
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

153

Fault Tolerance Mobile Agent System Using Witness Agent in 2-
Dimensional Mesh Network

Ahmad Rostami1, Hassan Rashidi2, Majidreza Shams Zahraie3

1 Student of Faculty of Electrical, Computer, IT & Biomedical Engineering,
Qazvin Islamic Azad University, Qazvin, Iran

2 Assistant Professor of Faculty of Electrical, Computer, IT & Biomedical Engineering,
 Qazvin Islamic Azad University, Qazvin, Iran

3 Student of Faculty of Electrical, Computer, IT & Biomedical Engineering,
 Qazvin Islamic Azad University, Qazvin, Iran

Abstract

Mobile agents are computer programs that act autonomously on
behalf of a user or its owner and travel through a network of
heterogeneous machines. Fault tolerance is important in their
itinerary. In this paper, existent methods of fault tolerance in
mobile agents are described which they are considered in linear
network topology. In the methods three agents are used to fault
tolerance by cooperating to each others for detecting and
recovering server and agent failure. Three types of agents are:
actual agent which performs programs for its owner, witness
agent which monitors the actual agent and the witness agent after
itself, probe which is sent for recovery the actual agent or the
witness agent on the side of the witness agent. Communication
mechanism in the methods is message passing between these
agents. The methods are considered in linear network. We
introduce our witness agent approach for fault tolerance mobile
agent systems in Two Dimensional Mesh (2D-Mesh) Network.
Indeed Our approach minimizes Witness-Dependency in this
network and then represents its algorithm.
Keywords: mobile agent system, mesh network

1. Introduction

Mobile agents are autonomous objects capable of
migrating from one server to another server in a computer
network[1] . Mobile agent technology has been considered
for a variety of applications [2] , [3] , [4] such as systems
and network management [5] , [6] , mobile computing [7] ,
information retrieval [8] , and e-commerce [9] .
In the through mobile agent life cycle may happen failures
[10] . The failures in a mobile agent system, may lead to a
partial or complete loss of the agent. So the fault

tolerant mobile agent systems should be created. Failures
could be detected and recovered. Many of Methods exist
relative to fault tolerance in mobile agent systems that are
considered any of them.
Our approach is rooted from the approaches suggested
in[11] , [12] . In[11] two types of agents are distinguished.
The first type performs the required computation for the
user which is the actual agent. Another type is to detect
and recover the actual agent that is called the witness
agent. These two types of agents communicate by using a
peer-to-peer messages passing mechanism. In addition to
the introduction of the witness agent and the messages
passing mechanism, logging the actions performed by the
actual agent is needed, since when failures happen,
uncommitted actions must be aborted when rollback
recovery is performed[13] . Check-pointed data also is
used[14] to recover the lost agent.
During performing the actual agent, the witness agents are
increased by addition of the servers, meaning any witness
monitors the next witness and the actual agent[12] .
Our proposed scheme decreases the number of witness
agents when the mobile agent itinerates in 2D-Mesh
Network. The 2D-Mesh network properties are used to
decrease Witness-Dependency. The algorithm of the
approach is developed and simulated in C++ language.
The rest of the paper is structured as follows: Section 2
presents the method of fault tolerance in mobile agent
systems by using the witness agents and probe in linear
network topology. In Section 3, Mesh Network Topology
and 2D-Mesh network is considered shortly. In Section 4,
the proposed scheme and its method for decreasing of the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

154

witness-dependency is described. An algorithmic view of
the new approach also is presented in Section 4 and,
finally, Section 5 is identified conclusion and future work.

2. Fault Tolerance in Mobile Agent Systems
by Using the Witness Agents in Linear
Network Topology

Recently, fault-tolerant mobile agent execution has been
very active field of research. There are different methods
in the literature based on linear network. Some of them are
introduced in the following below.

2.1 Related work

Many method exist for fault tolerance mobile agent
systems, for example primary-backup models [15] ,
exactly once model [16] , fault tolerant mobile agent
system based on the Agent-Dependent approach [17] ,
mobile agent fault tolerance by exception handling
approach [18] , Fault Tolerance in Mobile Agent Systems
by Cooperating the Witness Agents [11] and etc. The last
approach is explained in the next sub-section.

2.2 System Architecture and Protocol Design

In [11] , in order to detect the failures of an actual agent
as well as recover the failed actual agent, another types of
agent are designated, namely the witness agent, to monitor
whether the actual agent is alive or dead. In addition to the
witness agent, a communication mechanism between both
types of agents is designed. In this design, agents are
capable of sending messages to each other. This type of
messages is called the Direct Messages which are peer-to-
peer messages. Since a witness agent always lags behind
the actual agent, the actual agent can assume that the
witness agent is at the server that the actual agent just
previously visited. Moreover, the actual agent always
knows the address of the previously visited server.
Therefore, the peer-to-peer message passing mechanism
can be established.
There are cases that the actual agent cannot send a direct
message to a witness agent for several reasons, e.g., the
witness agent is on the way to the target server. Then,
there should be a mailbox at each server that keeps those
unattended messages. This type of messages is called the
Indirect Messages. These indirect messages will be kept in
the permanent storage of the target servers.
Every server has to log the actions performed by an agent.
The logging actions are invoked by the agent. The
information logged by the agent is vital for failure
detection as well as recovery. Also, the hosting servers
have to log which objects have been updated. This log file
is required when performing the rollback recovery. Last

but not the least, the lost agent due to the failure should be
recovered when a server failure happens. However, an
agent has its internal data which may be lost due to the
failure. Therefore, we have to check-point the data of an
agent as well as rollback the computation when necessary.
A permanent storage to store the check-pointed data in the
server is required. Moreover, messages are logged in the
log of the server in order to perform rollback of
executions. The overall design of the server architecture is
shown in Fig. 1.

Fig. 1 The server design

The protocol is based on message passing as well as
message logging to achieve failure detection. Assume that,
currently, the actual agent is at server Si while the witness
agent is at server Si-1. Both the actual agent and the witness
agent have just arrived at Si and Si-1, respectively. The
actual agent and the witness agent are labeled as α and Wi-1

, respectively.
The actual agent α plays an active role in the designed
protocol. After α has arrived at Si, it immediately logs a

message, arrive

ilog , on the permanent storage in Si. The

purpose of this message is to let the coming witness agent
know that α has successfully landed on this server. Next, α
informs Wi-1 that it has arrived at Si safely by sending a

message, arrive

imsg , to Wi-1.

The actual agent α performs the computations delegated
by the owner on Si. When it finishes, it immediately
check-points its internal data to the permanent storage of

Si, then, it logs a message,
i
leavelog , in Si. The purpose of

this message is to let the coming witness agent know that
α has completed its computation and it is ready to travel to
the next server Si+1. In the next step, α sends Wi-1 a

message,
i
leavemsg , in order to inform Wi-1 that α is ready

to leave Si. At last, α leaves Si and travels to Si+1.
The witness agent is more passive than the actual agent in
this protocol. It will not send any messages to the actual
agent. Instead, it only listens to the messages coming from
the actual agent. It is assumed that the witness agent, Wi-1,
arrives at Si-1. Before Wi-1 can advance further in the
network, it waits for the messages stent from α. when Wi-1

is in Si-1, it expects receiving two messages: one is

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

155

arrive

imsg and another one is
i
leavemsg . If the messages

are out-of-order,
i
leavemsg will be kept in the permanent

storage of Si-1. That is
i
leavemsg is considered as

unattended, and becomes an indirect message until Wi-1

receives arrive

imsg . When Wi-1 has received both

arrive

imsg and
i
leavemsg , it spawns a new agent called

Wi. The reason of spawning a new agent instead of letting
Wi-1 migrate to Si is that originally Wi-1 is witnessing the
availability of α. If a server failure happens just before Wi-1

migrates to Si, then no one can guarantee the availability
of the actual agent. Note that the new witness agent knows

where to go, i.e. Si, because arrive

imsg or
i
leavemsg

contains information about the location of Si where α has
just visited. Fig. 2 shows the flow of the protocol.

Fig. 2 Steps in the witness protocol

2.3 Creation of the Witness Agent

As it is mentioned in the previous sub-section, upon

receiving
i
leavemsg , Wi-1 spawns Wi , and Wi travels to

Si. The procedure goes on until α reaches the last
destination in its itinerary. The youngest (i.e., the most
recently created) witness agent is witnessing the actual
agent. On the other hand, the elder witness agents are
neither idle nor terminated; they have another important
responsibility: an earlier witness agent monitors the
witness agent that is just one server closer to the actual
agent in its itinerary. That is:

W0  W1  W2 … Wi-1  Wi  α

Where “” represents the monitoring relation. The above
dependency is named the Witness- Dependency. This
dependency cannot be broken. For instance, if α is in Si,

Wi-1 is monitoring α and Wi-2 is monitoring Wi-1. Assuming
the following failure sequence happen: Si-1 crushes and
then Si crushes. Since Si-1 crushes, Wi-1 is lost, hence no
one monitoring α. This is not desirable. Therefore, a
mechanism to monitor and to recover the failed witness
agents is needed. This is achieved by the preserving the
witness-dependency: the recovery of Wi-1 can be
performed by Wi-2, so that α can be recovered by Wi-1.
Fig.3 shows the witness agent failure scenario.

Fig. 3 The witness agent failure scenario

Note that there are other more complex scenarios, but as
long as the witness-dependency is preserved, agent failure
detection and recovery can always be achieved. In order to
preserve the witness- dependency, the witness agents that
are not monitoring the actual agent receive message from
the witness agent that is monitoring it. That is, Wi sends a
periodic message to Wi-1 in order to let Wi-1 knows that Wi

is alive. This message is labeled as
i
alivemsg . If Wi is

dead, Wi-1 will spawn a new witness agent, namely Wi, in
order to replace the lost witness agent in Si. When Wi

arrives at Si, it re-transmits the message
i
alivemsg to Wi-1.

In order to handle this failure series, the owner of the
actual agent can send a witness agent to the first server S0,
in the itinerary of the agent with a timeout mechanism.
The effect of sending this witness agent is similar to the

case when a witness agent, Wi, fails to receive
1i
alivemsg 

.

This method can recover W0 and the witness-dependency
effectively with an appropriate timeout period.
This procedure consumes a lot of resources along the
itinerary of the actual agent. Then, the number of alive-
witnesses should be decreased as far as possible and
minimize the witness-dependency.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

156

3. Mesh Network

In a mesh network, the nodes are arranged into a k-
dimensional lattice. Communication is allowed only
between neighboring nodes; hence interior nodes
communicate with 2k other nodes [19] . A k-dimensional
mesh has n1× n2× n3× …× nk, where ni is the size of ith
dimension. Fig. 4 illustrates a 4×4 2D-Mesh with 16
nodes.
In a mesh network, two nodes (x1, x2, x3…, xk) and (x'1,
x'2, x'3…, x'k) are connected by an edge if there exist i, j
such that |xi – x'i|=1 and xj=x'j for j≠i.

Fig. 4 A 4×4 two dimensional Mesh

4. Proposed Scheme

In our scheme the assumptions are as follows:

 The network topology is 2D-Mesh. Each agents in
2D-Mesh network are shown as a pair (i, j), where i
is the number of row and j is the number of column.

 Agent itinerates dynamically in the network, i.e. it
doesn’t have any specified path list.

 No failure happens for the owner of the actual agent.
Replication can solve the problem.

4.1 Our Approach

The main objective of our approach is to decrease the
witness-dependency in 2D-Mesh. In this method, agents
are in the nodes of 2D-Mesh graph. The location of each
agent in the graph is shown as a pair (i, j). Assume that the
owner of the actual agent hold an array, W, for the location
of the witness agent. The W is empty at first and is filled
during the actual agent’s itinerary with the indices number
of each witness. When the actual agent travels to a new
server in the 2D-mesh network, it sends a message to
owner after computing and check-pointing the data. This
message contains the node indices which actual agent
currently resides on it. This type of message is denoted

as
,i j

NewWitnessNumbermsg . This message is sent when

computing and check-pointing of data are finished and the

message
i
leavelog is logged, because of assuring that the

agent has finished its task and data stored on the stable
storage. When the owner receives the message, it checks
the new witness indices (i.e. new witness location in the
2D-Mesh is identified by using the number of row and
column) with the existing elements in the witnesses array
from the last to the first for finding its neighbor1. For
example assume a condition which there is a node that
W[e] is its indicator and this node is adjacent to the new
witness; the owner sends a message to the witness (No
new witness) to points to the new witness. This type of

message is denoted as
,

int
i j

Po NewWitnessmsg .

 Fig. 5 shows the movement path of an actual agent from
the position of (1,1) to (3,2).

Fig. 5 The movement of the actual agent

As it can be seen, if the adjacent of nodes are not
considered, then the witness-dependency is same as linear
method. In this case the witness-dependency is as below:

W1,1  W1,2  W1,3  W2,3  W2,2 W3,2… α

If the adjacent of nodes and the properties of 2D-Mesh are
considered for decreasing the witness-dependency in the
Fig. 5, the witness-dependency is decreased due to W1,2
and W2,2 which are adjacent to each other. In this case, the
witness-dependency is as below:

W1,1  W1,2  W2,2 W3,2… α

Fig. 6 shows the decreased witness-dependency on the
graph.

1 In the most case that is considered, the new witness agent was neighbor
with the last elements of array.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

157

Fig. 6 The decreased witness-dependency

The fault tolerance of sending and receiving of the
messages are considered in [11] . Hence, the messages

,i j
NewWitnessNumbermsg and

,
int

i j
Po NewWitnessmsg are not

lost eventually, they are like
i
alivemsg and they can be

recovered as same as recovery message methods which are
presented in [11] .

4.2 The Algorithm

As it is mentioned in sub-section 4.1, it is assumed that the
owner of the actual agent holds an array, W, for the
location of the witness agent, and Index is a pointer that
points to the position of youngest witness (i.e. Index
points to the last element in W). When actual agent α visits

a new node, it sends message
,i j

NewWitnessNumbermsg to

owner after computing and check-pointing the data. This
message contains the node indices of new witness agent.
For example, assume a condition that pair (p, q) is the new
witness indices. These indices compare with the existing
elements of array W. In 2D-Mesh, two nodes (xi, xj) and
(x'i, x'j) are connected by an edge, if |xi – x'i|=1 and xj=x'j
or |xj – x'j|=1 and xi=x'i. Hence pair (p, q) compares with
the value of W[Index-1]1. If they are adjacent then owner

send
,

int
i j

Po NewWitnessmsg to the witness that W[Index-1]

is its indicator in the array W for pointing to the new
witness agent. Let the value of W[Index-1] is Wi,j . In this
case if each of the below conditions is true then they are
adjacent:

|i-p|=1 and j=q

Or

|j-q|=1 and i=p

1 Whereas W[Index] is adjacent with new visited node, the comparison
should be started from W[Index-1]

If the above conditions are not true then Index decreases
by one (i.e. Index=index-1) and then pair (p, q) compares
with another element of array W. The procedure goes on
until all elements of array are compared. If none of the
array elements are adjacent with new witness, then the
location of new witness is added to the end of array list.
Index is succeeded by one (i.e. Index=index+1). The
pseudo code of the algorithm is shown in Fig.7.

Fig.7 The pseudo code of the algorithm

5. Conclusions and Future Work

In this paper, at first, an existing fault tolerance method in
mobile agent systems in linear network topology is
considered. The existing procedure consumes a lot of
resources along the itinerary of the actual agent. Then, an
approach to enhance fault tolerance mobile agent systems
in 2D-Mesh is proposed. In this approach witness-
dependency is decreased. With regard to length of witness
agent deduction, the cost of witness-dependency in 2D-
Mesh network is less than linear network, because the
witness length is decreased. In fact, in this approach the
properties of 2D-Mesh network is used (i.e. nodes
adjacency) for decreasing of witness-dependency.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

158

In the Future work, the following assumptions can be
considered:
 3D-Mesh or k-Dimensional Mesh topology: Topology

of the proposed algorithm is 2D-Mesh and the algorithm
can be considered in 3D-Mesh or each K-Dimensional
Mesh network.

 Hyper-Cube topology: The topology can be
considered in Hyper-Cube Networks.

 The topology can be considered without a
coordinator for holding the array. That is the array
can be part of agent’s data.

References

[1] H.W. Chan, T.Y. Wong, K.M. Wong, and M. R. Lyu.

“Design, Implementation and Experimentation on Mobile
Agent Security for Electronic Commerce Applications.”
Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications.
pp.1871- 1878.

[2] D.Chess, B. Grosof, C. Harrison, D. Levine, C. Parris ,and
G.Tsudik, “Itinerant Agents for Mobile Computing,” IEEE
PersonalComm. Systems, vol. 2, no. 5, pp. 34-49, Oct.
1995.

[3] D. Chess, C.G. Harrison, and A. Kershenbaum, “Mobile
Agents:Are They a Good Idea?” Mobile Agents and
Security, G.Vigna, ed.,pp. 25-47, Springer Verlag, 1998.

[4] D.B. Lange and M. Oshima, “Seven Good Reasons for
Mobile Agents,” Comm. ACM, vol. 45, no. 3, pp. 88-89,
Mar. 1999.

[5] A. Bieszczad, B. Pagurek, and T.White, “Mobile Agents
for Network Management,” IEEE Comm. Surveys, Sept.
1998.

[6] T. Gschwind, M. Feridun, and S. Pleisch, “ADK—Building
MobileAgents for Network and Systems Management from
Reusable Components,” Proc. First Int’l Conf. Agent
Systems and Applications/ Mobile Agents (ASAMA ’99),
Oct. 1999.

[7] K. Takashio, G. Soeda, and H. Tokuda, “A Mobile Agent
Framework for Follow-Me Applications in Ubiquitous
Computing Environment,” Proc. Int’l Workshop Smart
Appliances and Wearable Computing (IWSAWC ’01), pp.
202-207, Apr. 2001.

[8] W. Theilmann and K. Rothermel, “Optimizing the
Dissemination of Mobile Agents for Distributed
Information Filtering,” IEEE Concurrency, pp. 53-61, Apr.
2000.

[9] P. Maes, R.H. Guttman, and A.G. Moukas, “Agents that
Buy and Sell,” Comm. ACM, vol. 42, no. 3, pp. 81-91,Mar.
1999.

[10] S. Pleisch, A. Schiper, “Fault-Tolerant Mobile Agent
Execution,” IEEE Transaction Computer, pages 209- 222,
Feb. 2003.

[11] T. Y. Wong , X. Chen, M. R. Lyu, “Design And Evalution
of A Fault Tolerant Mobile Agent System,”Computer
Science & Engineering Depatment the Chines University of
Hong Kong, Feb 2004.

[12] S. Beheshti , M. Ghiasabadi, M. Sharifnejad, A. Movaghar,
“Fault Tolerant Mobile Agent Systems by using Witness
Agents and Probes, “Proc. fourth Int’l Conf. Sciences of
Electronic, Technologies of Information and
Telecommunications (SETIT 2007- TUNISIA), March
2007.

[13] M. Strasser , K. Pothernel,” System Mechanisms for Partial
Rollback of Mobile Agent Execution.” Proceedings of 20th
International Conference on Distributed Computing
Systems 2000, pp.20-28.

[14] V. F. Nicola, “Check-pointing and the Modeling of
Program Execution Time.” Software Fault Tolerance, M.
Lyu (ed.), John Wiley & Sons, 1994, pp.167-188.

[15] N. Budhirja, K. Marzullo, F.B. Schneider, and S. Toueg,
“The Primary-Backup Approach,” Distributed Systems, S.
Mullender, ed., second ed., pp. 199-216, Reading, Mass.:
Addison-Wesley, 1993.

[16] Q. Xin, Y. Yu, Z. Qin, “Fault Tolerance Issues in Mobile
Agents,” Computer Science & Engineering Department
Univ. of California, San Diego, June 2000.

[17] S. Pleisch, A. Schiper, “FATOMAS – A fault-Tolerant
Mobile Agent System Based on the Agent-Dependent
approach,” IEEE Computer Society Press. To appear in
proceeding of the int’l Conference on Dependable Systems
and Networks, 2001.

[18] S. Pears, J. Xu, C. Boldyreff, “Mobile Agent Fault
Tolerance for Information Retrieval Application: An
Exception Handling Approach,” In proceeding of the Sixth
IEEE International Symposium on Autunomous
Decentralized systems (ISADS’03), 2003.

[19] M. J. Quinn, Designing Efficient Algorithms for Parallel
Computers, University of New Hampshire: McGraw-Hill,
1976.

