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Abstract 
In this paper, based on a simple genetic algorithm and combine 
the base ideology of orthogonal design method then applied it to 
the population initialization, using the intergenerational elite 
mechanism, as well as the introduction of adaptive local search 
operator to prevent trapped into the local minimum and improve 
the convergence speed to form a new genetic algorithm. Through 
the series of numerical experiments, the new algorithm has been 
proved to be efficiency. we also use this new algorithm in data 
classification, select 5 benchmark datasets and the experiment 
results shown the new algorithm can get higher accuracy than k-
nearest neighbor method. 
Keywords: Genetic Algorithm, Optimization, Classification, K-
Nearest Neighbor, Population. 

1. Introduction 

Candidate solutions to some problems are not simply 
deemed correct or incorrect but are instead rated in terms 
of quality and finding the candidate solution with the 
highest quality is known as optimization. Optimization 
problems arise in many real-world scenarios. Take for 
example the spreading of manure on a cornfield, where 
depending on the species of grain, the soil quality, 
expected amount of rain, sunshine and so on, we wish to 
find the amount and composition of fertilizer that 
maximizes the crop, while still being within the bounds 
imposed by environmental law. 
 
Several challenges arise in optimization. First is the nature 
of the problem to be optimized which may have several 
local optima the optimizer can get stuck in, the problem 
may be discontinuous, candidate solutions may yield 
different fitness values when evaluated at different times, 
and there may be constraints as to what candidate 
solutions are feasible as actual solutions to the real-world 
problem. Furthermore, the large number of candidate 
solutions to an optimization problem makes it intractable 

to consider all candidate solutions in turn, which is the 
only way to be completely sure that the global optimum 
has been found. This difficulty grows much worse with 
increasing dimensionality, which is frequently called the 
curse of dimensionality, a name that is attributed to 
Bellman, see for example [1]. This phenomenon can be 
understood by first considering an n-dimensional binary 
search-space. Here, adding another dimension to the 
problem means a doubling of the number of candidate 
solutions. So the number of candidate solutions grows 
exponentially with increasing dimensionality. The same 
principle holds for continuous or real-valued search-
spaces, only it is now the volume of the search-space that 
grows exponentially with increasing dimensionality. In 
either case it is therefore of great interest to find 
optimization methods which not only perform well in few 
dimensions, but do not require an exponential number of 
fitness evaluations as the dimensionality grows. Preferably 
such optimization methods have a linear relationship 
between the dimensionality of the problem and the number 
of candidate solutions they must evaluate in order to 
achieve satisfactory results, that is, optimization methods 
should ideally have linear time-complexity O(n) in the 
dimensionality n of the problem to be optimized. 
 
Another challenge in optimization arises from how much 
or how little is known about the problem at hand. For 
example, if the optimization problem is given by a simple 
formula then it may be possible to derive the inverse of 
that formula and thus find its optimum. Other families of 
problems have had specialized methods developed to 
optimize them efficiently. But when nothing is known 
about the optimization problem at hand, then the No Free 
Lunch (NFL) set of theorems by Wolpert and Macready  
states that any one optimization method will be as likely as 
any other to find a satisfactory solution [2]. This is 
especially important in deciding what performance goals 
one should have when designing new optimization 
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methods, and whether one should attempt to devise the 
ultimate optimization method which will adapt to all 
problems and perform well. According to the NFL 
theorems such an optimization method does not exist and 
the focus of this thesis will therefore be on the opposite: 
Simple optimization methods that perform well for a range 
of problems of interest. 
 
The most popular evolutionary model used in the current 
research is Genetic Algorithms (GA), originally developed 
by John Holland [3]. The GA reproduction operators, such 
as recombination and mutation, are considered analogous 
to the biological process of mutation and crossover 
respectively in population genetics. The recombination 
operator is traditionally used as the primary search 
operator in GA while the mutation operator is considered 
to be a background operator, which is applied with a small 
probability. 
 
Genetic algorithms have been successfully used in data 
mining, in order to determine classification rules [4], in 
order to search for appropriate cluster centers) [5], to 
select the attributes of interest in predicting the value of a 
target attribute [6], etc. Classification of instances was 
performed using some hybrid algorithms based on genetic 
algorithms and particle swarm optimization [7], 
respectively Naive Bayes and k-Nearest Neighbors [8]. A 
few applications in which genetic algorithms were 
successfully applied to solve classification problems are 
prints classification, heart disease classification, 
classification of emotions on the human face, etc. 

2. Improved Genetic Algorithm 

In general, genetic algorithms are usually used to solve 
problems with little or no domain knowledge, NP-
complete problems, and problems for which near optimum 
solution is sufficient. The GA methods can be applied only 
if there exist a reasonable time and space for evolution to 
take place. But the traditional genetic algorithm has the 
shortcoming: trapped into the local minimum easily [9]. 

2.1 Population Initialization 

The traditional method of genetic algorithm is randomly 
initialized population, that is, generate a series of random 
numbers in the solution space of the question. Design the 
new algorithm, we using the orthogonal initialization [10] 
in the initialization phase. For the general condition, 
before seeking out the optimal solution the location of the 
global optimal solution is impossible to know, for some 
high-dimensional and multi-mode functions to optimize, 
the function itself has a lot of poles, and the global 
optimum location of the function is unknown. If the initial 

population of chromosomes can be evenly distributed in 
the feasible solution space, the algorithm can evenly 
search in the solution space for the global optimum. 
Orthogonal initialization is to use the orthogonal table has 
the dispersion and uniformity comparable; the individual 
will be initialized uniformly dispersed into the search 
space, so the orthogonal design method can be used to 
generate uniformly distributed initial population. 

2.2 Elite Select Mechanism 

Genetic algorithm is usually complete the selection 
operation based on the individual's fitness value, in the 
mechanism of intergenerational elite, the population of the 
front generation mixed with the new population which 
generate through crossover and mutation operations, in the 
mixed population select the optimum individuals 
according to a certain probability. The specific procedure 
is as follows:  
Step1: using crossover and mutation operations for 
population P1 which size is N then generating the next 
generation of sub-populations P2; 
Step2: The current population P1 and the next generation 
of sub-populations P2 mixed together form a temporary 
population; 
Step3:  Temporary population according to fitness values 
in descending order, to retain the best N individuals to 
form new populations P1. 
 
The characteristic of this mechanism is mainly in the 
following aspects. First is robust, because of using this 
selection strategy, even when the crossover and mutation 
operations to produce more inferior individuals, as the 
results of the majority of individual residues of the 
original population, does not cause lower the fitness value 
of the individual. The second is in genetic diversity 
maintaining, the operation of large populations, you can 
better maintain the genetic diversity of the population 
evolution process. Third is in the sorting method, it is 
good to overcome proportional to adapt to the calculation 
of scale. 

2.3 Adaptive Search Operator 

Local search operator has a strong local search ability, and 
then can solve the shortcomings of genetic algorithm has 
the weak ability for the local search. And the population 
according to the current state of adaptive evolution of the 
local search space adaptive local search operator will 
undoubtedly greatly enhance the ability of local search. In 
the initial stage of the evolution, the current optimal 
solution from the global optimum region is still relatively 
far away, this time the adaptive local search operator to 
require search a large neighborhood  space to find more 
optimal solution, it can maintain the population diversity. 
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When the population has evolved to the region containing 
the global optimum, the adaptive local search operator to 
require a relatively small area to search in order to 
improve the accuracy of the global optimal solution. 
 
In our algorithm, the adaptive local search operator is the 
adaptive orthogonal local search operator. Adaptive 
orthogonal local search operator is aimed at the 
neighborhood of a point to search, so the key point is to 
identify a point as the center of the hypercube, the 
hypercube in the orthogonal test, expect to be better 
solution. 

2.4 Experiment Simulation 

We design the experiments to study its convergence speed 
by comparing with a traditional genetic algorithm (GA). 
Ten benchmark functions are selected. One of them is a 
multimodal function, which is a very difficult function 
(explained in its function description). We choose it 
because we want to investigate not only their convergence 
speeds, but also their abilities of finding the optimal 
solutions. The simple description of each function is given 
as follows. 
 
F1: Schaffer function 
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Fig. 1 Schaffer Function. 

The global optimal value of this function is 1.0, located at 
the central point with coordinates (0, 0), and the circle 
with the radius 3.14 on the overall situation from 
numerous major points of the uplift. This function has a 
strong shock. Therefore, it is difficult to find a general 
method, which can find its global optimal solution.  
 

F2: Shubert function 
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Fig. 2 Shubert Function. 

This function has 760 local minima and 18 global ones. 
The global minimum value is -186.7309.  
 
F3: Hansen function 
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Fig. 3 Hansen Function. 

This function has a global minimum value -176.541793, in 
the following nine points, i.e., (-7.589893, -7.708314), (-
7.589893, -1.425128), (-7.589893, 4.858057), (-1.306708, 
-7.708314), (-1.306708, -1.425128), (-1.306708, 
4.858057), (4.976478, -7.708314), (4.976478, -7.708314), 
and (4.976478, 4.858057). It also has 760 local minima. 
 
F4: Camel function 
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Fig. 4 Camel function. 

Camel function has six local minima, i.e., (1.607105, 
0.568651), (-1.607105, -0.568651), (1.703607, -0.796084), 
(-1.703607, 0.796084), (-0.0898, 0.7126) and (0.0898, -
0.7126). It has two global minimum points, i.e., (-0.0898, 
0.7126) and (0.0898, -0.7126). Its global minimum is -
1.031628. 
 
The function 5 (called F5 in this paper) can be stated as 
follows: 
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Fig. 5 Function 5. 

This function is an eighth-order polynomial with two 
variables, shown in Figure 5. However, it has four local 
minima, including a global one, i.e., 

(1.2,0.8) 840.0f = , (1.8,0.2) 84.0f = , (0.6,0.4) 30.0f =  

and * (0,1.0) 3.0f =  (global minimum).  

 
The function 6 (called F6 in this paper) can be stated as 
follows: 
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Fig. 6 Function 6. 

This is a very complex and difficult function. First, it is a 
multimodal function. Besides, sin(9 )yπ and 

cos(25 )xπ are high frequency oscillations in the different 

directions. Furthermore, its peak (or ravine) of the 
function is intensive at the points when , 10x y → . The 

scene of this function is also very complicated, shown in 
Figure 6. The global optimal of this function is (-10, 
9.9445695) = -39.944506953367.  
 
The function 7 (called F7 in this paper) is defined as 
follows: 
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Fig. 7 Function 7. 

Its minimum value is 0, as shown in Figure 7. 
 
The function 8 (called F8 in this paper) is defined as 
follows: 
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Fig. 8 Function 8. 

Its minimum value is 0, as shown in Figure 8. 
 
The function 9 (called F9 in this paper) is defined as 
follows: 

2 2
1 2 1 2 1 2min ( , ) , , [ 100,100]f x x x x x x= + ∈ −  

 

 

Fig. 9 Function 9. 

Its minimum value is 0, as shown in Figure 9. 
 
The function 10 (called F10 in this paper) is defined as 
follows: 

2 2
1 2 1 2 2min ( , ) 0.5 0.5(1 cos 2 )f x x x x x= + − +  

 

 

Fig. 10 Function 10. 

Its minimum value is 0, as shown in Figure 10. 
 
In order to obtain a solid comparison between GA and 
improved GA (IGA), we run each algorithm 100 times for 
the ten functions described above. Our experimental 
results are shown in Table 1, including the best solution 
and the number of times of finding the best solution for 
each function. For example, on the most difficult function 
F6 among the ten functions, GA could not find its optimal 
solution (i.e, 0 times out of 100 runs). The best solution 
GA achieved is -14.786954. However, PSO found its 
optimal solution (-39.944506) five times out of 100 runs).  

 

Table 1: The number of times of both GA and PSO achieve optimal 
solutions among 100 runs on the ten functions 

Functio
n 

Algorith
m 

Converge
nce Times 

Optimal 
Solution 

GA 72 1.0000000F1 
IGA 75 1.0000000
GA 75 -

186.730909
F2 

IGA 82 -
186.730909

GA 85 -
176.541793

F3 

IGA 91 -
176.541793

GA 23 -1.031628 F4 
IGA 58 -1.031628 
GA 16 3.000000 F5 
IGA 25 3.000000 
GA 0 -14.786954F6 
IGA 8 -39.944506
GA 90 0.000000 F7 
IGA 97 0.000000 
GA 90 0.000000 F8 
IGA 98 0.000000 
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GA 100 0.000000 F9 
IGA 100 0.000000 
GA 93 0.000000 F10 
IGA 98 0.000000 

 
From Table 1, we can see that IGA achieves optimal 
solution more frequently than GA does on nine out of the 
ten functions, except the easiest one (i.e., F9). On the 
easiest function F9, both of them achieve the optimal 
solution in all 100 runs. From the experimental results in 
Table 1, we can conclude that the IGA algorithm has more 
efficient global searching capability than the GA algorithm. 
Our experiments verified that IGA converges more 
quickly than the GA algorithm.  

3. K-Nearest Neighbor Classification 
Algorithm 

The nearest neighbor method [11, 12] represents one of 
the simplest and most intuitive techniques in the field of 
statistical discrimination. It is a nonparametric method, 
where a new observation is placed into the class of the 
observation from the learning set that is closest to the new 
observation, with respect to the covariates used. The 
determination of this similarity is based on distance 
measures.  
 
Formally this simple fact can be described as follows: Let 

{( , ), 1, 2,..., }i i LL y x i n= = be training or learning set of 

observed data, where {1, 2,..., }iy c∈ denotes class 

membership and the vector '
1 2( , ,..., )i i i ipx x x x=  represents 

the predictor values. The determination of the nearest 
neighbors is based on an arbitrary distance function (.,.)d . 

Then for a new observation ( , )y x the nearest neighbor 

(1) (1)( , )y x within the learning set is determined by 

(1)( , ) min ( ( , ))i id x x d x x=  and 
^

(1)y y=  the class of the 

nearest neighbor is selected as prediction for y . The 

notation ( )jx and ( )jy here describes the jth nearest 

neighbor of x and its class membership, respectively. 
 
For example, such typical distance functions are the 

Euclidean distance
1

2 2

1

( , ) ( ( ) )
p

j is js
s

d x x x x
=

= −∑ . 

 
The method has been explained by the random occurrence 
of the learning set, as described in Fahrmeir et al. [13]. 
The class label (1)y of the nearest neighbor (1)x  of a new 

case x is a random variable. So the classification 
probability of x  into class (1)y  is (1) (1)( | )P y x . For large 

learning sets x  and (1)x  coincide very closely with each 

other, so (1) (1)( | ) ( | )P y x P y x≈  results approximately. 

Therefore the new observation x  is predicted as 
belonging to the true class y  with the probability 

approximately ( | )P y x . 

 
A first extension of this idea, which is widely and 
commonly used in practice, is the so-called k-nearest 
neighbor method. Here not only the closest observation 
within the learning set is referred for classification, but 
also the k most similar cases. The parameter k has to be 
selected by the user. Then the decision is in favor of the 
class label, most of these neighbors belong to.  
 
Let rk denote the number of observations from the group 

of the nearest neighbors, that belong to class r : 
1

c

r
r

k k
=

=∑ . 

Then a new observation is predicted into the class 
l with max ( )l r rk k= . This prevents one singular 

observation from the learning set deciding about the 
predicted class. The degree of locality of this technique is 
determined by the parameter k : For 1k = one gets the 
simple nearest neighbor method as maximal local 
technique, for Lk n→ a global majority vote of the whole 

learning set results. This implies a constant prediction for 
all new observations that have to be classified: Always the 
most frequent class within the learning set is predicted. 
 
K-Nearest Neighbor (KNN) is one of the most popular 
algorithms for pattern recognition. Many researchers have 
found that the KNN algorithm accomplishes very good 
performance in their experiments on different data sets.  
The traditional KNN text classification has three 
limitations [14]: 
1. High calculation complexity: To find out the k nearest 
neighbor samples, all the similarities between the training 
samples must be calculated. When the number of training 
samples is less, the KNN classifier is no longer optimal, 
but if the training set contains a huge number of samples, 
the KNN classifier needs more time to calculate the 
similarities. This problem can be solved in 3 ways: 
reducing the dimensions of the feature space; using 
smaller data sets; using improved algorithm which can 
accelerate to [15]; 
2. Dependency on the training set: The classifier is 
generated only with the training samples and it does not 
use any additional data. This makes the algorithm to 
depend on the training set excessively; it needs 
recalculation even if there is a small change on training set; 
3. No weight difference between samples: All the training 
samples are treated equally; there is no difference between 
the samples with small number of data and huge number 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013 
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 
www.IJCSI.org 342

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

of data. So it doesn’t match the actual phenomenon where 
the samples have uneven distribution commonly. 

4. Classification Experiment 

String Representation [16]-Here the chromosomes are 
encoded with real numbers; the number of genes in each 
chromosome represents the samples in the training set. 
Each gene will have 5 digits for vector index and k 
number of genes. For example, if k=5, a sample 
chromosome may look as follows: 
00100 10010 00256 01875 00098 
 
Here, the 00098 represents, the 98th instance and the 
second gene say that the 1875 instance in the training 
sample. Once the initial population is generated now we 
are ready to apply genetic operators. With these k 
neighbors, the distance between each sample in the testing 
set is calculated and the accuracy is stored as the fitness 
values of this chromosome. 
 
The algorithm process step is given as Fig. 11. 

 

Fig. 11 Algorithm framework 

The performance of the approaches discussed in this paper 
has been tested with 5 different datasets, downloaded from 
UCI machine learning data repository. All experiments are 
performed on Intel Core(TM)2 Duo CPU 2.26GHz/4G 
RAM Laptop. Each datasets run 10 times with different k 
values. Table 2 shows the details about the datasets used 
in this paper. 
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Table 2: Experiment dataset 

Dataset Name 
Total No. of 

Instances 
Total No. of 

Features 

Balance 624 5 

Iris 150 4 

Sonar 208 60 

Glass 214 10 

Ionosphere 351 34 

 
 

Table 3 depicts the performance accuracy of our proposed 
classifier compared with traditional KNN. From the results 
it is shown that our proposed method outperforms the 
traditional KNN method with higher accuracy. 

5. Conclusions 

This paper introduces a new algorithm based on the 
traditional genetic algorithm, for the traditional GA 
algorithm the new algorithm has done some improvements: 
By introducing genetic selection strategy, decreased the 
possibility of being trapped into a local optimum. 
Compared the traditional genetic algorithm, the new 
algorithm enlarges the searching space and the complexity 
is not high.  By analyzing the testing results of 
benchmarks functions optimization, we reach the 
conclusion: in the optimization precision, the new 
algorithm is efficiency than the traditional genetic 
algorithm. We also use this new algorithm for data 
classification and the experiment results shown that our 
proposed algorithm outperforms the KNN with greater 
accuracy. 
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Table 3: Experiment results comparison 

Dataset Name K Value Algorithm Best Accuracy Worst Accuracy Mean Accuracy 

IGA 0.904255 0.840426 0.869903 3 
KNN 0.914894 0.824468 0.866489 

IGA 0.882979 0.824468 0.860511 5 
KNN 0.941489 0.851064 0.875 

IGA 0.925532 0.81383 0.863862 7 
KNN 0.898936 0.819149 0.86117 

IGA 0.909574 0.84 0.877272 

Balance 

9 
KNN 0.920213 0.840426 0.882979 

IGA 0.977778 0.866667 0.933333 3 
KNN 1 0.933333 0.973333 

IGA 1 0.933333 0.973867 5 
KNN 1 0.911111 0.971111 

IGA 1 0.911111 0.968889 7 
KNN 1 0.888888 0.948889 

IGA 1 0.96 0.981683 

Iris 

9 
KNN 1 0.955556 0.977778 

IGA 0.920635 0.825397 0.868173 3 
KNN 0.904762 0.746032 0.806349 

IGA 0.904762 0.714286 0.82618 5 
KNN 0.857143 0.666667 0.78254 

IGA 0.904762 0.714286 0.790363 7 
KNN 0.888889 0.587302 0.739683 

Sonar 

9 IGA 0.934564 0.698413 0.787446 
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KNN 0.873016 0.603175 0.736508 

IGA 0.923077 0.643357 0.765542 3 
KNN 0.861538 0.584615 0.713846 

IGA 0.783516 0.676923 0.745714 5 
KNN 0.784615 0.630769 0.687692 

IGA 0.830769 0.630769 0.730769 7 
KNN 0.753846 0.569231 0.672308 

IGA 0.784615 0.553846 0.671057 

Glass 

9 
KNN 0.753846 0.553846 0.661538 

IGA 0.981132 0.871749 0.927245 3 
KNN 0.943396 0.811321 0.866038 

IGA 0.943396 0.867925 0.911003 5 
KNN 0.915094 0.830189 0.883962 

IGA 0.962264 0.792453 0.900066 7 
KNN 0.896226 0.764151 0.834906 

IGA 0.933962 0.839623 0.90321 

Ionosphere 

9 
KNN 0.858491 0.716981 0.774528 
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