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Abstract 

Hybrid Bond Graph (HBG) is a Bond Graph-based modelling 
approach which provides an effective tool not only for dynamic 
modeling but also for fault detection and isolation (FDI) of 
switching systems. Bond graph (BG) has been proven useful for 
FDI for continuous systems. In addition, BG provides the causal 
relations between system’s variables which allow FDI algorithms 
to be developed systematically from the graph. There are many 
methods that exploit structural relations and functional 
redundancy in the system model to find efficient solutions for the 
residual generation and residual evaluation steps in FDI of 
switching systems. This paper describes two different techniques, 
quantitative and qualitative, based on common modelling 
approach that employs HBG. In quantitative approach, global 
analytical redundancy relationships (GARRs) are derived from 
the HBG model with a specified causality assignment procedure. 
GARRs describe the system behaviour at all of its operating 
modes. In qualitative approach, functional redundancy can be 
captured by a Temporal Causal Graph (TCG), a directed graph 
that may include temporal information. 
Keywords: Hybrid Bond Graph, Global Analytical Redundancy 
Relation, Temporal Causal Graph. 

1. Introduction 

Several physical systems with switching are nonlinear 
dynamic systems. When switching occurs, the system may 
change its mode of operation. If a system has n switching 
states, then it gives rise to 2n possible operating modes. 
One way to represent mode switching is to generate 2n sets 
of differential-algebraic equations (DAEs). Each set 
describes continuous behaviour of system in that particular 
mode. In practice, not all modes are practically realizable. 
Many recent researches on switching systems have been 
devoted to the synthesis of control laws that guarantee not 
only the stability but also good performances [1]. The 
control algorithms are generally developed considering 
that the system works in normal situation. Unfortunately, 
when failures occur, these algorithms become inefficient 
and even dangerous for the system itself or its 
environment. In order to reach higher performances and 
more rigorous security specifications, a Failure Detection 
and Isolation system has to be implemented. The literature 
in that field is abundant and different solutions have been 
proposed for continuous or discrete, linear and non linear 

systems. However, only few solutions have been proposed 
for switching systems.  
Traditionally, two different communities: (1) the Systems 
Dynamics and Control Engineering (FDI) community 
(e.g., [2,3]), and (2) the Artificial Intelligence Diagnosis 
(DX) community (e.g., [4,5]), have developed model-
based diagnosis approaches. The two communities have 
employed different kinds of models, and made different 
assumptions concerning robustness of the generated 
solution with regard to modeling errors, measurement 
noise, and disturbances. The general principle of all 
model-based FDI approaches is to compare the expected 
behavior of the system, given by model, with its actual 
behavior. The first step of a FDI procedure consists in 
generating a set of residuals. These residuals are special 
signals that reflect the discrepancy between the two 
behaviors. Analytic Redundancy Relation (ARR) methods 
are classically used for residual generation in the FDI 
community [6]. The DX community has developed 
methods such as possible conflicts [7,8], and analysis of 
temporal causal graphs [9,10] for diagnosis of continuous 
systems. These methods are based on the structural 
analysis of dynamic models, much like the ARR schemes 
developed by the FDI community. The two communities 
use different algorithms, but the overall framework for 
fault isolation is similar, defined by a two-step process: (i) 
residual generation, followed by (ii) residual evaluation 
[2,3].  
In this work, we focus on the Hybrid Bond Graph as 
unified graphical method of modeling and diagnosis of 
switching systems. There are two main approaches while 
using HBGs: those who use switching elements with fixed 
causality [11,12], and those who use ideal switching 
elements which changing causality [13]. Therefore, we 
start with common modeling framework, hybrid bond 
graph, to describe and compare the ARR approach 
developed by [14] with temporal causal graph based 
diagnosis [15,16]. In particular, the residual generation 
and evaluation algorithms used by the two methods are 
presented and a discussion between the algorithms is 
established. 
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2. Quantitative hybrid bond graph-based 
fault detection and isolation  

2.1 Analytical Redundancy Relations (ARRs) and 
Global ARRs  

An ARR obtained from a physical law represents some 
conservation phenomena: Bernoulli equation etc. in 
hydraulic domain; Newton’s law etc. in mechanical 
domain; and Kirchoff’s law etc. in electrical domain. The 
ARRs for ordinary (non hybrid) system can be derived 
algorithmically from derivative causality bond graph 
model or Diagnostic Bond Graph (DBG) [17,18]. Whereas 
the bond graph model for hybrid system with discrete 
mode changes is called the Hybrid Bond Graph, and the 
GARRs are derived in similar manner from differentially 
causalled HBG or Diagnostic Hybrid Bond Graph 
(DHBG). A DHBG is a HBG which describes the 
behavior of a hybrid system at all modes based on unified 
set of causality assignment [19]. In other words, for a 
given DHBG, a reassignment of causality to the HBG is 
not required to describe the behavior of the system at 
different operating modes. This unique feature of DHBG 
implies that the causal paths of graph maintain the same 
structure, except that some of the sub-paths are eliminated 
due to the OFF states of the controlled junctions. Based on 
these uniform causal paths, a set of unified relations is 
derived to describe the hybrid system at all modes. This 
set of relations which is called Global ARRs (GARRs), are 
utilized as ARRs for the hybrid systems. Likewise for 
continuous system, the GARRs provide a convenient tool 
to deduce the fault detectability and isolability of a hybrid 
system. To illustrate how to derive the GARR for FDI 
application, consider the three coupled tanks depicted in 
Fig. 1. These tanks are connected by pipes which can be 
controlled by different valves. Water can be filled into the 
left and right tanks using two identical pumps. 
Measurements available from the process are the 
continuous water levels hi(t) of each tank. The connection 
pipe, with valve R12 (res. R23), between the tank 1 and 2 
(res. 2 and 3) is placed at a height of 0.5m (res. 0.7m). 
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P Qp1 h1 h2

C3

R23

h3 PQp2

0.5 0.7

Pc1 Pc2 Pc3

12Rf
23Rf

1Rf 2Rf

Fig. 1  Three Tank System. 

Fig. 2 shows the hybrid bond graph model of this system. 
The two flow sources into tanks 1 and 3 are indicated by 
Sf1 and Sf2, respectively. The tank capacities are shown as 
C1, C2 and C3. The pipes are modeled by resistances R1, 
R12, R23 and R2. Pumps and valves are modeled by 
controlled junctions, which are shown in the figure as 
junctions with subscripts (11, 12, 15, and 16). The control 
signals for turning these junctions on and off are generated 
by the finite state automata in Fig. 2. For autonomous 
transitions in the system, also modeled by controlled 
junctions, the transition conditions computed from system 
variables (junctions 13 and 14). A mode in the system is 
defined by the state of the six controlled junctions in the 
hybrid bond graph model. Therefore, theoretically the 
system can be in 62  different modes. 
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 Fig. 2  HBG of the three tank system. 

Fig. 3 shows the DHBG model of the hybrid tank system 
deduced from the three step procedure Hybrid Procedure 
Assignment Causality Sequential (SCAPH) and Model 
Approximation (MA) detailed in [19]. First step, a Rs 
component is added to every sensor junction; in this 
example a very-high resistive component is added to the 
junction 01, 02 and 03. The second step is to apply the 
SCAPH algorithm. In this step, all controlled junction are 
assigned with their preferred causality. As shown in Fig. 
3, the output variables of the controlled-junctions 1c1 and 
1c2 ( 5e  and 10e , respectively) are assigned as inputs of the 
1-port component ( 12R  and 23R , respectively). There is no 
source connected to the controlled-junction. Then the two 
sources Qp1 and Qp2 are assigned with their preferred 
causality. Since the DHBG is required to generate the 
GARR, the three storage components C1, C2 and C3 are 
assigned with their preferred derivative causality. We 
extend the causal implication using the components 
constraints to remain bonds to complete the SCAPH 
algorithm. The final step is to eliminate every Rs that is in 
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indifferent causality. In our case Rs added to the junction 
01 and 03 are redundant and, therefore, are removed from 
the DHBG model of Fig. 3. 
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Fig. 3  DHBG of the three tank system. 

The constitutive relation of the Rs component connected to 
the junction 02 is 8 0f = . From the DHBG, the constitutive 
relations of junctions 01, 1c1, 02, 1c2 and 03 are given by the 
following equations: 
 
Junction 01 

1 2 3 1 4 0f f f fα− − − =    (1) 
Junction 1c1  

 4 5 6 0e e e− − =
    (2) 

Junction 02   
 1 6 7 8 2 9 0f f f fα α− − − =    (3) 

Junction 1c2  

 9 10 11 0e e e− − =                  (4) 
Junction 03 

 2 11 14 12 13 0f f f fα + − − =    (5) 
Where  
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Three structurally independent GARRs can be generated 
from (1), (3) and (5) after eliminating the unknown 
variables and obtained as follows: 
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2.2 Fault detectability and fault isolability  

Unlike continuous systems, hybrid systems are multiple 
modes in nature. This feature suggests that the system’s 
fault detectability and fault isolability are required to be 
evaluated at different operating modes for effective FDI 
analysis and designs. The unified characteristic of the 
GARRs provide a convenient way to generate the Fault 
Signature Matrix (FSM) of each operating mode. Table 1 
shows the FSM of the three tank system and table 2 
describes the modes. The fault detectability and fault 
isolability of each parameter is gained from the {Db, Ib} 
values of the four FSMs. This information can be 
summarized in table 3. 

Table 1: FSM for the three tank system 

 GARR1 GARR2 GARR3 Db Ib 

R1 1 0 0 1 0 
C1 1 0 0 1 0 
R12 α1 α1 0 α1 α1 
C2 0 1 0 1 1 
R23 0 α2 α 2 α2 α2 
C3 0 0 1 1 0 
R2 0 0 1 1 0 
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Table 2: Modes of the system 
Modes α1 α2 
Mode 1 1 1 
Mode 2 1 0 
Mode 3 0 1 
Mode 4 0 0 

Table 3: Fault Detectability and fault Isolability of components 
θ  Detectability Isolability 
R1 all-mode Nil 
C1 all-mode Nil 
R12 Mode 1, 2 mode 1, 2 
C2 all-mode all-mode 
R23 Mode 1, 3 mode 1, 3 
C3 all-mode Nil 
R2 all-mode Nil 

 
In this work, MATLAB 7.0 is used to simulate the model 
of the tank system. The parameters of the system are fixed 
as follow; R1= R12= R23= R2=1m-1s-1, C1= C2= C3=1kg-

1m4s2, and simulation time is fixed to 10s with sampling 
time ts=0.01s. The inputs Qp1(t), Qp2(t) are presented in 
Fig. 4. 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

t(s)

Q
p1

(k
g/

s)

 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

t(s)

Q
p2

(k
g/

s)

 

Fig. 4  Inputs on the system. 

A fault is simulated in R12 component where its parametric 
value changes abruptly from 1 to 5 at t=1s. The fault 
profile is shown in Fig. 5. Figure 6 depicts the measured 
variables and the switches signals. 
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Fig. 5  Fault profile in R12 component. 
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Fig. 6  Plot of measured variables and operating modes alpha 1 and 2. 

The residuals GARR1, GARR2 and GARR3 due to the 
fault in R12 are shown in Fig. 7 where line denotes the 
thresholds re 1 2 30.02, 0.01and 0.01ε ε ε= ± = ± = ± . 
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Fig. 7  Residuals responses for single fault in R12 component. 

In general, if the residual exceeds the predetermined 
threshold, system is considered as faulty. According to the 
FSM tables, we can easy deduce that the faults in R12 
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initiate at Mode 4, i.e. 1 20, 0α α= = , which is a non-
observable mode. Hence the fault can not be detected until 
the system enters a mode in which fault is detectable, i.e. 
at time t=1.7s (see Fig. 6) when the system change to the 
Mode 2 ( 1 21, 0α α= = ). Fig. 7 reveals that GARR1 and 
GARR2 are sensitive to fault. From the FSM table at that 
mode, R12 has fault signature [1 1 0]. According to the 
FSM table 3, R12 is not detectable at Mode 3. 

3. Qualitative hybrid bond graph-based 
detection and isolation 

3.1 Temporal Causal Graph and Parametrized 
Causality  

The DX community from the field of Artificial 
Intelligence, have developed a number of diagnosis 
algorithms based on consistency-based techniques [5]. 
There are many works in the literature that use the BG and 
HBG modeling language for this purpose. For example, 
[9] developed a diagnosis schema, which called 
TRANSCEND, based on the qualitative analysis of fault 
transient information for diagnosis of continuous systems. 
Since hybrid systems cannot be described by a single 
continuous or discrete event model, [20] extend the 
TRANSCEND system to Hybrid TRNASCEND where the 
diagnosis algorithms use a combination of qualitative and 
quantitative reasoning mechanisms. Authors in [21] 
propose a qualitative event-based approach to fault 
diagnosis of hybrid systems that extends the 
TRANSCEND and Hybrid TRANSCEND methodologies 
to incorporating discrete faults. 
In all proposed frameworks, system uses a Temporal 
Causal Graph (TCG) model in order to analysis fault 
transients. Then, the diagnosis is based on this analysis, 
where observed deviations from nominal behavior 
expressed in qualitative form are compared against 
qualitative predictions of faulty behavior, i.e., fault 
signature, to isolate faults. For a particular mode, the TCG 
is constructed based on the system equations for that 
mode. Using the bond graph model this process is made 
easy. First, causality is assigned using SCAP [22], or, in 
the case of HBGs, may be reassigned based on the 
assignment of the previous mode using Hybrid SCAP 
[22,23,24]. After that, the bonds are converted to system 
variables and the bond graph elements are converted into 
labeled edges connecting the variables of their associated 
bonds (see Fig. 8). Signal links are converted into single 
edges, with the qualitative label corresponding to the 
qualitative relationship between the variables. 

 

Fig. 8  Temporal Causal Graph transformations. 

Fig. 9 shows a bond graph of the three-tank system and its 
corresponding TCG in the case when control junctions are 
both in mode OFF.  
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Fig. 9  Temporal Causal Graph of Three Tank System in mode 00. 

The numbered bonds are converted to corresponding 
variables with subscript indicating the bond number. For 
example, bond 3 becomes 3e and 3f . The resistor relates 

these two variables, i.e.,
3 3

1

1
f e

R
= . The causality of the 

bond indicates that the 0-junction is imposing effort on 1R , 
and 1R is imposing flow on the 0-junction. Therefore, the 

causal relationship is from 3e to 3f . The label is 1R , which 
corresponds to the constituent equation of the resistor in 
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the given causality. For the capacitance, the relationship 
between 2f and 2e is an integration, hence the dt label. 
Junctions sum one type of variable according to the bond 
signs, and set the other type equal. For the 0-junction, 
bond 2 is determining the effort of the junction, so 1e and 

3e are set equal to 2e . According to the bond 

signs, 2 1 3f f f= − . Since 2f must be determined, 1f and 

3f causally affect 2f with labels +1 and -1, respectively. 
In order to deal with the change of causality, the TCG can 
be derived for each possible system configuration or 
mode. However, in case of many locally acting switches, 
the combinatorial explosion quickly leads to an intractable 
problem. These problems can be mitigated to some extent 
by dynamically generating the TCG of each possible 
system mode in response to a failure. This may still result 
in a problem with large computational complexity which 
can be further reduced by measuring system variables that 
indicate specifically which local switches may have 
occurred and predictions for each of the variables that 
determine different causal assignments are required to be 
made and analyzed [25]. Once a set of possible TCGs is 
available, Gaussian decision techniques have been applied 
to compute the most likely mode of continuous behavior 
[9]. Others attention to hybrid diagnosis [26] concentrates 
on efficiently processing a set of TCGs. [27] describes 
how a hybrid model can be made amenable to the 
diagnosis algorithms that were developed in [28] by 
systematically generating one parametrized TCG. In this 
graph, the directed links are enabled by conditionals that 
correspond to the mode in which these links are present. 
The result is a set of predictions that are parametrized by 
the state of the local switches and the diagnosis problem 
then becomes one of constraint satisfaction [16]. The 
solution to this constraint satisfaction problem contains the 
possible parameter changes (i.e., the faults) and the effect 
on the system mode that this is required to have. 

3.2 Parametrized Causality: Temporal Causal Matrix  

To derive qualitative predictions, the system may be 
written as a directed graph that captures the causal 
(directed) relations between system variables [27]. Hence, 
the TCG can be represented by a weighted adjacency 
matrix where the columns are cause and rows are the 
effect variables and the entries capture the parameters on 
the graph edges. This is called the Temporal Causal 
Matrix (TCM). In the case of switched systems, modeled 
discontinuities result in causal changes. Therefore, the 
TCM may take several different forms and so do the 
corresponding predictions of future behavior, depending 
on whether a mode change occurs. To handle the change 
in TCM, the causal relations can be parametrized to make 

them dependent on the mode of operation. To this end, 
first the system is described in a noncausal form by using 
implicit equations. An implicit model of the three-tank 
(see Fig. 1) consists of the following equations: 
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where λ represents the time differentiation operator and λ-1 
indicates integration over time. From Eq. (9.1), i.e. 

( ) ( )1 1 12 2 1 121 0c R C RP P P fα α− + + + − = , in case the water 

in tank 1 or tank 2 reach the level 0.5 the pipe 12R  become 
conducting, α1 = 1, and 1 2 12c c RP P P− = , else, 1 0α = , and 

12 0Rf = . The TCM for this system of equations contains 
the relations between each of the variables. For example, 
Eq. (9.6) embodies a temporal relation between 

1cP and 1cf and Eq. (9.2) a relation between 2cP , 3cP and 

23RP that is only active when α2= 1. 
In TRANSCEND framework, only the three values − , 
0 ,+  are used to indicate values that are too low, normal, 
and too high, with respect to some nominal value, 
respectively. For example, a value of a model variable that 
is measured to be above its nominal value is marked+ . In 
case the outflow through pipe line 12R of the tank system 

in Fig. 1 is too high, this is represented by 12Rf
+ . To find 

parameter deviations, a back propagation algorithm is used 
in TRANSCEND framework [27]. In qualitative matrix 
algebra this is equivalent to repeated multiplication of the 
initial deviation with the transpose TCM. Next, 
predictions of future system behavior are generated for 
each of the possible parameter deviations. To achieve a 
suffiently high order prediction for the measured variable 
the initial deviation is repeatedly multiplied with the TCM. 
The TCM is derived from an implicit model formulation, 
Eq. (9), that includes mode selection parameters, 

iα , to 
switch between equations. The possible causal 
assignments of higher relations are then made mutually 
exclusive by introducing selection parameters [27]. The 
TCG for three thank plant is shown in Fig. 10. Junctions 
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and resistors define instantaneous magnitude relations, and 
capacitors and inertias define temporal effects on causal 
edges. For this example, to simplify the TCG structure, 
all = links and corresponding variables have been 
removed. 
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Fig. 10  Temporal Causal Graph of Three Tank System. 

The resulting TCM is given by: 
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The predictions of the TCM are parametrized by the active 
mode. This leads to more efficient diagnosis compared to 
the use of a bank of TCMs, which, in this case of two 
switches, would consist of four TCMs that need to be 
processed separately. The fault detectability and fault 
isolability of each parameter is gained from the {Db, Ib} 
values of the four FSMs. This information can be 
summarized in tables 4, 5, 6, 7 and 8. 
 

Table 4: FSM at mode 1 
( 1 2 1α α= = ) 

Mode 1 1cP  2cP  3cP  Db Ib 

1R+
 0+ 00 00 1 1 

1C−  +- 0+ 00 1 1 

12R+  0+ 0- 00 1 1 

2C−  0+ +- 0+ 1 1 

23R+  00 0+ 0- 1 1 

3C−  00 0+ +- 1 1 

2R +  00 00 0+ 1 1 

 

Table 5: FSM at mode 2 
( 1 20, 1α α= = ) 

Mode 2 1cP  2cP  3cP Db Ib 

1R+
 0+ 00 00 1 1 

1C−  +- 0+ 00 1 1 

12R+  0+ 0- 00 1 1 

2C−  0+ +- 00 1 1 

23R +  00 00 00 0 0 

3C−  00 00 +- 1 1 

2R+  00 00 0+ 1 1 

 
 
 

 

Table 6: FSM at mode 3 
( 1 20, 1α α= = ) 

Mode 3 1cP 2cP 3cP Db Ib 

1R+
 0+ 00 00 1 1 

1C−  +- 00 00 1 1 

12R+  00 00 00 0 0 

2C−  00 +- 0+ 1 1 

23R+  00 0+ 0- 1 1 

3C−  00 0+ +- 1 1 

2R+  00 00 0+ 1 1 

 

Table 7: FSM at mode 4 
( 1 2 1α α= = ) 

Mode 4 1cP  2cP  3cP Db Ib 

1R+
 0+ 00 00 1 1 

1C−  +- 00 00 1 1 

12R+  00 00 00 0 0 

2C−  00 +0 00 1 1 

23R +  00 00 00 0 0 

3C−  00 00 +- 1 1 

2R+  00 00 0+ 1 1 

 

Table 8: Fault Detectability and fault Isolability of components 

θ  Detectability Isolabilit
y 

1R+
 all-mode all-mode 

1C−  all-mode all-mode 

12R+  mode 1, 2 mode 1, 2 

2C−  all-mode all-mode 

23R+  mode 1, 3 mode 1, 3 

3C−  all-mode all-mode 

2R+  all-mode all-mode 

4. Conclusions and discussion 

In this paper, causal properties of bond graphs are used to 
generate the elimination schemes such that direct and 
deduced redundancies can be expressed only in terms of 
known process variables. First, a quantitative fault 
diagnosis framework for hybrid systems is developed 
basing on HBG and on a set of unified constraint relations 
called global analytical redundancy relations (GARRs). 
These relations can be derived systematically from the 
diagnostic hybrid bond graph (DHBG). The GARRs 
explicitly show the system component fault detectability 
and fault isolability and generate alarm signals for 
effective and efficient fault detection and isolation (FDI). 
The quantitative method treats sensor, actuator and 
parameter faults which are of three types abrupt, 
progressive and intermittent. Noise and robustness issues 
are considered in such method. The application of the 
quantitative diagnosis is constrained to both open and 
closed loop systems. However, the subset of the equations 
of complex models with implicit relations, complex non-
linearities, and algebraic loops, etc., cannot be resolved.  
In addition to the quantitative method, another qualitative 
approach dealing with temporal causal graph (TCG) is 
used. This method allows one to ameliorate fault isolation, 
it treats only faults parameter indeed, noise and robustness 
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issues are not considered in such diagnosis and only 
abrupt faults are handled. The application of this method is 
constrained to only open-loop systems because it relies on 
temporal trends of systems evolution obtained from the 
measurements which may not show any deviation if they 
are controlled. It is well known that controllers try to hide 
the fault effects. The qualitative approach overcomes 
limitations of quantitative schemes, such as convergence 
and accuracy problems in dealing with complex non-
linearities and lack of precision of parameter values in 
system models. The qualitative reasoning scheme is fast, 
but it has limited discriminatory ability.  
As presented in this article, a single approach for 
diagnosis has limitations, and it does not satisfy all the 
requirements to perform a good diagnosis. Hence, several 
works can be found in literatures that combine diagnostic 
approaches. The objective is to find two or several 
approaches that complete each other, in a way that the 
qualities of one approach can overcome the drawback of 
another. In a future work, we will focus on complex 
models with implicit relations, complex non-linearities, 
and algebraic loops. 
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