

Performance evaluation of apriori with memory mapped

files

Anuradha.T1, Dr.Satya Pasad.R2and Dr.Tirumalarao.S .N3

 1Department of ECM,KL University

Guntur,A.P.,India

2 Department of CS&Engineering, Acharya Nagarjuna University

Guntur,A.P.,India

3 Department of CSE,Narasaraopeta Engineering college

Guntur,A.P.,India

Abstract

The concept of memory mapped files reduces the I/O data

movement by mapping file data directly to the process address

space. This is best suitable for the data mining applications which

involve accessing large data files. The recent improvement in

parallel processor architectures is the multi-core architectures.

To get the real benefit from these architectures we have to

redesign the existing serial algorithms so that they can be

parallelized on multi-core architectures. OpenMP is an API for

parallel programming which make a serial program to run in

parallel without much redesigning job. Our main concern in this

paper is to evaluate the performance of apriori using linux

mmap() function compared to fread() function in both the serial

and parallel environments. Experiments are conducted with both

simulated and standard datasets on multi-core architectures using

openMP threads. Our experiments show that mmap() function

gives better results than fread() function with both serial as well

as parallel implementations of apriori on dual core.

Keywords: apriori, fread(), mmap(), multi-core, OpenMP

1. Introduction

The concept of memory mapping of files was introduced to

reduce the overhead of file management. Mmap() function

is a unix/linux function which simplifies processing of file

data (1).The applications which need huge input/output

overhead like network or other applications are using

mmap()(2).Many unix/linux functions like grep, fgrep, egrep

and the unix pipe facility use memory mapping concept for

large data files. Avadis Tevanian describes an approach of

file mapping facility under Mach operating system and

mentions that useful performance gains can be achieved

by using Mach’s memory mapping(1). John Heidemann

explains that CPU utilization can be reduced by using

memory mapped files instead of stdio when sending large
files(3).Joseph Jang in his blog has clearly shown the

better performance results of mmap() over fread() and

iostream(4).

A multi-core processor contains two or more actual

processors integrated on the same chip and the

performance gains from multi-core processors can be

obtained based on the software that can run on multiple

cores simultaneously(5).OpenMP is an application program

interface for developing shared memory parallel

programming(6). It works on the concept of multithreading.

Master thread works sequentially and when the parallel

region encounters, master thread forks child threads and

work along with them(7). In our previous papers we have

evaluated the performance of the popular data mining

algorithm apriori on dual core with OpenMP threads

compared to the serial implementation (8,9).Our present

paper mainly concentrates on comparing the benefit of

mmap() over fread() in the implementation of the apriori

algorithm. The results will compare the performance of

mmap() over fread() in serial and parallel implementations

of apriori with different datasets at different support

counts.

2. Related Work

Apriori is the popular algorithm for achieving the

important functionality of data mining known as frequent

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 162

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

itemset mining(FIM) or association rule mining(ARM)

(10).As data mining deals with large volumes of data,

scalability can be achieved by parallelizing the algorithm.

(11,12,13)M.J.Zaki has presented a survey paper on parallel

and distributed association rule mining.(12) Rakesh

Agrawal and John C.Shafer proposed two parallel

algorithms known as count distribution and data

distribution based on apriori.(11). Zaıane et al has

proposed a parallel algorithm for finding frequent item-sets

using FP-growth algorithm (13).Pattern mining researchers

are also designing parallel algorithms on the recent multi

core architectures.(14) Li Liu2, et.al., proposed a cache

conscious FP array mechanism for implementing FP-

growth algorithm on multi core processors.(15).S.Tatikonda

et al., proposed frequent subtree mining from a tree

structured data on multi-core architecture.(16) Research is

also going on implementing data mining algorithms on

multi-core architectures using openMP threads.

Anuradha et al., presented the performance evaluation of

parallel apriori on dual core compared to serial execution

with different data sets and also by changing the number

of threads.(8,9).S.N Tirumalarao et al., studied the

performance of k means clustering algorithm on multi-core

architectures.(2) S.Mohanavalli et al., implemented parallel

k-means algorithm with openMP and distributed algorithm

with MPI . They have also compared the performance of

these implementations with hybrid model which is the

combination of openMP and MPI.(17)Memory mapped files

concept was initially used in designing the unix based

operating system internals. Avadis Tevanian et al., explains

the system call for file mapping in Mach operating

system.(1) Direct accessing of user programs to device

memory and the files and its advantages in Linux memory

management are explained in (18).But only a little research

is done in finding the effect of memory mapped files

compared to normal file reading operation on data mining

algorithms. S.N.Tirumalarao et al.,studied the performance

of memory mapped files on k-means clustering algorithm.(2)

3. Theoretical background

3.1 Apriori

Apriori is the popular algorithm for finding frequent

itemsets from a transactional database. It was proposed by

Agrawal and Srikant(10,19).It consists of two functions :

1. Finding the candidate k-itemsets: Initially, every

item in the given database will be in the candidate

k-itemset where k=1. For finding the next

candidate k-itemsets (k=2 ,3 etc.), we have to join

previous frequent k-itemset with itself. For

example for finding candidate 2-itemset, we have

to join frequent 1-itemset with itself.

2. Finding the frequent k-itemset: For finding

frequent k-itemset, we have to find the count of

each item in the candidate k-itemset. If the count

of the item is more than a pre-specified threshold

called minimum support count, it will be placed in

the frequent k-itemset.

The major principle of apriori is that all the subsets of a

frequent itemset should also be frequent.(10)

3.2 OpenMP

OpenMP is an API for shared memory parallel

programming for C,C++ and Fortran. It is very easy to

port it on different shared memory architectures.(20)

OpenMP has different pragmas which direct the compiler

to use the openMP constructs. If the compiler does not

support openMP, the program will run sequentially.

(6,21,22) To use the openMP constructs in a c program we

have to include omp.h header file in our program. The

parallelism in openMP is achieved by multiple threads. By

using the fork-join model it makes the program to run in

serial and parallel modes. Initially master thread runs the

program in serial mode and when #pragma omp parallel

construct is encountered, the master thread fork the child

threads and runs the program in parallel mode along with

child threads. Once the parallel part is over, again the child

threads join the master thread and the program runs in the

serial mode. The number of threads will be decided by the

omp-set_num_threads () library function .

3.3 Mmap()

Mmap() function is useful when the process need to

access the data from a large file. In fread() function, data

must be first copied to the user space buffer before it is

being copied to the process address space. Mmap()

function avoid this extra copy operation as the file is

directly mapped to the address space of a process.

(23,2).In the mmap() function, we have to specify the

starting address in the process address space from where

the file should be mapped and how many bytes of the file

we have to map starting from the offset.

4. Mapping Of Apriori On Dualcore

The parallelization of apriori is done based on the

count distribution algorithm proposed by agrawal and

shafer.(11) Here we follow the partitioning concept and

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 163

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

data parallel strategy. The transactional database is

partitioned into number of parts equal to the number of

threads.

4.1 Algorithm for parallelizing on dual core with 2

threads:

Input: Transactional database,TDB with transactions

TR1,TR2,…,TRn

where a transaction TRi is the random combination of any

items from item1 to item10

and n is the number of records in the database,

Minimum support count, msc

Output:frequent k-itemsets where k=1,2,3 etc.

Step1 : k=1

candidate k-itemset ={item1, item2, item3, item4, item5, item6,

item7, item8, item9, item10 }.

Step2: SET_ OMP_NUM_THREADS =2

 partition the given database into three partitions.

#pragma omp parallel

/* begin parallel region

#pragma omp sections

{

 omp section

{

 Find the local count of each item in the candidate k-

 itemset in partition1

}

omp section

{

 Find the local count of each item in the candidate k-

 itemset in partition2

 }

}

 /* end of parallel region */

Global count of each item in candidate k-itemset=sum of

the local counts

If the global count of any item is>msc, place the item in

frequent k-itemset

Step 3:

K=k+1

Join frequent k-itemset with itself to find the next

candidate k-itemset

Step4:Repeat steps 2 and 3 until any subset of candidate

k-itemset is not frequent.

In the above algorithm, The #pragma omp parallel

construct directs the compiler to enter into the parallel

region. There are two types of work sharing constructs in

openMP to divide the work parallel- Loops and Sections.

We are using sections construct. Here we are creating two

threads and each thread will work on each section. Because

we are using multi-core processors each thread will run on

separate cores there by making the execution faster

compared to serial execution. For running the algorithm

with three threads, we divide the database into 3 partitions

and set number of threads equal to 3 and for four threads,

we divide the database into 4 partitions and set number of

threads equal to 4. When the number of threads are more

than the number of cores , the threads will share the cores.

5. Experimental Work

The experimentation is carried out on Intel Pentium

Dual-core with processor speed 1.6GHz and 3GB RAM .

To get openMP compatibility, we have used Fedora 9 Linux

(Kernel 2.6.25-14, Red Hat nash version 6.0.52) equipped

with GNU C++(gcc version 4.3) for our experimentation.

Different randomly generated transactional datasets with

2,4,6,8 and 10lakh records are used. Each dataset consists

of any random combination of items from item1 to item10.

Our algorithm is also tested with the standard accident

dataset (24) from UCI repository. We have used all 3,40,183

transactions and 1 to 10 items of the accident dataset for

testing purpose. The experimentation is done at different

support counts. To test the effect of memory mapped files

on apriori, the algorithm is run in serial mode by taking

different datasets and different support counts separately

with fread() and mmap() functions.The real time, user time

and system time results of fread() versus mmap() are also

compared by running the program parallelly on dual core

processor using OpenMP threads by setting number of

threads=2,3 and 4. The speed up of parallel apriori is

compared with fread() and mmap() functions. The %of

mmap benefit of the parallel implementations of apriori

are compared by changing the number of threads .

6. Experimental Results

The following notations are used in the tables and graphs

in the paper.

nrl- number of records in lakhs

SAF –serial apriori with fread()

SAM-serial apriori with mmap()

pmsc-percentage of minimum support count

PAFD-parallel apriori with fread() on dual core

PAMD-parallel apriori with mmap() on dual core

Prmb-percentage of real time mmap() benefit

Pumb-percentage of user time mmap() benefit

Psmb- percentage of system time mmap() benefit

The following results are observed from the experiments :
1. Percentage of real time mmap() benefit, Prmb

values of SAM are compared to PAM by

changing pmsc and keeping nrl constant for

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 164

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

different random data sets. Prmb values of PAM

are more compared to SAM for all data sets.(Fig.6,

Table.1) Prmb values of PAM are also increased

compared to SAM for accident dataset at

different pmsc values.(Table.3).Prmb values of

PAM and SAM are also compared at each

support count by changing nrl values. Prmb

values are more for PAM compared to SAM at all

support counts.(Fig.7,Table.4) Scalability of PAM

is more compared to PAF for different datasets at

different support counts(Fig.8, Fig.9, Table.2,

Tabe.5).

2. Percentage of user time mmap() benefit, Pumb

values and system time mmap() benefit psmb

values of SAM are also compared to PAM for

different data sets at different support counts.

PAM gives more benefit compared to SAM in all

the cases.(fig.10-13,Table.6-11)

6.1 Observations of serial vs parallel apriori with

mmap()

0

50

100

150

200

250

300

350

400

5 15 25 35 45

pmsc

re
al

 ti
m

e
in

 s
ec

on
ds

SAM
PAMD

Fig. 1: SAM vs PAMD real time values for 8 lakh data

0

20

40

60

80

100

120

140

160

5 15 25 35 45

pmsc

re
al

 ti
m

e
in

 s
ec

on
ds

SAM
PAMD

Fig. 2: SAM vs PAMD real time values for accident data

As the percentage of real time mmap() benefit , prmb is

more with 3threads compared to 2 and 4 threads in most of

the cases, all the PAF and PAM values in graphs and

tables indicated in this paper correspond to the values

obtained by parallelizing apriori on dual core with three

threads.

0

50

100

150

200

250

300

350

400

5 15 25 35 45

pmsc

us
er

 ti
m

e
in

 s
ec

on
ds

SAM
PAMD

Fig. 3: SAM vs PAMD user time values for 8 lakh data

0

20

40

60

80

100

120

2 4 6 8 10

nrl

us
er

 ti
m

e
in

 s
ec

on
ds

SAM
PAMD

 Fig. 4: SAM vs PAMD user time values at pmsc=25

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

5 15 25 35 45

pmsc

sy
st

em
 ti

m
e

in
 s

ec
on

ds

SAM
PAMD

Fig. 5: SAM vs PAMD system time values for accident data

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 165

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

6.2 Observations of real time mmap benefit for serial

vs parallel apriori with mmap()

0
5

10
15
20
25
30
35
40
45
50

5 15 25 35 45

pmsc

pr
m

b SAM
PAMD

Fig. 6: SAM vs PAMD real time mmap benefit for 8 lakh data

0

5

10

15

20

25

30

35

2 4 6 8 10

nrl

pr
m

b SAM
PAMD

Fig. 7: SAM vs PAMD real time mmap benefit at pmsc=25

6.3 Observations of real time speed up for parallel

fread() Vs parallel mmap()

0

0.5

1

1.5

2

2.5

3

5 15 25 35 45

pmsc

sp
ee

d
up SAF/PAFD

SAF/PAMD

Fig. 8 comparison of speed up of PAFD vs PAMDfor 8 lakh data

0

0.5

1

1.5

2

2.5

2 4 6 8 10

nrl

sp
ee

d
up SAF/PAFD

SAF/PAMD

Fig. 9 comparison of speed up of PAFD vs PAMD at pmsc=25%

6.4 Observations of user time mmap benefit for serial

vs parallel apriori with mmap()

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

5 15 25 35 45

pmsc

pu
m

b SAM
PAMD

Fig. 10: SAM vs PAMD user time mmap benefit for 8 lakh data

0.00

5.00

10.00

15.00

20.00

25.00

2 4 6 8 10

nrl

pu
m

b SAM
PAMD

Fig. 11: SAM vs PAMD user time mmap benefit at pmsc=25

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 166

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

6.4 Observations of system time mmap benefit for

serial vs parallel apriori with mmap()

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

5 15 25 35

pmsc

ps
m

b SAM
PAMD

Fig. 12: SAM vs PAMD system time mmap benefit for 8 lakh data

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

2 4 6 8 10

nrl

ps
m

b SAM
PAMD

Fig. 13: SAM vs PAMD system time mmap benefit at pmsc=25

Table 1: Real time values for random data with nrl=10

Table 2: Real time speed up val ues for random data with nrl=10

Table 3: Real time values for accident data

Pmsc SAF SAM pmb PAFD PAMD pmb

5 169.12 144.1 14.79 118.32 94.27 20.33

15 153.39 131.33 14.38 98.52 78.52 20.30

25 43.25 36.22 16.25 29.5 22.44 23.94

35 15.87 13.12 17.33 12.2 8.59 29.6

45 3.6 2.2 38.89 3.24 1.80 44.56

Table 4: Real time values for random data with pmsc=15

nrl SAF SAM pmb PAFD PAMD pmb

2 98.1 83.53 14.85 47.4 36.36 23.30

4 194.65 166.49 14.47 95.08 74.46 21.69

6 293.55 250.7 14.60 141.85 110.69 21.97

8 390.65 332.13 14.98 189.69 152.44 19.64

10 487.97 418.32 14.27 236.5 184.77 21.87

Table 5: Real time speed up values for random data with pmsc=15

nrl SAF PAFD PAMD SAF/PAFD SAF/PAMD

2 98.10 47.40 36.36 2.07 2.70

4 194.65 95.08 74.46 2.05 2.61

6 293.55 141.85 110.69 2.07 2.65

8 390.65 189.69 152.44 2.06 2.56

10 487.97 236.50 184.77 2.06 2.64

Pmsc SAF SAM pmb PAFD PAMD pmb

5 537.54 455.95 15.18 342.01 263.65 22.91

15 487.97 418.32 14.27 236.5 184.77 21.87

25 135.77 114.98 15.31 90.9 70.13 22.85

35 49.5 40.15 18.89 38.6 26.25 32.00

45 11.4 7.05 38.16 10.2 5.34 47.65

pmsc SAF PAFD PAMD SAF/PAFD SAF/PAMD

5 537.54

342.0

1 263.65 1.57 2.04

15 487.97 236.5 184.77 2.06 2.64

25 135.77 90.9 70.13 1.49 1.94

35 49.5 38.6 26.25 1.28 1.89

45 11.4 10.2 5.34 1.12 2.13

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 167

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 6: user time values for random data with nrl=10

pmsc SAF SAM pmb PAFD PAMD pmb

5 536.58 453.71 15.44 520.52 430.14 17.36

15 486.38 416.16 14.44 469.79 397.01 15.49

25 135.39 113.81 15.94 132.74 102.69 22.64

35 48.98 40.09 18.15 49.02 39.07 20.30

45 11.22 7 37.61 11.20 6.82 39.11

Table 7: user time values for accident data

pmsc SAF SAM pmb PAFD PAMD pmb

5 168.37 143.95 14.50 168.24 143.73 14.57

15 152.94 131.14 14.25 152.78 130.37 14.67

25 43.08 36.21 15.95 43.18 36.13 16.33

35 15.46 12.92 16.43 15.51 12.86 17.09

45 3.53 2.38 32.58 3.58 2.37 33.80

Table 8: user time values for random data with pmsc=15

nrl SAF SAM pmb PAFD PAMD pmb

2 97.66 83.33 14.67 94.04 79.74 15.21

4 193.99 166.12 14.37 187.70 160.64 14.42

6 292.63 249.4 14.77 282.06 237.36 15.85

8 389.55 328.59 15.65 376.21 316.68 15.82

10 486.38 416.16 14.44 469.79 397.01 15.49

Table 9: system time values for random data with nrl=10

pmsc SAF SAM pmb PAFD PAMD pmb

5 0.82 0.38 53.66 1.1 0.41 62.73

15 0.7 0.29 58.57 0.95 0.34 64.21

25 0.32 0.18 43.75 0.58 0.195 66.38

35 0.25 0.11 56.00 0.27 0.113 58.15

45 0.17 0.08 52.94 0.18 0.081 55.00

Table 10: system time values for accident data

pmsc SAF SAM pmb PAFD PAMD pmb

5 0.30 0.15 49.17 0.45 0.19 57.96

15 0.25 0.13 49.60 0.38 0.15 60.53

25 0.14 0.06 58.27 0.14 0.05 62.32

35 0.10 0.05 52.88 0.10 0.04 55.67

45 0.06 0.03 49.15 0.06 0.03 52.54

Table 11: system time values for random data with pmsc=15

nrl SAF SAM pmb PAFD PAMD pmb

2 0.17 0.08 52.94 0.19 0.08 57.89

4 0.28 0.14 49.29 0.43 0.16 62.79

6 0.53 0.22 59.43 0.55 0.2 63.64

8 0.57 0.26 54.74 0.77 0.29 62.34

10 0.7 0.29 58.57 0.95 0.34 64.21

7. Conclusions

The performance of apriori with memory mapped files

concept compared to standard fread() function for reading

data from the transactional database is identified by using

linux mmap() function. The mmap() function shows better

performance than fread() in real time, user time and system

time.The percentage of mmap benefit is more in parallel

apriori compared to serial apriori .

References

[1] Tevanian, Avadis, et al. "A unix interface for shared memory

and memory mapped files under mach." Dept. of Computer

Science Technical Report, Carnegie Mellon University (1987).

[2] S. N. Tirumala Rao, E. V. Prasad, and N. B. Venkateswrlu, “A

Critical Performance Study of Memory Mapping on Multi-core

Processors: An Experiment with K-means Algorithm with Large

Data Mining Data Sets”, IJCA (0975-8887)2010 Volume1-No. 9.

 [3]Optimized performance analysis of Apache-1.0.5

server,www.isi.edu

 [4]fread/ifstream, read/mmap performance results

www.lastmind.net.

 [5] “Multi-core Procesor” From wikipedia ,the free

encyclopedia.Available: en.wikipedia.org/wiki/Multi-core

processor [Accessed: May 24,2012].

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 168

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.isi.edu/

[6] OpenMP Architecture , “OpenMP C and C++

ApplicationProgramInterface”, Copyright © 1997-2002

OpenMP Architecture Review Board.http://www.openmp.org/

[7]OpenMP® Programming forTMS320C66x multicore DSPs ©

2011 Texas Instruments Incorporated Printed in U.S.A.

[8] Anuradha T ,Satya Prasad R, S.N Tirumalarao “Parallelizing

Apriori on Dual Core using OpenMP”. International

Journal of Computer Applications 43(24):33-39, April 2012.

[9] Anuradha T ,Satya Prasad R,S.N. Tirumalarao “Parallelizing

Apriori on Dual Core with multiple threads” International

Journal of Computer Applications 50(16):9-16, July 2012.

[10] Agrawal R, Srikant R “Fast algorithms for mining

association rules” In: Proceedings of the 1994 international

conference on very large data bases (VLDB’94), 1994 Santiago,

Chile, pp 487–499

[11] R. Agrawal and J. Shafer “Parallel mining of association

rules” IEEE Trans. Knowl. Data Eng., vol. 8, pp. 962–969, Dec.

1996.

[12]M.J. Zaki 1997 “parallel and distributed association mining:

A survey” IEEE Concur, vol. 7, pp. 14–25, Dec. 1997.

[13] O. R Zaiane,M. El-Hajj, and P. Lu “Fast parallel

association rule mining without candidacy generation” in Proc.

ICDM, 2001, [Online].Available: citeseer.ist.psu.edu/474

621.html, pp. 665–668.

[14] Laurent, Anne, et al. "Pgp-mc: Towards a multicore parallel

approach for mining gradual patterns." Database Systems for

Advanced Applications. Springer Berlin/Heidelberg, 2010.

[15] Liu, Li, et al.2007 "Optimization of frequent itemset mining

on multiple-core processor." Proceedings of the 33rd international

conference on Very large data bases. VLDB Endowment, 2007.

 [16]. Shirish Tatikonda, Srinivasan Parthasarathy 2008 “Mining

Tree Structured Data on Multicore Systems”, VLDB ‘08, August

2430, 2008, Auckland, New Zealand

[17] Mohanavalli, S., S. M. Jaisakthi, and C. Aravindan.2011

"Strategies for Parallelizing KMeans Data Clustering

Algorithm." Information Technology and Mobile

Communication (2011): 427-430.

[18] Memory management in Linux for linux device drivers Third

edition eMatter Edition Copyright © 2005 O'Reilly &

Associates

[19] Jiawei Han and Micheline Kamber ”Data Mining concepts

and Techniques”, 2nd edition 2006 Morgan Kaufmann

Publishers, San Francisco.

[20] Diaz, Javier, Camelia Muñoz-Caro, and Alfonso Niño. "A

Survey of Parallel Programming Models and Tools in the Multi

and Many-Core Era." Parallel and Distributed Systems, IEEE

Transactions on 23.8 (2012): 1369-1386.

[21] Kent Milfeld 2011 “Introduction to Programming with

OpenMP” September 12th 2011, TACC

[22] Ruud van der pas “An Overview of OpenMP” NTU Talk

January 14 2009

[23]Chapter12 “Shared memory Introduction”

www.kohala.com/start/unpv22e/unpv22e.chap12.pdf

[24] K Geurts, G Wets, T. Brijs and K. Vanhoof, “Profiling High

Frequency Accident Locations Using Association Rules”,

Electronic Proceedings of the 82th Annual Meeting of the

Transportation Research Board, Washington, January 12-16,

USA, 2003,18p.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 169

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

