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Abstract 
In this paper, we propose a load balance approach by separating 

the host and router IP addresses into two spaces. In addition, in 

our approach, we propose a scheduling algorithm, named Edge 

Stream Balance (ESB), which is used by the proposed multipath 

routing scheme based on the address space separation. Each 

router can schedule each stream that is initiated by the connected 

host onto the proper path to the destination host by ESB 

dynamically. The multiple paths between any pair of hosts can 

be obtained by the connected routers by using the address 

separating mechanism. The merit of our approach is that: it 

balances the network traffic dynamically while being free of 

traffic demand assumption and offline flow optimization. The 

path of each stream is selected by each router individually other 

than using central system based on the address separation. The 

time complexity of ESB is much lower than the linear 

programming (LP) and integer linear programming (ILP) which 

are used in flow optimization. Simulation results show that on 

average of all simulated scenarios, compared to the existing 

single path routing which is based on the address separating, the 

unused link ratio (ULR) reduces by 82%. And in the relative 

sense, the traffic across the network is balanced 31%. 

Keywords: Load Balance, Address Space Separation, Multipath. 

1. Introduction 

In the existing Internet, load balance is a critical issue 

which is not still solved elegantly [1]. This is caused by 

two reasons: one is that the hosts and routers which are 

growing rapidly are distributed by power-law in the 

topology [2, 3], the other is the routing scheme is executed 

independently in each router based on the Shortest Path 

First (SPF) policy which may overload certain paths while 

underloading some others [4]. 

 

Previous works have explored load balance in some 

different ways. Fortz et. al. [5] proposed a solution of 

optimizing OSPF weights. Sridharan et. al. [4] and Wang 

et. al. [6] exploited more effective ways to split traffic 

over the shortest paths. Xu et. al. [7] optimized the link 

loads by using only E link weights against O(NE) 

parameters in [4] and [6], where N is the number of routers. 

These schemes are all depending on assuming having 

knowledge of the network traffic demands. Furthermore in 

[4] and [6], a central controller is used to compute and 

configure the flow splitting ratio instead of routers. Thus, 

it sacrifices the main benefit of running a distributed 

protocol. Both Antic et. al. [8] and Tsunoda et. al. [9] 

proposed the shortest path routing (SPR) solutions 

respectively, in which each source router selects different 

intermediate routers for forwarding each packet at a time. 

In the both solutions, the traffic demand bound of each 

router should be known by all routers. In [8], the high time 

complexity of the realtime linear programming (LP) may 

affect practicing in a large topology. Keller et. al. [10] 

optimized the traffic infiltrated into other autonomous 

systems (AS) by migrating the intradomain edge links. 

However, the realtime traffic (e.g., the Audio stream) 

cannot be kept in this approach. Both Saucez et. al. [11] 

and Paul et. al. [12] proposed traffic engineering solutions 

in the Identifier(ID)/Locator separating context. However, 

in these solutions, the path selection is totally based on a 

central controller in each AS. Meanwhile, the topology 

and traffic information must be gathered in time or 

periodically by the controller. 

 

Therefore, although the research on load balance has made 

a great progress [4-12], to our best knowledge, the 

following question is still to be addressed: Is it possible to 

achieve load balance in a wholly distributed system 

without traffic demand assumption and high time 

complexity? To answer, we present a novel approach. 

 

As [11] and [12], our approach employs the principle of 

separating IP address space. That is because a key merit of 

separating IP space is to make possible to associate 

multiple router addresses to a unique host address. Thus, it 

enables each router choose different routers (i.e., the paths) 

to route the packets between the same host pair for 

balancing the traffic. In this paper, we address the question 

presented above by the following two steps. 

 

First, we propose a multipath routing scheme based on a 

generalized address space separating mechanism. By this 

scheme, each router can encapsulate a set of appropriate 

router addresses into the packets of the same stream when 

each packet initially enters the network from the router, 

and can also decapsulate the addresses from the packet 

when it leaves the network. These addresses are obtained 

from the response messages of address space separating 

mechanism (described in Section II). Second, we propose 
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a scheduling algorithm, which is called Edge Stream 

Balance (ESB). In each router, it is used to select the 

appropriate router addresses to encapsulate into packets.  

 

This approach brings three main merits. 1) The network 

traffic is balanced without a central controller. Because 

each router gets all host-to-routers addresses mapping 

information by the address space separating mechanism, 

and some parts of the realtime traffic information by 

dumping the packets it received, each router can select the 

appropriate router addresses while without centralized 

service. 2) The time complexity of ESB is much lower 

than the LP and integer linear programming (ILP) such 

that the traffic can be balanced timely. 3) ESB runs 

without any transcendental knowledge of traffic demand. 

 

We also simulate our approach in a large number of 

scenarios and analyze the average performance in each 

topology model. 

 

The rest of the paper is organized as follows. Section II 

describes the generalized IP address space separating 

mechanism. Section III describes the multipath routing 

scheme and the ESB algorithm. In section IV, we perform 

simulations and analyze the results. Section IV concludes 

the paper. 

2. Generalized IP Address Space Separation 

Several address space separating solutions, which are 

generally in the principle of ID/Locator separation, were 

proposed in recent years [13-15]. In this paper, we 

consider a generalized IP address space separating 

mechanism (without specific packet format definition and 

etc.) named One-hop Distributed Hash Table (One-hop 

DHT) based address separation [16], which can support 

the proposed multipath routing scheme and ESB algorithm 

to achieve load balance. Fig. 1 [17] shows how it works. 
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Fig. 1 One-hop DHT based address separation. 

In Fig. 1, it shows the 6 primary steps of forwarding a 

packet from one host to another (i.e., H1 to H2) based on 

the address separation. Each router creates a hash ring 

with the specific addresses of all routers (e.g., the 

maximum address of each router obtained from Link State 

Database (LSDB) of OSPF [18]) by using an identical 

hash function (e.g., Secure Hash Algorithm 1, SHA-1 

[19]). When a host accesses the network, the mapping 

entry of the host IP, its connected router’s maximum IP 

(here we call it Router ID) and the router’s other IPes are 

stored in a certain router according to the hash function 

(i.e., step 1). Thus, when a router forwards a packet 

received from its connected host (i.e., step 2), one of the 

destination router IPes can be obtained by using the hash 

function (i.e., step 3 and 4). Then, the source/destination 

router IPes are encapsulated into the packet header to 

forward to the destination router (i.e., step 5) which 

decapsulates the router IPes and forwards the packet to the 

destination host (i.e., step 6). Meanwhile, the mapping 

entry is cached by the source router for accessing the same 

host afterwards. 

3. Load Balance Solution 

In this section, we first describe the multipath routing 

scheme in Subsection 3.1. Then, ESB algorithm is 

described in Subsection 3.2. 

3.1 Multipath Routing Scheme 

Based on the separating mechanism mentioned above, each 
router can register its IPes and the neighbors’ IPes which 
can be got by a certain protocol, e.g., the Hello protocol in 
OSPF, to another router which can be found in the hash 
ring created by the hash function. When the packets, sent 
from the same source host and destined to the same 
destination host, are received by the source router, they 
may be encapsulated with different IPes of the source 
router and its neighbors, destination router and its 
neighbors (which can be got from the router in which the 
IPes are registered). Then, the packets are forwarded along 
the paths indicated by these IPes. Each time the router, 
which is the intermediate destination indicated by one of 
the IPes, receives the packet, it changes the current 
destination IP into a new one which is contained in the 
packet, and then forwards it to the next intermediate 
destination. The process continues until the packet is 
received by the destination host. 
 

Fig. 2 shows the multipath routing scheme based on the 

introduced separating mechanism. The two packets sent 

from Hs to Hd are routed on different paths that are 

indicated by solid and dash arrows respectively. The 

original protocol type in the IP header is temporarily saved 

between the data field and the IP header (i.e., the “y”) by 

router A when the packet is forwarded from Hs to router A, 

and is restored by router G before being forwarded to Hd. 

In the forwarding process, some other specific values are 
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filled in the protocol field sequentially as shown in the 

underlined font in Fig. 2. These values can take the 

reserved protocol types defined in the IP standard [20], 

and are used by the multipath routing procedure in the 

packet forwarding process. Procedure 1 shows the 

pseudocode of the multipath routing scheme. 
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Fig. 2 Multipath routing scheme. 

Procedure 1 Pseudocode of multipath routing scheme 
//In this procedure, pkt is the received packet, pkt.hdr is the standard IP 

header, pkt.hdr.ptl is the protocol field in the IP header and the local 

mapping interfaces (LMIF) is the set of host accessible router’s 

interface IPes, which are connected with other routers, and the router’s 

neighbor IPes. We use DstLmifEnt to point to the <dest IP, LMIF> 

entry which is the set of IPes of the destination host, routers and router 

neighbors. It is cached in the current router according to the introduced 

separating mechanism. 

When a packet received by a router and the IP header has been 

checked: 

1: if (pkt.hdr.destIP != the current interface IP) then 

2:   if (the interface is connected with hosts) then 

3:     if(LookupCacheEntry(pkt.hdr.destIP,DstLmifEnt)==true) then 

4:       ESB(pkt, LMIF, DstLmifEnt); //select IPes from LMIF and 

DstLmifEnt to be encapsulated into pkt. 

5:     else //the <dest IP, LMIF> entry has not been cached 

6:       Send a lookup packet based on the address separating 

mechanism and drop pkt; 

7:       return; 

8:     end if 

9:   end if 

10: else //pkt destines to the interface 

11:   switch (pkt.hdr.ptl) 

12:  {   case a:  decapsulate the first IP behind the header (i.e., F3 in 

the data1 packet in Fig. 2) into pkt.hdr.destIP, and then lookup 

the routing entries to get the output interface IP which is to be 

taken as pkt.hdr.srcIP; 

13:                    pkt.hdr.ptl = b; break; 

14:       case b: decapsulate the first IP behind the header into 

pkt.hdr.destIP; 

15:                       decapsulate the second IP behind the header into 

pkt.hdr.srcIP; 

16:                    pkt.hdr.ptl = c; break; 

17:       case c: restore the original source and destination IPes, and 

decapsulate the saved protocol field (i.e., “Protocol=x” in Fig. 2) 

into pkt.hdr.ptl; break; } 

18:   Recalculate the other fields (i.e., checksum and etc.) in the IP 

header. 

19: end if 

20: Pass the packet to the existing forwarding procedure which is 

already modified to consider the protocol types a, b and c the 

same as regular IP packet; 

 

In statement “3”, “LookupCacheEntry(pkt.hdr.destIP, 

DstLmifEnt)” looks up all cached <dest IP, LMIF> 

entries to find out the one that matches the first parameter, 

and then to point it with the second parameter. 

 

Number of Paths. Here, we assume that there are 

averagely k neighbors per router and two bidirectional 

links between two routers at most. Thus, there are at most 

2k source router neighbor interfaces and 2k(k-1) 

destination router neighbor interfaces (another two 

interfaces per destination router neighbor are connected 

with the destination router) can be selected to indicate 

different paths. Therefore, on average, there are O(k3) 

magnitude paths between each pair of routers. 

3.2 Edge Stream Balance (ESB) 

In Procedure 1, ESB is invoked to choose the appropriate 

IPes which are to be encapsulated in the packet to indicate 

the routers to be forwarded to (i.e., the statement “4”). The 

principle of ESB is: when the link utilization (LU) on the 

links between routers, one of which is connected with 

hosts is balanced (Edge Stream), the LU across the 

network is tended to be balanced (in the means of stream, 

that is, each time a new stream is initiated by host). The 

principle can hold for this reason: In the real network, the 

edge link with higher bandwidth is always connected with 
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the core link with higher bandwidth. This is to ensure each 

link can be used as transiting the traffic effectively as 

possible. Fig. 3 shows the single path routing scheme and 

the multipath routing scheme with ESB. 
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Fig. 3 The schemes of the single path routing and the multipath routing 

with ESB. Each arrow indicates the path that a stream is forwarded along. 

The different colors of the nodes are used to illustrate the result of ESB 

compared to that of single path routing. 

Assuming all links are with the same bandwidth, in Fig. 

3(a), each stream initiated by either host 1 or host 2 is 

routed on the shortest path such that the lower link 

between the black nodes undertakes all 4 streams while 

the upper one does not carry any of them. However, in Fig. 

3(b), the streams initiated by each host are separated on 

two paths by selecting the router interfaces which 

currently have the minimum LU. Therefore, the links 

between the black nodes are more approximately balanced. 

Notice that, ESB doesn’t know the rate of a new initiated 

stream when the first packet received by the router. ESB 

only chooses the interfaces with minimum current LU for 

the stream, and then all the following packets of this 

stream are totally routed on the indicated path even if the 

LU of other interfaces may be lower. This is because the 

traffic can be balanced approximately in the means of 

stream level while keeping the time complexity of packet 

forwarding as lower as possible (i.e., ESB only takes more 

time when it is called for choosing a path for a stream for 

the first time). The algorithm includes two main phases. 

One is to balance the LU generated by the output traffic on 

the current router interfaces which connected with the 

neighbor routers, the other is to balance the LU of the 

input traffic on the destination router’s neighbor interfaces 

which are not connected with the destination router. The 

first phase is achieved by selecting the interfaces of the 

minimum total current output LU among the local router 

interfaces and its neighbor interfaces. The second phase is 

achieved by selecting the interfaces of the minimum input 

LU in the cached <dest IP, LMIF> entry that is 

corresponding with the destination IP of the packet. That 

is, the first phase records and uses the LU in the global 

scope while the second phase does that on each cached 

entry. Thus to the router that invokes ESB, the output LU 

on each of its link and the input LU on each link, which is 

not connected with the router, of all its neighbors, are 

balanced respectively. Algorithm 1 shows the pseudocode 

of ESB. 

 

Algorithm 1 Pseudocode of ESB 
ESB(pkt, LMIF, DstLmifEnt) 

1: len = pkt.hdr.length; 

2: tPktDeque = (tnow = GetCurrentTime()) - TLUinterval; //TLUinterval is used 

to calculate the traffic rate, and hence the LU. 

3: PktDeque(LMIF.ALLif.iface,DstLmifEnt.ALLnif.iface,tPktDeque); 

//pop up all (len, trcv) before tPktDeque from each element of iface or 

niface arrays of the input parameters and subtract the 

corresponding len from the trf field in each element. The trf only 

contains the traffic from connected hosts. 

4: if(GetCachePath(pkt, &IP1, &IP3, &IP2, &hd, &hs, &proto, a, 

tnow) == false) then //If GetCachePath() == false, a new stream is 

initiated. Otherwise, pkt belongs to an existing stream of which 

the path has been cached in the current router. Then, the 

combination of the source/destination IPes and TCP or UDP ports 

is used as the index to get the cached router IPes. Meanwhile, “a” 

is set into pkt.hdr.ptl and the len is accumulated on the 

correspondingly cached interfaces (i.e., the trf fields) such that the 

paths can be chosen reasonably when the next stream is initiated. 

5:   la=minLUindex(LMIF.ALLif.iface); //obtain the minimum output 

LU interface, the bandwidth is employed. 

6:   LMIF.ALLif.iface[la].trf += len; 

7:   LMIF.ALLif.iface[la].PktEnque(len, tnow);  //push in queue 

//accumulate the output traffic in Tinterval on the interface. 

8:   lb = 1; //init lb 

9:   if(LMIF.ALLif.iface[la].NeighborIPnum>1) then 

//multiple interfaces of neighbors are connected to the router 

interface 

10:     lb=minLUindex(LMIF.ALLif.iface[la].niface); 

//LMIF.ALLif.iface[la].niface is the interface array of the 

neighbor routers of la interface. 

11:   end if 

12:   LMIF.ALLif.iface[la].niface[lb].trf += len; 

13:   LMIF.ALLif.iface[la].niface[lb].PktEnque(len, tnow); 

14:   da=minLUindex(DstLmifEnt.ALLnif.iface);//obtain the minimum 

input LU interface of the destination router neighbors. 

15:   DstLmifEnt.ALLnif.iface[da].trf += len; 

16:   DstLmifEnt.ALLnif.iface[da].PktEnque(len, tnow); 

17:   db = 1; //init db 

18:   if(DstLmifEnt.ALLnif.iface[da].router.ifaceNum>1)then 

//DstLmifEnt.ALLnif.iface[da].router.ifaceNum is the number of 

the interfaces which are connected with the destination router 

and belongs to the router that has DstLmifEnt.ALLnif.iface[da]. 

19:     DstNeighbor = DstLmifEnt.ALLnif.iface[da].router; 

20:     db = minLUindex(DstNeighbor.iface); //DstNeighbor.iface is 

the interface array of the selected destination router neighbor. 

The interfaces are connected with the destination router. 

21:   end if 

22:   DstNeighbor.iface[db].trf += len; 

23:   DstNeighbor.iface[db].PktEnque(len, tnow); 

//Encapsulate pkt and modify pkt.hdr.ptl 

24:   proto = pkt.hdr.ptl; 

25:   pkt.hdr.ptl = a; //set it to “a” for neighbor receiving 

26:   hs = pkt.hdr.srcIP; 

27:   hd = pkt.hdr.destIP; 

28:   pkt.hdr.srcIP = LMIF.ALLif.iface[la].IP; 

29:   pkt.hdr.destIP = LMIF.ALLif.iface[la].niface[lb].IP; 

30:   IP1 = DstLmifEnt.ALLnif.iface[da].IP; //destination neighbor 

31:   IP2 = DstNeighbor.iface[db].IP; //destination neighbor 

32:   IP3 = DstNeighbor.iface[db].peerIP; //destination router 

33:   SetCachePath(pkt, IP1, IP3, IP2, la, lb, da, db, tnow); //Cache the 

router IPes. The corresponding interface indexes are also cached 

to record the following traffic of the same stream on the 
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interfaces. 

34: end if 

35: Encapsulate (pkt, IP1, IP3, IP2, hd, hs, proto); 

36: return; 
 
Delete the cached paths when the timer of the corresponding 

streams are timeout: 

//GetCachePath() resets timer of the stream only if the stream has 

existed. SetCachePath() resets the stream timer when it is called, 

that is, when the stream is initiated. 

1: DelCachePath(pkt); 

 

In the statement “32”, the peerIP indicates the destination 

router interface that connected with IP2. Because two 

interfaces of a router can’t be connected in the real 

network, the peerIP is unique for each IP2. The function 

“DelCachePath” is used to delete the path which has been 

indicated for a stream when the path is timeout for this 

stream. This is because, when a stream is released or 

cancelled by a host, or be even “silent” for some reason, 

the router which is connected with the host can’t be aware. 

Thus, we should delete the cached stream path in the local 

router. When the router receives any new packet of this 

stream from its connected host, it takes the packet as a 

start of an initiating stream and assigns a new path for it. 

 

We can see that, both the multipath routing scheme and 

ESB algorithm only process each packet locally, while 

without communicating to any other router or central 

system beyond the address separating mechanism and 

routing protocol. Furthermore, ESB only chooses path by 

collecting and analyzing the realtime traffic that is sent 

from or destined to the local hosts, rather than using global 

traffic information or static traffic demands. 

 

Time Complexity. In Algorithm 1, the time complexity of 

ESB is mainly made up of three phases. The first is 

“minLUindex” which performs the selection of the 

interface with minimum input or output LU. In the worst 

case, it sequentially traverses the interface array with 

random stored elements. Thus, the worst time complexity 

will be proportional to the array length. Assuming there 

are k neighbors per router and n interfaces between two 

routers at most, the interface number (connected with 

router) of a router won’t be more than k*n. The total time 

complexity of the four invoking of “minLUindex” is 

         1( )
la lb da db

min indexTotal k n k k k n nO O O OO LU     ,  (1) 

where each term with subscript is the corresponding time 

complexity of the invoking in Algorithm 1. The largest 

array is DstLifEnt.ALLnif.iface with at most k routers. The 

length is no more than k*(k-1)*n (the destination router is 

a neighbor of each destination router neighbor). Hence, 

O(TotalminLUindex) is at most O(k2n). Generally, n is 

always far less than k (In general, two links between two 

routers at most). Thus, O(TotalminLUindex) won’t be 

higher than O(k3). The second phase is “PktDeque” which 

maintains the traffic records in the most recent Tinterval for 

all interfaces in the LMIFes. Similarly with “minLUindex”, 

“PktDeque” also has to sequentially traverse the four 

interface arrays. However, each interface in the arrays has 

a First In First Out (FIFO) queue which contains the 

traffic elements of “(len, trcv)” sorted by time. “PktDeque” 

finds the first element that succeeds tPktDeque in each queue 

and clear all elements which prior to the element. Thus, 

the realtime traffic rate and LU can be obtained. Since the 

FIFO is sequentially sorted and can be saved in array, we 

can use binary search to find the successor of tPktDeque in 

each queue. The complexity is log2Npkt, where Npkt is the 

number of traffic elements per queue. Therefore, the time 

complexity of “PktDeque” is 

     2 pk tTotalmin index NPktDeque LU logO O O .   (2) 

The third phase is made up of “SetCachePath” and 

“GetCachePath”. Generally, the packet number of a 

stream is much higher than one, and “GetCachePath” is 

called each time a packet is received while 

“SetCachePath” is only called when the first packet of a 

stream is received. Thus, we can use “SetCachePath” to 

create a completely ordered list, and do binary search in 

“GetCachePath”. Therefore, the worst time complexity of 

“GetCachePath” is 

      2 2 22 2 2 2TCP UDPIP IPl ll lGetCachePathO log  ,  (3) 

where lIP is the length of IP address and lTCP/lUDP is the 

length of TCP/UDP port. Such we have 

   IP TCP UDPGetCachePathO l max l ,l  .     (4) 

Hence, the total time complexity of ESB is 

      ( )ESB Totalmin index PktDequeLUO O O O GetCachePath   , (5) 

Thus, the worst O(ESB) is O(k3log2Npkt+lIP+lTCP). In the 

existing Internet, lIP is at most 128 [21], and lTCP is equal 

to lUDP which is 16 [22][23]. To our knowledge, the 

maximum bandwidth of a router interface today is less 

than 160Gbps [24]. Assuming Tinterval is 1 second (long 

enough to calculate LU), due to the IP packet size is at 

least 20Bytes, Npkt is less than 230. Thus in the worst 

condition, O(ESB) is still very small (less than 30k3). 

Compared to LP and ILP which is usually a non-

polynomial (NP) or high order polynomial (P) problem [8, 

25], ESB is a low order P problem thus can work well in 

realtime. 

4. Evaluation 

In this section, we perform the simulations in numerous 

scenarios to evaluate the performance of our approach in 

different network conditions. Then, we measure and 

analyze the unused link ratio (ULR) and the traffic 

distribution. 
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4.1 Simulation Environment 

In this paper, we simulate 432 scenarios (144 scenarios for 

each algorithm) in NS2 [28]. Each scenario is made up of 

a certain case of each dimension shown in Table 1. The 

Host Number has two values which are used to simulate 

the lower and higher total network traffic. The Traffic 

Source Type can either be Pareto of which the burst 

interval is distributed in power law (e.g., some Web 

traffic), or the Constant Bit Rate (CBR) of which the burst 

interval is constant (e.g., live video). We also attach 7 

traffic sources per host on average according to Traffic 

Dist. Each source rate is 1Mb/s and the bandwidth of each 

link is 7Mb/s. The Host Dist refers to the distribution of 

the hosts along the routers, and the Traffic Dist refers to 

that of the traffic sources along the hosts. All distribution 

types of Host Dist and Traffic Dist are used to simulate as 

many cases as possible in the real network. 

Table 1: The Cases Of Dimensions Of The Scenarios 

Dimensions Case 

Synthetic Topology randloose randtight powloose powtight 

Host Number 100 500 

Traffic Source type Constant Bit Rate (CBR) Pareto 

Host Dist Uniform Exponential Pareto 

Traffic Dist Uniform Exponential Pareto 

Scheduling Algorithm NONE Round Robin (RR) ESB 

Table 2: Synthetic Topology Information 

Name Topology Router # Link # Prob. One-Nbr. 

randloose Pure-random 100 152 0.03 Random 

randtight Pure-random 100 491 0.1 Random 

powloose Power Law 100 151 0.03 0.25 

powtight Power Law 100 497 0.1 0.25 

 

Table 2 shows the detailed topology information in Table 

1. We set 100 routers in each synthetic topology and the 

number of links is also listed. The One-Nbr. refers to the 

fraction of routers which only have one neighbor. The first 

and the second topologies are random graphs generated by 

GT-ITM [27] while the others are power law graphs 

generated by Inet-3.0 [28] with our modification on its 

supported Prob.. The randloose and randtight are 

generated by the pure-random algorithm with constant 

connection probability (i.e., the Prob.) between each pair 

of routers. Hence, there are more paths between the 

routers in randtight than in randloose according to Table 

2. The Prob. of powloose and powtight are equal to that of 

the corresponding random graphs such that the influence 

of the degree distribution can be observed. Meanwhile, 

there are 25% routers in powloose and powtight with only 

one neighbor. Notice that, our approach works as single 

path routing while the stream is established between the 

hosts that connected with these routers. 

 

Why only Synthetic Topologies and Scenarios are 

included? This is because we are to find out which 

specific topology model (other than the approximate ones, 

e.g., the real topology) is more appropriate for performing 

our approach on average of all specific traffic models. The 

results can be used as a reference to estimate the 

performance of our approach when using into practice, 

e.g., a real topology with predicted traffic demands. 

4.2 Unused Link Ratio (ULR) 

Fig. 4 shows the ULR of all scenarios. The ULR is defined 

as the ratio of the number of links without data traffic to 

the total link number in the topology. Due to round robin 

(RR) or ESB may select different source and destination 

router neighbors for the identical host pair, compared to 

single path routing (i.e., NONE in Fig. 4), more links can 

be used to transmit the traffic of the same host pair on the 

incompletely overlapped paths. Hence, the ULR of NONE 

is always larger than RR and ESB. Due to the average link 

number per router in randtight/powtight is higher than that 

in randloose/powloose, the ULR in randtight/powtight is 

higher under NONE because higher ratio of links are not 

on the shortest path between any communication pair, and 

is lower under RR or ESB because the path number 

between each pair of routers is three order of neighbor 

(thus the link) number of each router on average such that 

higher ratio of links can be covered by the paths in 

randtight/powtight. Compared powloose/powtight to 

randloose/randtight, the ULR in powloose/powtight is 

always higher under NONE because most shortest paths 

between routers pass through the links that connected with 

the hub nodes in powloose/powtight such that the links 

(major part of all links) which are not connected with the 

hubs are much less probable to be used than all links in 

randloose/randtight. The ULR in powloose/powtight is 

also higher under RR or ESB because most routers have 

lesser neighbors than those in randloose/randtight such 

that the path number between each pair of routers is much 

lower (due to the three order relationship mentioned above) 

than randloose/randtight on average, thus more links are 

not used. Fig. 4 also indicates that the ULR is higher when 

the host number is lower in the same condition. In each 

grid divided by the solid and dash lines, the front part of 

each curve is always lower than the back part. This is 

because the Host Dist of the front part is uniform. 

Although the Traffic Dist is Pareto in some cases of the 

front part while it is uniform in the back part, the traffic 

source number is 7 times of the host in each scenario (by 

our setting) such that all communication paths in the front 

part in each grid of each curve cover more links than the 

back ones. In Fig. 4, we can also easily find that the 

randtight is most appropriate for the multipath routing 
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scheme (the ULR reduces most sharply when using the 

algorithms) while both powloose and randloose have 

worse effects. That means, the multipath routing schem 

takes better effect when the number of links among routers 

is higher and the links distribute more uniformly on the 

routers. Meanwhile, the scenarios in randloose have worse 

effect is because the ULR of NONE is much lower than 

other topologies. Since RR has used practically all 

neighbors of the source and destination router of a stream, 

the ULR performance of ESB is a little lower than RR. 

Compared to NONE, the average reduction of ULR of all 

scenarios is 82.4% when using RR, and is 82.0% when 

using ESB. 
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Fig. 4 ULR. The vertical solid lines separate different topologies while 

the dash ones separate different host number in each topology. 

4.3 Traffic Distribution 

Due to the total network traffic in different scenarios may 

not be equal (e.g., different Host Number), we use the 

normalized link utilization (NLU) which is the ratio of LU 

to maximum link utilization (MLU), to present the traffic 

distribution of all scenarios in a same scale [17]. Figs. 5-8 

show respectively the traffic ratio (TR) along NLU which 

of a scenario can be calculated as: 

( )

( )
( ) ( )( )

i

i

maxLUTrfi

jlink j

link j
link jlink sim jsim j

max TrfTrf LU
NLU

B TTB

  
     
   

, (6) 

where ( )ilink jTrf and maxLUTrfj are respectively the traffic 

on linki and the link with MLU during the simulation time 

Tsim(j) in scenario j,
ilinkB and ( )maxLUTrflink jB are respectively 

the bandwidth of linki and the link with maxLUTrfj. Due to 

the bandwidth of each link in each topology and Tsim(j) in 

each scenario are both set the same in our simulation, we 

have 

( ) ( )i i
link j link j j

NLU Trf max TrfLU .  (7) 

TR is defined as the ratio of the traffic on links of a certain 

NLU range to the total network traffic: 

( , )

# ( )

( ) ( )
1 1

( )

NLUk

k ii k

link j n

NLU link j link j
i i

TR j TrfTrf
 

  ,     (8) 

where 
( , ) ( )i klink jTrf is the traffic of the ith link in 

# ( )
kNLUlink j  and n is the number of links in the topology 

of scenario j. Combining (6) and (8), we have 

( , )

# ( )

( )( )
1 1

( )

NLUk

k ii k

link j n

NLU link jlink j
i i

TR j NLU NLU
 

  , (9) 

where 
( , ) ( )i klink j

NLU is the NLU of the ith link in 

# ( )
kNLUlink j . That is, TR can be calculated by using NLU. 

 

In Figs. 5-8, since each point is the mean value of TR of 

all scenarios under the corresponding topology and 

algorithm, and the standard deviation (STDEV) is small, 

the average traffic distribution of the scenarios can be 

generally represented by the corresponding curve. 
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Fig. 5 Traffic Ratio. 
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Fig. 6 Traffic Ratio. 
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Fig. 7 Traffic Ratio. 
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Fig. 8 Traffic Ratio. 

In Figs. 5-8, compared to NONE, the TR of RR or ESB is 

higher when NLU nears to the middle and is lower when it 

nears to the two ends. This is because RR or ESB splits 

the traffic of the links with higher LU onto the links many 

of which are with lower LU, such that the LU and NLU of 

these links “move” towards each other. Hence, the 

increasing of TR in the middle part of NLU arises from 

balancing the LU of most links. Along with LU balancing, 

the increasing part of TR will be higher and move to right 

on NLU. That is, the LU of more links will be closer to 

MLU which will be smaller in each scenario accordingly. 

Ideally, if the TR is 1 when NLU is 1, MLU is the 

minimum. 

 

In Fig. 8, we notice that the TR in the lower part of NONE 

is lower than RR and ESB. That is because the ULR of 

NONE is too high in powtight. More links can only get 

much lower traffic in powtight than in other topologies 

when using RR or ESB. Therefore, RR or ESB can only 

make those links, which are actually “idle” in NONE, with 

low LU. And hence, RR or ESB make TR higher in the 

lower part of NLU than NONE. We use the sum of TR in 

the NLU range of [0, 0.1] and [0.9, 1] to present the effect 

of LU balance shown in Table 3. Since the LU of most 

links in each scenario are all still much lower than the 

MLU, the traffic is more balanced when the sum is lower.  

Table 3: Sum of Traffic Ratio 

Topology 
TR (NLU in [0, 0.1] and [0.9, 1]) 

NONE RR ESB 

randloose 24.4% 17.7% 16.1% 

randtight 25.3% 17.6% 13.4% 

powloose 36.5% 27.9% 25.7% 

powtight 27.1% 23.4% 23.1% 

 

In Table 3, ESB is better in each topology. This is because 

ESB always uses the path which has the minimum LU on 

the two ends currently for each stream. Compared to 

NONE of the 4 topologies, in the relative sense, the 

average reduction of the sum of TR is 23.7% when using 

RR, and is 31.3% when using ESB. The randtight has the 

best effect (reduces 30.5% in RR and 47.1% in ESB) 

because more paths can be used to carry the split traffic 

for most streams. The powtight has the worst effect 

(reduces 13.5% in RR and 14.6% in ESB) because the TR 

of RR or ESB is higher than NONE when NLU in [0, 0.1], 

which means more “idle” links just start to carry traffic 

when RR or ESB are used in powtight than in other 

topologies. 

5. Conclusions 

In this paper, we have proposed a load balance approach 

by separating the host and router IP addresses into two 

spaces. In our approach, we have proposed a scheduling 

algorithm, named ESB, which is used by the proposed 

multipath routing scheme based on the address space 

separation. Each router can schedule each stream that is 

initiated by the connected host onto the proper path to the 

destination host by ESB dynamically. The multiple paths 

between any pair of hosts can be obtained by the 

connected routers by using the address separating 

mechanism. The merit of our approach is that: it balances 

the network traffic dynamically while being free of traffic 

demand assumption and offline flow optimization. The 

path of each stream is selected by each router individually 

other than using central system based on the address 

separation. The time complexity of ESB is much lower 

than the LP and ILP which are used in flow optimization. 

Simulation results have shown that on average of all 

simulated scenarios, compared to the existing single path 

routing which is based on the address separating, our 

approach evidently reduces the ULR and in relative terms, 

balances the traffic across the network. 
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