSI.org

11

Driven Architecture) architecture [5]. However, RM-ODP
is a meta-norm [6] and can not be directly applied. Indeed,
for instance, the viewpoint languages are abstract in sense
that they define what concepts should be supported, not
how these concepts should be represented. It is important
that RM-ODP does not use the term language in its largest
sense: a set of terms and rules for the construction of
statements from terms; it does not propose any notation for
supporting viewpoint languages.
In fact, RM-ODP provides only a framework for the
definition of new ODP standards. These standards include
the following standards:

 Standards for ODP functions [7],[8];
 Standards for modeling and specifying ODP

systems;
 Standards for methodology, programming,

implementing, and testing ODP systems.
Elsewhere, the languages Z [9], SDL [10], LOTOS [11]
and, Esterelle [12] are used in RM-ODP architectural
semantics part [4] for the specification of ODP concepts.
Unfortunately, up to now, no formal method is suitable to
specify and verify every aspect of an ODP system. The
inherent characteristics of ODP systems imply the need to
integrate different specification languages and to handle
non-behavioral properties of ODP systems that is the QoS
concepts.

1.2. UML Meta-Model Adoption
There had been an amount of research to apply UML

[13] as a syntactic notation for the ODP viewpoint
language [14]-[16]. The taken approach is to give a meta-
model description for the language; it is a definition of this
language by itself. This is presented in terms of three
views:
 The abstract syntax. It is expressed using a subset

of UML static modeling notations that are class
diagrams.

 The well-formedness rules. These rules are
expressed in OCL [17], a precise language based on
first order-logic. OCL is used for expressing
constraints on objects structure which cannot be
expressed by class diagrams only.

 And the modeling elements semantics. We used the
meta-modeling approach [18] to define syntax of a
sub-language for ODP QoS-aware enterprise
viewpoint specifications.

Furthermore, a part of UML meta-model itself has a
precise semantic [19] defined using denotational meta-
modeling approach. The denotational approach [20] is
realized by defining the instance form of every language
element and a set of rules determining which instances are
denoted or not by a particular language element. There are
three main steps through a denotational meta-modeling
approach to the semantics:

1. Define the meta-model for the model’s
language: object template, interface template,
action template, type, and role.

2. Define the meta-model for the instances’
language: objects, binders, and interfaces.

3. Define the mapping or the meaning function
between these two languages.

There are good reasons for adopting the UML meta-
modeling approach in context of ODP systems. The UML
meta-models provide a precise core of any case tool. The
tools include a consistency checker that makes sure that
invariants defined on a model do not conflict. In fact, a
consistency checker between meta-models insures that
different system specifications are consistent and do not
conflict.

Besides, for testing ODP systems [2]-[3], the current
techniques [21],[22] are not widely accepted. A new
approach for testing, named agile programming [23], [24]
or test first approach [25] is being increasingly adopted.
The opinion is integrating system model and testing model
using UML meta-modeling approach [26]. This approach
is based on the executable UML [27]. In this context, OCL
is used to specify the properties that have to be tested.
OCL also serves to attach constraints to UML meta-
models in order to verify the coherence of meta-models
and to translate the constraints into code to evaluate them
on instance models.

The part of RM-ODP considered in this paper is a
subset for describing and constraining the structure of
ODP information viewpoint specifications. It consists of
modeling and specifying concepts defined in the RM-ODP
foundations part and concepts in the information language.
The UML/OCL meta-model developed here elaborates the
conceptual core of the ODP information viewpoint
language. We do not consider concepts for describing
dynamic behavior.

2. RM-ODP Presentation
As seen above, RM-ODP is a framework for the

construction of open distributed systems. It defines a
generic object model in foundations part, and an
architecture which contains specifications of the required
characteristics that qualify distributed processing as open.
The architecture extends and specialized object concepts
of foundations part. In addition, the RM-ODP architecture
model consists of a set of five viewpoint models, the
concepts and rules associated with the language of each
model, the distribution transparency constructs, and the
ODP functions. The entire RM-ODP model is based on the
RM-ODP foundations of an object model, rules for
specification, and rules for structuring RM-ODP (Model
Reference - Open Distributed Processing) [ISO96a]
[ISO96b] [ISO98] which is an international standard

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010
www.IJCSI.org

12

published by ISO/IEC. It provides a reference model for
the specification of open distributed applications.

The concept of RM-ODP viewpoints framework,
therefore, is to provide separate viewpoints into the
specification of a given complex system. Each one of
these viewpoints satisfies an audience which is interested
in a particular set of aspects of the system. Associated with
each viewpoint, there is a viewpoint language [14, 16] that
optimizes the vocabulary and presentation for the
concerned audience.

Furthermore, the RM-ODP model can describe a system
according to five viewpoints and each viewpoint is
interested in a particular aspect of the system. These
viewpoints are the following:

 Enterprise: It introduces the necessary
concepts to represent a system in the context of
an enterprise on which it operates. It is
interested in the objective and the policies of a
system.

 Information: It is focused on the semantics of
information and the treatment carried out on
information. The information is extracted from
individual entities and the viewpoint describes
information sources, sinks, and flows. A
system is then described by information
objects, relationships and behavior. The
description is expressed through the use of
three diagrams named invariant, static and
dynamic.

 Computational: It allows a functional
decomposition of the system. The various
functions are fulfilled by objects that interact
thanks to their interfaces.

 Engineering: It is focused on the deployment
and communication of a system. It defines
communication concepts like channel, stub,
skeleton and deployment concepts like cluster,
capsule, etc.

 Technology: It describes the implementation
of a system in term of configuration of
technical objects representing the hardware
and software components of the
implementation.

After specifying above the different viewpoints, we
want to note that, a viewpoint is a subdivision of the
specification of a complete system, established to bring
together those particular pieces of information relevant to
some particular area of concern during the design of the
system.
Moreover, the relations between the actors of a system are
mediated by means of languages which depend on the
position of these actors within the system, on their own

activity (designer, user, developer). The study of these
relationships under the viewpoint angle allows analyzing
them globally, putting forward concerns related to human
computer interface. Natural language is studied using
statistic text processing techniques [21], [22] which aim at
classifying information useful to visualize shared
knowledge.
On the other hand, in order to maintain consistency among
these viewpoints, RM-ODP puts a set of four rules
categories:

 Basic rules,
 Object model rules. This category of rules

provides the powerful concepts of multiple
types that an object can assume, and multiple
interfaces that an object can offer.

 Structuring and specification rules. These rules
include organization, properties, naming,
behavior, as well as abstraction, refinement,
and composition concepts, which provide
unique capabilities to architect a system.

 Conformance rules.
3. DBMS Object Model
The RM-ODP international standard [5] presents a very
good architectural framework for modeling [26]
distributed systems. However, nowadays, there are
unfortunately not many modelers that use the standard in
their everyday practice. It’s a pity, considering the amount
of highly qualified experts’ knowledge invested in the
project and the big constructive potential that its results
might bring to practice if they were adequately used. one
of the ways to promote the use of RM-ODP in
formalization of its framework. The formalization requires
a careful and attentive translation of the standard
definitions into formal logical constructions, but once
done it would allow creation of ODP-based software
toolsets that could bring to modelers an “easy to be
applied” version of the standard.
Generally, the term object model refers to the collection of
concepts used to describe objects in an object-oriented
specification (OMG CORBA), Object model [5] and RM-
ODP object model [4]. It corresponds closely to the use of
the term data-model in the relational data model. To avoid
misunderstandings, the RM-ODP defines each of the
concepts commonly encountered in object oriented
models. It underlines a basic object model which is unified
in the sense that it has successfully to serve each of the
five ODP viewpoints. It defines the basic concepts
concerned with existence and activity: the expression of
what exists, where it is and what it does. The core
concepts defined in the object model are object and action.
An object is the unit of encapsulation: a model of an
entity. It is characterized by its behavior [30] and, dually,
by its states. Encapsulation means that changes in an

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010
www.IJCSI.org

13

object state can occur only as a result of internal actions or
interactions.
An action is a concept for modeling something which
happens. ODP actions may have duration and may overlap
in time. All actions are associated with at least one object:
internal actions are associated with a single object while
interactions are actions associated with several objects.
Fig.1 shows depicting objects within a client system-
server system community and depicting information
objects data base management. It shows also many
operators, each corresponding to one of the objects and
each requiring services that relate to some part of the
information schema. The information schema needs to
have a shared and persistent representation, so a
computational model of database systems interacting with
the operators via their interfaces is depicted. These
examples use a simple diagrammatic modeling notation
which is not part of RM-ODP.

Fig.1: client system- server system interactions and data base
management

4. Engineering Language and DMBS
Structure
4.1. RM-ODP Common Functions

In addition to these structuring approaches, RM-ODP
gives outline definitions of a number of common
functions. Those functions [7, 8] provide a set of common
services that are either fundamental or widely applicable
to the construction of ODP systems. Detailed
specifications for those functions are the subject of
separate and specific standards.
RM-ODP also defines functions that are fundamental to
the construction of any ODP systems. The functions are
base architectural services that will be included in the
implementation design.
The functions are organized into four groups’
management, coordination, repository, and security:

1. Management functions :(node; object; cluster;
capsule).

2. Coordination functions: (event notification; check
pointing and recovery; deactivation and
reactivation; group function; migration;

engineering interface reference tracking and
transaction function). These functions concern
recording of event histories and ordering and
notification of events and checkpointing objects,
instantiating checkpoints, and undo or redo
interactions for failure recovery. And for
replication, they ensure coordination among
replica objects and group membership
management.

3. Repository functions: (storage; information
organization; relocation; type repository and
trading function), this is concerned with
advertisement and discovery of interfaces.

4. Security functions: These functions ensure access
control, authentication, security audit, key
management, and confidentiality and integrity of
information.

Those functions are forming an integral part of the
computational language and an integral part of the
engineering language. Most of them are introduced by the
engineering language to provide the support needed for its
structures.

Besides, the engineering language comprises concepts,
rules and structures for the specification of an ODP system
from the engineering viewpoint. Operating system and
applications are an example of a node.

The Engineering held by the ODP system about entities
in real world, including the ODP system itself, is modeled
in an Engineering specification in terms of DBMS objects,
and their relationships and behaviors.

4.2. DMBS Structure
Basic DBMS elements are modeled by atomic DBMS
objects. More complex information is modeled as
composite DBMS objects which, as any other ODP object,
exhibit behavior, state, identity and encapsulation. Its type
is a predicate characterizing a collection of DBMS objects,
which their class is the set of all DBMS objects satisfying
a given type.
Furthermore, an action is a model of something that
happens in real world. Actions are instances; their types
are modeled by ODP action types. An action in the
information viewpoint is associated with at least one
DBMS object Class. It can be either internal action or
interaction as seen before.
DBMS objects template specifies the common features of
a DBMS objects collection in sufficient detail that a
DBMS objects can be instantiated using it. It may
reference static, invariant and dynamic schema.
An invariant schema is a set of predicates on one or more
DBMS objects which must always be true. The predicates
constrain the possible states and state changes of the
objects on which they apply. ODP also notes that an
invariant schema can specify the types of one or more

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010
www.IJCSI.org

14

DBMS objects; that will always be satisfied by whatever
behavior the objects might exhibit.
 A static schema defines the state of one or more DBMS
objects, at some point in time, subject to the constraints of
any invariant schema.
A dynamic schema is a requirement of the allowable state
changes of one or more DBMS objects, subject to the
constraints of any invariant schema. A dynamic schema
specifies how the information can evolve as the system
operates. In addition to describing state changes, dynamic
schema can also create and delete DBMS objects, and
allow reclassifications of instances from one type to
another. Besides, in the Engineering language, a state
change involving a set of objects can be seen as an
interaction between those objects. Not all the objects
involved in the interaction need to change state; some of
the objects may be involved in a read-only manner [29].

4.3. Syntax Domain
We define in this section the meta-models for the

concepts presented in the previous section. Fig.2 defines
the context free syntax for the Engineering language.

Fig.2 RM-ODP Foundation and DBMS concepts

In the following, we define context constraints for the
defined syntax.
Context m: Model inv: m.Specifier->includes All
(m.DBMS object Templates. Dynamic Schema)
m.Describer->includesAll (m. DBMS
Template.StaticSchema)
m.Constrainer->includesAll (m. DBMS object.Invariant
Schema)
m.ActionTemplates -> includesAll (m.DBMS object
Templates.action)
m.Types->includesAll(m.ActionTemplates.

Types -> union (m.DBMS object.Types)
We consider the concepts of subtype/supertype (RM-ODP
2-9.9) and subclass/superclass (RM-ODP 2-9.10) as
relations between types and classes respectively.
Context m: model inv: m.types-> forall(t1: Type, t2:
Type | t2.subtype -> includes(t1) implies
t1.valid_for.satisfies_type=t2)
m.types-> forall(t1: Type, t2: Type | t1.supertype -
>includes(t2) implies t1.valid_for.satisfies_type=t2)
Context a: ActionTemplate inv: a.DBMS object.StartState
<> a.DBMS object.EndState
Context o: Object Template inv: iot (DBMS object
template) is not parent of or child of itself not (iot.parents -
>includes (iot) or iot.children->includes(iot)).

4.4. Semantics Domain
The semantics of a UML model is given by constraining

the relationship between a model and possible instances of
that model (see Fig.3). It means constraining the
relationship between expressions of the UML abstract
syntax for models and expressions of the UML abstract
syntax for instances. We define a model to specify the
ODP Engineering viewpoint: a set of DBMS objects, their
relationships and behaviors. This model defines DBMS
Semantic Domain (Fig.3).

Fig.3 DBMS Semantic Domains

In addition, a system can only be an instance of a single
system model, because it is self contained and disjoint
from other models. On the other side, objects are instances
of one ore more object templates; they may be of one or
several types. With no further constraints, it is possible for
an object to change the templates of which it is an
instance; thus this meta-model supports dynamic types.

There is one well-formedness rule for instances, which

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010
www.IJCSI.org

15

are given bellow:
Context s: system inv:
The source and target DBMS object of s'slinks is

DBMS object in s:
s.DBMS objects->includesAll(s.links.source ->

union(s.links.target))
Links between two DBMS objectare unique per role
s.links->forAll(l|s.links ->select

(l'|l'.source=l.source&l'.target=l.target&l'.of=l.of)=l)
Declaration of “Specification concepts” (RM-ODP 2.9)

in Alloy [28], time dependence.
Context Time inv: forall(o:DBMS object ,t:Time |

t.instant ->notEmpty implies o.state ->notEmpty)
Context Precondition inv: Forall (prec:

Dynamicschema.Precondition, o: DBMS object | exists(s:
State) | o.mappedTo = prec and o.state_start = s)

Context Postcondition inv:forall (postc:
dynamicschema.Postcondition , o :DBMS object | exists(s
: State) | o.mappedTo = postc and a.state_end = s).

4.5. Meaning Function
Other invariants are required to constraint the

relationships between models and instances. These
constitute the semantics which are the subject of this
section. The semantics for the UML-based language are
defined by the relationship between a system model and its
possible instances (systems). The constraints are relatively
simple, but they demonstrate the general principle. Firstly,
there are two constraints related to DBMS object and
links, respectively.

The first shows how inheritance relationships can force
a DBMS object to be of many DBMS object Template.

Context o: object inv:
The templates of o must be a single template and all the

parents of that template
o.of->exists (t | o.of=t->union (t.parents))
The second ensures that a link connects objects of

templates as dictated by its role.
Context l: link inv:
DBMS object which are the source/target of link have

templates which are the source/target of the corresponding
roles.

(l.of.source)->intersection (l.source.of) -> notEmpty
and (l.of.target)->intersection(l.target.of)->notEmpty

Secondly, there are four constraints which ensure that a
model instance is a valid instance of the model, it is
claimed to be an instance of:

The first and second ensure that objects and links are
associated with templates known in the model.

Context s: system inv:
The model, that s is an instance of, includes all object

templates that s.objects are instances of.s.of. DBMS object

Templates->includes All (s.DBMS objects.of)
The model, that s is an instance of, includes all DBMS

object Class that s. DBMS Objects are instances of
s.of.DBMS object Class ->includesAll(s.s. DBMS
Objects.of).

The third ensures that links are associated with roles
known in the model.

Context s: system inv:
The model, that s is an instance of, includes all the role

that s.links are instances of
s.of.roles ->includesAll(s.roles.of)
The fourth constraint ensures that the system cardinality

constraints on roles are observed.
Context s: system inv:The links of s respect cardinality

constraints for their corresponding role
s.links.of -> forAll(r | let links_in_s be r.instances -

>intersect (s.links) in (r.upperBound -> notEmpty
implies links_in_s ->size <= r.upperBound) and
links_in_s->size >= r.upperbound)

The fifth ensures that reverse links are in place for roles
with inverses. If a link is of a role with an inverse, then
there is a corresponding reverse link

s.links->forAll (l | l.of.role.inverse ->notEmpty implies
s.links ->select (l’ | l’.source=l.target & l’.target=l.source
& l’.of = l..of.inverse) ->size=1.

5. DBMS Engineering Specifications.
An engineering specification defines the infrastructure

required to support functional distribution of an ODP
system by:
- Identifying the ODP functions necessary to

manage physical distribution, communication,
processing and storage.

- Identifying the roles of different DBMS object
supporting the ODP functions.

In order to do this, we specify:
1. The activities that occur within those DBMS

objects
2. The interaction of the DBMS objects (Fig.4).
To achieve that, we respect the engineering language

rules like interface reference rules, binding rules, cluster,
capsule and node rules, etc

5.1. DBMS Object Activities
The functions of a software entity are:
- Transferring a software entity;
- Creating a software entity;
- Providing globally unique operator names and

locations;
- Supporting the concept of a domain;
- Ensuring a secure environment for software entity

operations.
We specify these functions of a Software entity with the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010
www.IJCSI.org

16

ODP functions.

5.2. DBMS Object Interactions
We define three types of interactions related to

interoperability:
- Remote software entity creation;
- Interaction needed for the software entity transfer;
- Software entity method invocation.

Fig.4: organization of the DBMS objects

A client could be a non-software entity program or a
software entity from a software entity having the same
system type as the destination agent or not. This client
authenticates itself to the destination software entity
system and interacts with the destination software entity to
request the creation of a software entity.

When a software entity transfers to another software
entity, the software entity system creates a travel request
providing information that identifies the destination place.
In order to fulfill the travel request, the destination
software entity transfers the software entity’s state,
authority, security credential and the code.

For example in database System server, a channel
between system client manager Object and the system
server Object can be defined as illustrated in Fig.5.

Fig.5: An example of a basic system client / system server channel.

A system client object invokes a method of another
system client object or system server object if it has the
authorization and a reference to the system client object.

6. Conclusion.
In the present paper, we have seen that the Reference
Model for Open Distributed Processing (RM-ODP)
provides a framework which supports the integration of
distribution, interworking and portability. In addition, the
UML standard has adopted a meta-modeling approach to
define the abstract syntax of UML. One approach to
define the formal semantics of a language is denotational:
essentially elaborating the value or instance denoted by an
expression of the language in a particular context.
However, the ODP viewpoint languages define what
concepts should be supported and not how these concepts
should be represented, So when we used the denotational
meta-modeling approach in this paper, we have defined
the UML/OCL based syntax and semantics of a language
for a fragment of ODP object concepts described in the
foundations part and in the Engineering viewpoint
language. Indeed, these concepts are suitable to define and
constrain ODP Engineering viewpoint specifications. In
parallel, we have applied the same approach to define a
language of DBMS concepts characterizing dynamic
behavior of DBMS objects.

7.
References

[1] ISO/IEC, Basic Reference Model of Open Distributed

Processing-Part1: Overview and Guide to Use, ISO/IEC
CD 10746-1, July 1994.

[2] ISO/IEC, RM-ODP-Part2: Descriptive Model, ISO/IEC DIS
10746-2, February 1994.

[3] ISO/IEC, RM-ODP-Part3: Prescriptive Model, ISO/IEC
DIS 10746-3, February 1994.

[4] ISO/IEC, RM-ODP-Part4: Architectural Semantics,
ISO/IEC DIS 10746-4, July 1994.

[5] OMG, the Object Management Architecture, OMG, 1991.
http://www.omg.org

[6] Jalal Laassiri and al.“A Denotational Semantics of Concepts
in ODP Information Language”, Proceedings of the
International MultiConference of Engineers and Computer
Scientists , London, UK, July 2009,pp 486-492

[7] ISO/IEC, ODP Type Repository Function, ISO/IEC
JTC1/SC7 N2057, January 1999.

[8] ISO/IEC, the ODP Trading Function, ISO/IEC JTC1/SC21,
June 1995.

[9] J.M. Spivey, The Z Reference manual, Prentice Hall,
1992.

[10] IUT, SDL: Specification and Description Language, IUT-
T-Rec. Z.100, 1992.

[11] ISO and IUT-T, LOTOS: A Formal Description Technique
Based on the Temporal Ordering of Observational Behavior,
ISO/IEC 8807, August 1998.

[12] H. Bowman et al. FDTs for ODP, Computer Standards &
Interfaces Journal, Elsevier Science Publishers, Vol.17,
No.5-6, 1995, pp. 457-479.

[13] J. Rumbaugh et al., The Unified Modeling Language,
Addison Wesley, 1999.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010
www.IJCSI.org

17

[14] B. Rumpe, A Note on Semantics with an Emphasis on UML,
Second ECOOP Workshop on Precise Behavioral
Semantics, Technische Universitaty unchen publisher, 1998.

[15] A. Evans et al., Making UML precise, OOPSLA'98,
October 1998,

[16] Evans et al. The UML as a formal notation, UML'98,
France June 1998, LNCS 1618, Springer Berlin, 1999, pp.
336-348

[17] J. Warner and A. Kleppe, the Object Constraint Language:
Precise Modeling with UML, Addison Wesley, 1998.

[18] M. Bouhdadi et al, An UML-based Meta-language for the
QoS-aware Enterprise Specification of Open Distributed
Systems, IFIP TC5/WG5.5 Third Working Conference on
Infrastructures for Virtual Enterprises (PRO-VE'02), May 1-
3 Sesimbra Portugal, Kluwer Vol. 213 (IFIP Conference
Proceeding series), 2002.

[19] Jacques Saraydaryan and al, Comprehensive Security
Framework for Global Threats Analysis, IJCSI Volume 2,
August 2009.

[20] S. Kent, S. Gaito, N. Ross. A meta-model semantics for
structural constraints in UML,, In H. Kilov, B. Rumpe, and I.
Simmonds, editors, Behavioral specifications for businesses
and systems, chapter 9, pages 123-141. Kluwer Academic
Publishers, Norwell, MA, September 1999.

[21] D.A. Schmidt, Denotational semantics: A Methodology for
Language Development, Allyn and Bacon, Massachusetts,
1986.

[22] Myers, G. The art of Software Testing, John Wiley &Sons,
New York, 1979

[23] Binder, R. Testing Object Oriented Systems. Models.
Patterns, and Tools, Addison-Wesley, 1999

[24] Cockburn, A. Agile Software Development. Addison-
Wesley, 2002.

[25] Bernhard Rumpe. Agile Modeling with UML. Habilitation
Thesis, Germany, 2003.

[26] Beck K. Column on Test-First Approach. IEEE Software,
18(5):87-89, 2001

[27] Briand L. and Labiche Y. A UML-based Approach to
System testing. In M. Gogolla and C. Kobryn (eds): “UML”
– The Unified Modeling Language, 4th Intl. Conference,
LNCS 2185. Springer, 2001 pp. 194-208,

[28] Bernhard Rumpe, Executable Modeling with UML. A vision
or a Nightmare? In Issues & Trends of Information
Technology Management in Contemporary Associations,
Seattle. Idea group Publishing, Hershey, London, pp. 697-
7001. 2002 Author, Title of the Book, Publishing House,
200X.

[29] A.Naumenko, A.Wegmann, “Proposal for a formal
foundation of RM-ODP concepts » conference woodpecker
2001.

[30] ISO/IEC, May 2006, Basic Reference Model of Open
Distributed Processing-Use of UML for ODP system
specifications, ISO/IEC CD 19793.

[31] Naumenko, A., et al. A Viewpoint on Formal Foundation of
RM-ODP Conceptual Framework, Technical report No.
DSC/2001/040, July 2001, EPFL-DSC ICA.

[32] Wegmann, A. and A. Naumenko. Conceptual Modeling of
Complex Systems Using an RM-ODP Based Ontology. in
5th IEEE International Enterprise Distributed Object
Computing Conference - EDOC 2001. 2001.

Jalal Laassiri: Received the B.S.and M.S. degree from the
University of Mohamed V, Morocco, in 2002 and 2005
respectively. He is a Ph.D. student at the department of Computer
Science of the Faculty of Sciences Rabat Morocco. His research
interests include formal verification techniques and performance
evaluation methods of concurrent and distributed systems with
applications to computer and communication systems, In 2009, he
received the Best Student Paper Awards of the WCE 2009.Is a
member of the IAENG, Is a member of the ICIIC2010 International
Program Committee.

