
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

94

A Comparison Between Five Models Of Software Engineering 

Nabil Mohammed Ali Munassar1 and A. Govardhan2  
 

     1Ph.D Student of Computer Science & Engineering 

   Jawahrlal Nehru Technological University 

       Kuktapally, Hyderabad- 500 085, Andhra Pradesh, India 

 
2Professor of Computer Science & Engineering  

                Principal JNTUH of Engineering College, Jagityal, Karimnagar (Dt), A.P.,  India 
  

 
 

Abstract 
This research deals with a vital and important issue in computer 
world. It is concerned with the software management processes 
that examine the area of software development through the 
development models, which are known as software development 
life cycle. It represents five  of the  development models namely, 
waterfall, Iteration, V-shaped, spiral and Extreme programming. 
These models have advantages and disadvantages as well. 
Therefore, the main objective of this research is to represent 
different models of software development and make a 
comparison between them to show  the features and defects of  
each model. 
Keywords: Software Management Processes, Software 
Development, Development Models, Software Development Life 
Cycle, Comparison between five models of Software Engineering. 

1. Introduction 

No one can deny the importance of computer in our life, 
especially during the present time. In fact, computer has 
become indispensible in today's life as it is used in  many 
fields of life such as industry, medicine, commerce, 
education and even agriculture. It has become an 
important element in the  industry and technology of 
advanced as well as developing countries. Now a days, 
organizations become more dependent on computer in 
their works as a result of computer technology. Computer 
is considered a time- saving device and its progress helps 
in  executing complex, long, repeated processes in a very 
short time with a high speed. In addition to using 
computer for work, people use it for fun and 
entertainment.  Noticeably, the number of companies that 
produce software programs for the purpose of facilitating 
works of offices, administrations, banks, etc, has 
 
 

increased recently which results in the difficulty of 
enumerating such companies. During the previous four 
decades, software has been developed from a tool used for 
analyzing information or solving a problem to a product in 
itself. However, the early  programming  stages have 
created a number of problems turning  software an 
obstacle to software development particularly those 
relying on computers. Software consists of documents and 
programs that contain a collection that has been 
established to be a part of software engineering 
procedures. Moreover, the aim of software engineering is 
to create a suitable work that construct programs of high 
quality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Explanation of software engineering conception. 

Computer Science Client 

Theories Computer Function Problems 

The Software engineering 

       Tools and techniques to solve problems 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

95

2. Software Process Models  

A software process model is an abstract representation of a 
process. It presents a description of a process from some 
particular perspective as: 
 

1. Specification. 
2. Design. 
3. Validation. 
4. Evolution. 
 
General  Software Process Models  are   
1. Waterfall model: Separate and distinct phases of 

specification and development. 
2. Prototype model. 
3. Rapid application development model (RAD). 
4. Evolutionary development: Specification, 

development and validation are interleaved. 
5. Incremental model. 
6. Iterative model. 
7. Spiral model. 
8. Component-based software engineering : The system 

is assembled from existing components. 
 
There are many variants of these models e.g. formal 
development where a waterfall-like process is used, but 
the specification is formal that is refined through several 
stages to an implementable design[1]. 

3. Five Models 

A Programming process model is an abstract 
representation to describe the process from a particular 
perspective. There are numbers of  general models for 
software processes, like: Waterfall model, Evolutionary 
development, Formal systems development and Reuse-
based development, etc. This research will view the 
following five models : 
1. Waterfall model.  
2. Iteration model. 
3. V-shaped model. 
4. Spiral model.  
5. Extreme model.  
These models are chosen because their features 
correspond to most software development programs. 
 
3.1 The Waterfall Model 

The waterfall model is the classical model of software 
engineering. This model is one of the oldest models and is 
widely used in government projects and in many major 
companies. As this model emphasizes planning in early 
stages, it ensures design flaws before they develop. In 
addition, its intensive document and planning make it 
work well for projects in which quality control is a major 

concern. 

The pure waterfall lifecycle consists of several non-
overlapping stages, as shown in the following figure. The 
model begins with establishing system requirements and 
software requirements and continues with architectural 
design, detailed design, coding, testing, and maintenance. 
The waterfall model serves as a baseline for many other 
lifecycle models. 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Waterfall Model[4]. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 3 Waterfall model[2]. 
The following list details the steps for using the waterfall 

 
System Requirements 

Software Requirements 

Architectural Design  

Detailed Design 

Coding 

Testing 

Maintenance 

Requirements 
Definition 

System and 
Software Design 

Implementation 
and Unit Testing 

Integration and 
System Testing 

Operation and 
Maintenance  



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

96

model: 

1 System requirements: Establishes the components 
for building the system, including the hardware 
requirements, software tools, and other necessary 
components. Examples include decisions on 
hardware, such as plug-in boards (number of 
channels, acquisition speed, and so on), and decisions 
on external pieces of software, such as databases or 
libraries.  

2 Software requirements: Establishes the expectations 
for software functionality and identifies which system 
requirements the software affects. Requirements 
analysis includes determining interaction needed with 
other applications and databases, performance 
requirements, user interface requirements, and so on.  

3 Architectural design: Determines the software 
framework of a system to meet the specific 
requirements. This design defines the major 
components and the interaction of those components, 
but it does not define the structure of each 
component. The external interfaces and tools used in 
the project can be determined by the designer.  

4 Detailed design: Examines the software components 
defined in the architectural design stage and produces 
a specification for how each component is 
implemented.  

5 Coding: Implements the detailed design 
specification.  

6 Testing: Determines whether the software meets the 
specified requirements and finds any errors present in 
the code.  

7 Maintenance: Addresses problems and enhancement 
requests after the software releases. 

In some organizations, a change control board maintains 
the quality of the product by reviewing each change made 
in the maintenance stage. Consider applying the full 
waterfall development cycle model when correcting 
problems or implementing these enhancement requests. 

In each stage, documents that explain the objectives and 
describe the requirements for that phase are created. At the 
end of each stage, a review to determine whether the 
project can proceed to the next stage is held. Your 
prototyping can also be incorporated into any stage from 
the architectural design and after. 

Many people believe that this model cannot  be applied to 
all situations. For example, with the pure waterfall model, 
the requirements must be stated before beginning the 
design, and the complete design must be  stated  before 

starting coding. There is no overlap between stages. In 
real-world development, however, one can discover issues 
during the design or coding stages that point out errors or 
gaps in the requirements. 

The waterfall method does not prohibit returning to an 
earlier phase, for example, returning from the design phase 
to the requirements phase. However, this involves costly 
rework. Each completed phase requires formal review and 
extensive documentation development. Thus, oversights 
made in the requirements phase are expensive to correct 
later. 

Because the actual development comes late in the process, 
one does not see results for a long time. This delay can be 
disconcerting to management and customers. Many people 
also think that the amount of documentation is excessive 
and inflexible. 

Although the waterfall model has its weaknesses, it is 
instructive because it emphasizes important stages of 
project development. Even if one does not apply this 
model, he must consider each of these stages and its 
relationship to his own project [4]. 

 Advantages : 
1. Easy to understand and implement. 
2. Widely used and known (in theory!). 
3. Reinforces good habits:  define-before- design, 

design-before-code. 
4. Identifies deliverables and milestones. 
5. Document driven, URD, SRD, … etc. Published 

documentation standards, e.g. PSS-05. 
6. Works well on mature products and weak teams. 

 
 Disadvantages : 
1. Idealized, doesn’t match reality well. 
2. Doesn’t reflect iterative nature of exploratory 

development. 
3. Unrealistic to expect accurate requirements so 

early in  project. 
4.  Software is delivered late in project, delays discovery  

 of serious errors. 
5. Difficult to integrate risk management. 
6. Difficult and expensive to make changes to   

documents, ”swimming upstream”. 
7. Significant administrative overhead, costly for small   

teams and projects [6]. 
 Pure Waterfall 

This is the classical system development model. It consists 
of discontinuous phases: 

1. Concept.  
2. Requirements.  
3. Architectural design.  



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

97

4. Detailed design.  
5. Coding and development.  
6. Testing and implementation. 

 

Table 1:  Strengths & Weaknesses of Pure Waterfall 

Strengths Weaknesses 

 Minimizes planning 
overhead since it can 
be done up front. 

 Structure minimizes 
wasted effort, so it 
works well for 
technically weak or 
inexperienced staff. 

 Inflexible 

 Only the final phase 
produces a non-
documentation 
deliverable. 

 Backing up to 
address mistakes is 
difficult. 

 
 Pure Waterfall Summary  
The pure waterfall model performs well for products with 
clearly understood requirements or when working with 
well understood technical tools, architectures and 
infrastructures. Its weaknesses frequently make it 
inadvisable when rapid development is needed. In those 
cases, modified models  may be more effective. 
 
 Modified Waterfall 

The modified waterfall uses the same phases as the pure 
waterfall, but is not based on a discontinuous basis. This 
enables the phases to overlap when needed. The pure 
waterfall can also split into subprojects at an appropriate 
phase (such as after the architectural design or detailed 
design). 

 

 

Table 2:  Strengths & Weaknesses of  Modified Waterfall 

Strengths Weaknesses 

 More flexible than the 
pure waterfall model.  

 If  there is personnel 
continuity between the 
phases, documentation 
can be substantially 
reduced.  

 Implementation of easy 
areas does  not need to 
wait for the hard ones.  

 Milestones are more 
ambiguous than the 
pure waterfall.  

 Activities performed 
in parallel are subject 
to miscommunication 
and mistaken 
assumptions.  

 Unforeseen 
interdependencies can 
create problems.  

 Modified Waterfall Summary 

Risk reduction spirals can be added to the top of the 
waterfall to reduce risks prior to the waterfall phases. The 
waterfall can be further modified using options such as 
prototyping, JADs or CRC sessions or other methods of 
requirements gathering done in overlapping phases [5]. 
 
3.2 Iterative Development 
   
The problems with the Waterfall Model created a demand 
for a new method of developing systems which could 
provide faster results, require less up-front information, 
and offer greater flexibility. With Iterative Development, 
the project is divided into small parts. This allows the 
development team to demonstrate results earlier on in the 
process and obtain valuable feedback from system users. 
Often, each iteration is actually a mini-Waterfall process 
with the feedback from one phase providing vital 
information for the design of the next phase. In a variation 
of this model, the software products, which are produced 
at the end of each step (or series of steps), can go into 
production immediately as incremental releases. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Iterative Development. 

 

3.3 V-Shaped  Model 

Just like the waterfall model, the V-Shaped life cycle is a 
sequential path of execution of processes.  Each phase 
must be completed before the next phase begins.  Testing 
is emphasized in this model more than the waterfall 
model.  The testing procedures are developed early in the 
life cycle before any coding is done, during each of the 
phases preceding implementation. Requirements begin the 
life cycle model just like the waterfall model.  Before 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

98

development is started, a system test plan is created.  The 
test plan focuses on meeting the functionality specified in  
requirements gathering. 

The high-level design phase focuses on system 
architecture and design.  An integration test plan is created 
in this phase in order to test the pieces of the software 
systems ability to work together. However, the low-level 
design phase lies where the actual software components 
are designed, and unit tests are created in this phase as 
well. 

The implementation phase is, again, where all coding 
takes place.  Once coding is complete, the path of 
execution continues up the right side of the V where the 
test plans developed earlier are now put to use. 

 Advantages 

1. Simple and easy to use.  
2. Each phase has specific deliverables.  
3. Higher chance of success over the waterfall model 

due to the early development of test plans during the 
life cycle.  

4. Works well for small projects where requirements are 
easily understood. 
  
 

 

 

 

 

 

 

 

 

Fig. 5 V-Model [3] 

 Disadvantages 

1. Very rigid  like the waterfall model. 
2.  Little flexibility and adjusting scope is difficult and 

expensive. 
3. Software is developed during the implementation phase,     
       so no early prototypes of the software are produced.  
4. This Model does not provide a clear path for problems 

found during testing phases [7]. 
 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 V-Shaped Life Cycle Model[7]. 

 

3.4 Spiral Model 

The spiral model is similar to the incremental model, with 
more emphases placed on risk analysis.  The spiral model 
has four phases: Planning, Risk Analysis, Engineering and 
Evaluation.  A software project repeatedly passes through 
these phases in iterations (called Spirals in this 
model).  The baseline spiral, starting in the planning 
phase, requirements are gathered and risk is 
assessed.  Each subsequent spiral builds on the baseline 
spiral. Requirements are gathered during the planning 
phase.  In the risk analysis phase, a process is undertaken 
to identify risk and alternate solutions.  A prototype is 
produced at the end of the risk analysis phase. Software is 
produced in the engineering phase, along with testing at 
the end of the phase.  The evaluation phase allows the 
customer to evaluate the output of the project to date 
before the project continues to the next spiral. 

In the spiral model, the angular component represents 
progress, and the radius of the spiral represents cost. 

 Advantages 
1. High amount of risk analysis.  
2. Good for large and mission-critical projects.  
3. Software is produced early in the software life cycle. 
 

 Disadvantages 
1. Can be a costly model to use.  
2. Risk analysis requires highly specific expertise.  
3. Project’s success is highly dependent on the risk 

analysis phase.  
4. Doesn’t work well for smaller projects [7]. 

 

Requirements System Test 
Planning 

System 
Testing 

High Level  
Design 

Integration 
Test 

Planning 

Unit Test 
Planning 

Implementation 

Low Level 
 Design 

Unit 
Testing 

Integration 
Testing 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

99

 Spiral model sectors 
1. Objective setting :Specific objectives for the phase are 

identified. 
2. Risk assessment and reduction: Risks are assessed and 

activities are put in place to reduce the key risks. 

3. Development and validation: A development model 
for the system is chosen  which can be any of the 
general models. 

4. Planning: The project is reviewed and the next phase 
of the spiral is planned [1]. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 7 Spiral Model of the Software Process[1]. 

 
 WinWin Spiral Model 
The original spiral model [Boehm 88] began each cycle of 
the spiral by performing the next level of elaboration of 
the prospective system's objectives, constraints and 
alternatives. A primary difficulty in applying the spiral 
model has been the lack of explicit process guidance in 
determining these objectives, constraints, and alternatives. 
The Win-Win Spiral Model [Boehm 94] uses the theory  
W (win-win) approach [Boehm 89b] to converge on a 
system's next-level objectives, constraints, and 
alternatives. This Theory W approach involves identifying 
the system's stakeholders and their win conditions, and 
using negotiation processes to determine a mutually 
satisfactory set of objectives, constraints, and alternatives 
for the stakeholders. In particular, as illustrated in the 
figure, the nine-step Theory W process translates into the 
following spiral model extensions: 
1. Determine Objectives: Identify the system life-cycle   
stakeholders and their win conditions and establish initial 
system boundaries and external interfaces. 
2. Determine Constraints: Determine the conditions 

under which the system would produce win-lose or lose-
lose outcomes for some stakeholders. 
3. Identify and Evaluate Alternatives: Solicit 
suggestions from stakeholders, evaluate them with respect 
to stakeholders' win conditions, synthesize and negotiate 
candidate win-win alternatives, analyze, assess, resolve 
win-lose or lose-lose risks, record commitments and areas 
to be left flexible in the project's design record and life 
cycle plans. 
4. Cycle through the Spiral: Elaborate the win conditions 
evaluate and screen alternatives, resolve risks, accumulate 
appropriate commitments, and develop and execute 
downstream plans [8]. 
 
3.5 Extreme Programming 

An approach to development, based on the development 
and delivery of very small increments of functionality. It 
relies on constant code improvement, user involvement in 
the development team and pair wise programming . It can 
be difficult to keep the interest of customers who are 
involved in the process. Team members may be unsuited 
to the intense involvement that characterizes agile 
methods. Prioritizing changes can be difficult where there 
are multiple stakeholders. Maintaining simplicity requires 
extra work. Contracts may be a problem as with other 
approaches to iterative development. 

 

 

 

 

 

 

 
 

Fig. 8 The XP Release Cycle 

 
 Extreme Programming Practices 
Incremental planning: Requirements are recorded on 
Story Cards and the Stories to be included in a release are 
determined by the time available and their relative priority. 
The developers break these stories into development 
"Tasks". 
Small Releases: The minimal useful set of functionality 
that provides business value is developed first. Releases of 
the system are frequent and incrementally add 
functionality to the first release. 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

100

Simple Design: Enough design is carried out to meet the 
current requirements and no more. 
Test first development: An automated unit test 
framework is used to write tests for a new piece of 
functionality before functionality itself is implemented. 
Refactoring: All developers are expected to re-factor the 
code continuously as soon as possible code improvements 
are found. This keeps the code simple and maintainable. 
Pair Programming: Developers work in pairs, checking 
each other’s work and providing support to do a good job. 
Collective Ownership: The pairs of developers work on 
all areas of the system, so that no islands of expertise 
develop and all the developers own all the code. Anyone 
can change anything. 
Continuous Integration: As soon as work on a task is 
complete, it is integrated into the whole system. After any 
such integration, all the unit tests in the system must pass. 
Sustainable pace: Large amounts of over-time are not 
considered acceptable as the net effect is often to reduce 
code quality and medium term productivity. 
On-site Customer: A representative of the end-user of the 
system (the Customer) should be available full time for the 
use of the XP team. In an extreme programming process, 
the customer is a member of the development team and is 
responsible for bringing system requirements to the team 
for implementation. 

 
 XP and agile principles 
1. Incremental development is supported through small, 

frequent system releases. 
2. Customer involvement means full-time customer 

engagement with the team. 
3. People not process through pair programming, 

collective ownership and a process that avoids long 
working hours. 

4. Change supported through regular system releases. 
5. Maintaining simplicity through constant refactoring of 

code [1]. 
 
 Advantages 
1. Lightweight methods suit small-medium size projects. 
2. Produces good team cohesion. 
3. Emphasises final product. 
4. Iterative. 
5. Test based approach to requirements and quality 

assurance. 
 

 Disadvantages 
1. Difficult to scale up to large projects where 

documentation is essential. 
2. Needs experience and skill if not to degenerate into 

code-and-fix. 
3. Programming pairs is costly. 

4. Test case construction is a difficult and specialized 
skill [6]. 

4. Conclusion and Future Work 

After completing  this research , it is concluded  that :  
1. There are many existing models for  developing  

systems for different sizes of projects and 
requirements. 

2. These models were  established  between 1970 and 
1999. 

3.  Waterfall model and spiral model are used commonly 
in developing systems. 

4.  Each model has advantages and disadvantages for the 
development of systems , so each model tries to 
eliminate the disadvantages of the previous model 
 

 Finally, some topics can be suggested for future works: 
 

1.  Suggesting a model to simulate advantages that are 
found in different models to software process 
management. 

2.  Making a comparison between the suggested model 
and the previous software processes management 
models. 

3.  Applying the suggested model to many projects to 
ensure of its suitability and documentation to explain 
its mechanical work. 

 
REFERENCES 
[1] Ian Sommerville, "Software Engineering", Addison 
Wesley, 7th edition, 2004. 
[2] CTG. MFA – 003, "A Survey of System Development 
Process Models", Models for Action Project: Developing 
Practical Approaches to Electronic Records Management 
and Preservation, Center for Technology in Government 
University at Albany / Suny,  1998 . 
[3] Steve Easterbrook, "Software Lifecycles", University 
of Toronto Department of Computer Science, 2001. 
[4] National Instruments Corporation, "Lifecycle Models", 
2006 , http://zone.ni.com. 
[5] JJ Kuhl, "Project Lifecycle Models: How They Differ 
and When to Use Them" 2002,  www.business-
esolutions.com. 
[6] Karlm, "Software Lifecycle Models', KTH,  2006 .  
[7] Rlewallen, "Software Development Life Cycle 
Models", 2005 ,http://codebeter.com. 
[8] Barry Boehm, "Spiral Development: Experience, 
Principles, and Refinements", edited by Wilfred J. 
Hansen,  2000 . 
 
Nabil Mohammed Ali Munassar was born in Jeddah, Saudi 
Arabia in 1978. He studied Computer Science at University of 
Science and Technology, Yemen from 1997 to 2001. In 2001 he 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

101

received the Bachelor degree. He studied Master of Information 
Technology at  Arab Academic, Yemen, from 2004 to 2007. Now 
he Ph.D. Student 3rd year of CSE at Jawaharlal Nehru 
Technological University (JNTU), Hyderabad, A. P., India. He is 
working as Associate Professor in Computer Science & 
Engineering College in University Of Science and Technology, 
Yemen. His area of interest include Software Engineering, System 
Analysis and Design, Databases and Object Oriented 
Technologies.     

 
Dr.A.Govardhan: received Ph.D. degree in Computer Science 
and Engineering from Jawaharlal Nehru Technological University 
in 2003, M.Tech. from Jawaharlal Nehru University in 1994 and 
B.E. from Osmania University in 1992. He is Working as a 
Principal of Jawaharlal Nehru Technological University, Jagitial. He 
has published around 108 papers in various national and 
international Journals/conferences. His research of interest 
includes Databases, Data Warehousing & Mining, Information 
Retrieval, Computer Networks, Image Processing, Software 
Engineering, Search Engines and Object Oriented Technologies.                                
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 


