

Achieving Load Balance by Separating IP Address Spaces

Sanqi Zhou
1
, Jia Chen

1
, Huachun Zhou

1
 and Hongke Zhang

1

1
 National Engineering Laboratory for Next Generation Internet Interconnection Infrastructure

Beijing JiaoTong University

Beijing, 100044, China

Abstract
In this paper, we propose a load balance approach by separating

the host and router IP addresses into two spaces. In addition, in

our approach, we propose a scheduling algorithm, named Edge

Stream Balance (ESB), which is used by the proposed multipath

routing scheme based on the address space separation. Each

router can schedule each stream that is initiated by the connected

host onto the proper path to the destination host by ESB

dynamically. The multiple paths between any pair of hosts can

be obtained by the connected routers by using the address

separating mechanism. The merit of our approach is that: it

balances the network traffic dynamically while being free of

traffic demand assumption and offline flow optimization. The

path of each stream is selected by each router individually other

than using central system based on the address separation. The

time complexity of ESB is much lower than the linear

programming (LP) and integer linear programming (ILP) which

are used in flow optimization. Simulation results show that on

average of all simulated scenarios, compared to the existing

single path routing which is based on the address separating, the

unused link ratio (ULR) reduces by 82%. And in the relative

sense, the traffic across the network is balanced 31%.

Keywords: Load Balance, Address Space Separation, Multipath.

1. Introduction

In the existing Internet, load balance is a critical issue

which is not still solved elegantly [1]. This is caused by

two reasons: one is that the hosts and routers which are

growing rapidly are distributed by power-law in the

topology [2, 3], the other is the routing scheme is executed

independently in each router based on the Shortest Path

First (SPF) policy which may overload certain paths while

underloading some others [4].

Previous works have explored load balance in some

different ways. Fortz et. al. [5] proposed a solution of

optimizing OSPF weights. Sridharan et. al. [4] and Wang

et. al. [6] exploited more effective ways to split traffic

over the shortest paths. Xu et. al. [7] optimized the link

loads by using only E link weights against O(NE)

parameters in [4] and [6], where N is the number of routers.

These schemes are all depending on assuming having

knowledge of the network traffic demands. Furthermore in

[4] and [6], a central controller is used to compute and

configure the flow splitting ratio instead of routers. Thus,

it sacrifices the main benefit of running a distributed

protocol. Both Antic et. al. [8] and Tsunoda et. al. [9]

proposed the shortest path routing (SPR) solutions

respectively, in which each source router selects different

intermediate routers for forwarding each packet at a time.

In the both solutions, the traffic demand bound of each

router should be known by all routers. In [8], the high time

complexity of the realtime linear programming (LP) may

affect practicing in a large topology. Keller et. al. [10]

optimized the traffic infiltrated into other autonomous

systems (AS) by migrating the intradomain edge links.

However, the realtime traffic (e.g., the Audio stream)

cannot be kept in this approach. Both Saucez et. al. [11]

and Paul et. al. [12] proposed traffic engineering solutions

in the Identifier(ID)/Locator separating context. However,

in these solutions, the path selection is totally based on a

central controller in each AS. Meanwhile, the topology

and traffic information must be gathered in time or

periodically by the controller.

Therefore, although the research on load balance has made

a great progress [4-12], to our best knowledge, the

following question is still to be addressed: Is it possible to

achieve load balance in a wholly distributed system

without traffic demand assumption and high time

complexity? To answer, we present a novel approach.

As [11] and [12], our approach employs the principle of

separating IP address space. That is because a key merit of

separating IP space is to make possible to associate

multiple router addresses to a unique host address. Thus, it

enables each router choose different routers (i.e., the paths)

to route the packets between the same host pair for

balancing the traffic. In this paper, we address the question

presented above by the following two steps.

First, we propose a multipath routing scheme based on a

generalized address space separating mechanism. By this

scheme, each router can encapsulate a set of appropriate

router addresses into the packets of the same stream when

each packet initially enters the network from the router,

and can also decapsulate the addresses from the packet

when it leaves the network. These addresses are obtained

from the response messages of address space separating

mechanism (described in Section II). Second, we propose

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 757

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

a scheduling algorithm, which is called Edge Stream

Balance (ESB). In each router, it is used to select the

appropriate router addresses to encapsulate into packets.

This approach brings three main merits. 1) The network

traffic is balanced without a central controller. Because

each router gets all host-to-routers addresses mapping

information by the address space separating mechanism,

and some parts of the realtime traffic information by

dumping the packets it received, each router can select the

appropriate router addresses while without centralized

service. 2) The time complexity of ESB is much lower

than the LP and integer linear programming (ILP) such

that the traffic can be balanced timely. 3) ESB runs

without any transcendental knowledge of traffic demand.

We also simulate our approach in a large number of

scenarios and analyze the average performance in each

topology model.

The rest of the paper is organized as follows. Section II

describes the generalized IP address space separating

mechanism. Section III describes the multipath routing

scheme and the ESB algorithm. In section IV, we perform

simulations and analyze the results. Section IV concludes

the paper.

2. Generalized IP Address Space Separation

Several address space separating solutions, which are

generally in the principle of ID/Locator separation, were

proposed in recent years [13-15]. In this paper, we

consider a generalized IP address space separating

mechanism (without specific packet format definition and

etc.) named One-hop Distributed Hash Table (One-hop

DHT) based address separation [16], which can support

the proposed multipath routing scheme and ESB algorithm

to achieve load balance. Fig. 1 [17] shows how it works.

R1 R2

R3

H2H1
H2

R2 H2 H1
H1 Data

Data

R2 Register [H2,R2]
To R3 According to

One-hop DHT

R1

R1 Lookup for H2
According to
One-hop DHT

H2 H1 Data

R3 Response R1
with [H2,R2]

R1 Forward to R2
H1 Send Data H2 Rcv Data

from R2

1

2

3
4

5

Router

Control message
Data packet

Host

6

AS

Fig. 1 One-hop DHT based address separation.

In Fig. 1, it shows the 6 primary steps of forwarding a

packet from one host to another (i.e., H1 to H2) based on

the address separation. Each router creates a hash ring

with the specific addresses of all routers (e.g., the

maximum address of each router obtained from Link State

Database (LSDB) of OSPF [18]) by using an identical

hash function (e.g., Secure Hash Algorithm 1, SHA-1

[19]). When a host accesses the network, the mapping

entry of the host IP, its connected router’s maximum IP

(here we call it Router ID) and the router’s other IPes are

stored in a certain router according to the hash function

(i.e., step 1). Thus, when a router forwards a packet

received from its connected host (i.e., step 2), one of the

destination router IPes can be obtained by using the hash

function (i.e., step 3 and 4). Then, the source/destination

router IPes are encapsulated into the packet header to

forward to the destination router (i.e., step 5) which

decapsulates the router IPes and forwards the packet to the

destination host (i.e., step 6). Meanwhile, the mapping

entry is cached by the source router for accessing the same

host afterwards.

3. Load Balance Solution

In this section, we first describe the multipath routing

scheme in Subsection 3.1. Then, ESB algorithm is

described in Subsection 3.2.

3.1 Multipath Routing Scheme

Based on the separating mechanism mentioned above, each
router can register its IPes and the neighbors’ IPes which
can be got by a certain protocol, e.g., the Hello protocol in
OSPF, to another router which can be found in the hash
ring created by the hash function. When the packets, sent
from the same source host and destined to the same
destination host, are received by the source router, they
may be encapsulated with different IPes of the source
router and its neighbors, destination router and its
neighbors (which can be got from the router in which the
IPes are registered). Then, the packets are forwarded along
the paths indicated by these IPes. Each time the router,
which is the intermediate destination indicated by one of
the IPes, receives the packet, it changes the current
destination IP into a new one which is contained in the
packet, and then forwards it to the next intermediate
destination. The process continues until the packet is
received by the destination host.

Fig. 2 shows the multipath routing scheme based on the

introduced separating mechanism. The two packets sent

from Hs to Hd are routed on different paths that are

indicated by solid and dash arrows respectively. The

original protocol type in the IP header is temporarily saved

between the data field and the IP header (i.e., the “y”) by

router A when the packet is forwarded from Hs to router A,

and is restored by router G before being forwarded to Hd.

In the forwarding process, some other specific values are

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 758

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

filled in the protocol field sequentially as shown in the

underlined font in Fig. 2. These values can take the

reserved protocol types defined in the IP standard [20],

and are used by the multipath routing procedure in the

packet forwarding process. Procedure 1 shows the

pseudocode of the multipath routing scheme.

A

B

D

E

F

G

Hs
Hd

A1

A2

A3

B1

G2

D2D1

B3

B2

G3
G1

F3

F2

F1

E3

E2
E1

Data1

Data2

HdHsData1

HdHsData2
HdHsData1

HdHsData2

Protocol value of the original IP header (e.g., Protocol = y)

Protocol = x

Protocol = x Protocol = x

Protocol = x

Pro
toc

ol
= a

Protocol = a

Protocol = b

Pr
ot
oc
ol
 =
 b

Pro
toc

ol
= b

Protocol = b

Protocol = c

Pr
ot
oc
ol
 =
 c

IP address in IP header
Hd

Hs

Data2

E1
G2

y

IP address between IP header and data field (e.g., F3)

Hd
Hs

Dat
a1

F1
G3

F3
A2

B1

y

y

Hd
Hs

Data2

E1
G2

E2
A3

D1

y

Hd

Hs

Data1

F1
G3

B2
F3

y

Hd

Hs

Da
ta
2

E1
G2

D2
E2

Hd
Hs

Dat
a2

E1
G2

D2
E2

y

Hd
Hs

Data1

F1 G3 B2 F3

y Hd
Hs

Da
ta
1

F1
G3

y

Internet

Fig. 2 Multipath routing scheme.

Procedure 1 Pseudocode of multipath routing scheme
//In this procedure, pkt is the received packet, pkt.hdr is the standard IP

header, pkt.hdr.ptl is the protocol field in the IP header and the local

mapping interfaces (LMIF) is the set of host accessible router’s

interface IPes, which are connected with other routers, and the router’s

neighbor IPes. We use DstLmifEnt to point to the <dest IP, LMIF>

entry which is the set of IPes of the destination host, routers and router

neighbors. It is cached in the current router according to the introduced

separating mechanism.

When a packet received by a router and the IP header has been

checked:

1: if (pkt.hdr.destIP != the current interface IP) then

2: if (the interface is connected with hosts) then

3: if(LookupCacheEntry(pkt.hdr.destIP,DstLmifEnt)==true) then

4: ESB(pkt, LMIF, DstLmifEnt); //select IPes from LMIF and

DstLmifEnt to be encapsulated into pkt.

5: else //the <dest IP, LMIF> entry has not been cached

6: Send a lookup packet based on the address separating

mechanism and drop pkt;

7: return;

8: end if

9: end if

10: else //pkt destines to the interface

11: switch (pkt.hdr.ptl)

12: { case a: decapsulate the first IP behind the header (i.e., F3 in

the data1 packet in Fig. 2) into pkt.hdr.destIP, and then lookup

the routing entries to get the output interface IP which is to be

taken as pkt.hdr.srcIP;

13: pkt.hdr.ptl = b; break;

14: case b: decapsulate the first IP behind the header into

pkt.hdr.destIP;

15: decapsulate the second IP behind the header into

pkt.hdr.srcIP;

16: pkt.hdr.ptl = c; break;

17: case c: restore the original source and destination IPes, and

decapsulate the saved protocol field (i.e., “Protocol=x” in Fig. 2)

into pkt.hdr.ptl; break; }

18: Recalculate the other fields (i.e., checksum and etc.) in the IP

header.

19: end if

20: Pass the packet to the existing forwarding procedure which is

already modified to consider the protocol types a, b and c the

same as regular IP packet;

In statement “3”, “LookupCacheEntry(pkt.hdr.destIP,

DstLmifEnt)” looks up all cached <dest IP, LMIF>

entries to find out the one that matches the first parameter,

and then to point it with the second parameter.

Number of Paths. Here, we assume that there are

averagely k neighbors per router and two bidirectional

links between two routers at most. Thus, there are at most

2k source router neighbor interfaces and 2k(k-1)

destination router neighbor interfaces (another two

interfaces per destination router neighbor are connected

with the destination router) can be selected to indicate

different paths. Therefore, on average, there are O(k3)

magnitude paths between each pair of routers.

3.2 Edge Stream Balance (ESB)

In Procedure 1, ESB is invoked to choose the appropriate

IPes which are to be encapsulated in the packet to indicate

the routers to be forwarded to (i.e., the statement “4”). The

principle of ESB is: when the link utilization (LU) on the

links between routers, one of which is connected with

hosts is balanced (Edge Stream), the LU across the

network is tended to be balanced (in the means of stream,

that is, each time a new stream is initiated by host). The

principle can hold for this reason: In the real network, the

edge link with higher bandwidth is always connected with

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 759

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

the core link with higher bandwidth. This is to ensure each

link can be used as transiting the traffic effectively as

possible. Fig. 3 shows the single path routing scheme and

the multipath routing scheme with ESB.

3

2

1

Router

Host

3

2

1

Stream initialed by host 1, n is the current rate
n

200kb/s

n

500kb/s

400kb/s

300kb/s

Router

200kb/s

300kb/s

400kb/s

500kb/s

Stream initialed by host 2, n is the current rate

(a) Single Path Routing (b) ESB

Fig. 3 The schemes of the single path routing and the multipath routing

with ESB. Each arrow indicates the path that a stream is forwarded along.

The different colors of the nodes are used to illustrate the result of ESB

compared to that of single path routing.

Assuming all links are with the same bandwidth, in Fig.

3(a), each stream initiated by either host 1 or host 2 is

routed on the shortest path such that the lower link

between the black nodes undertakes all 4 streams while

the upper one does not carry any of them. However, in Fig.

3(b), the streams initiated by each host are separated on

two paths by selecting the router interfaces which

currently have the minimum LU. Therefore, the links

between the black nodes are more approximately balanced.

Notice that, ESB doesn’t know the rate of a new initiated

stream when the first packet received by the router. ESB

only chooses the interfaces with minimum current LU for

the stream, and then all the following packets of this

stream are totally routed on the indicated path even if the

LU of other interfaces may be lower. This is because the

traffic can be balanced approximately in the means of

stream level while keeping the time complexity of packet

forwarding as lower as possible (i.e., ESB only takes more

time when it is called for choosing a path for a stream for

the first time). The algorithm includes two main phases.

One is to balance the LU generated by the output traffic on

the current router interfaces which connected with the

neighbor routers, the other is to balance the LU of the

input traffic on the destination router’s neighbor interfaces

which are not connected with the destination router. The

first phase is achieved by selecting the interfaces of the

minimum total current output LU among the local router

interfaces and its neighbor interfaces. The second phase is

achieved by selecting the interfaces of the minimum input

LU in the cached <dest IP, LMIF> entry that is

corresponding with the destination IP of the packet. That

is, the first phase records and uses the LU in the global

scope while the second phase does that on each cached

entry. Thus to the router that invokes ESB, the output LU

on each of its link and the input LU on each link, which is

not connected with the router, of all its neighbors, are

balanced respectively. Algorithm 1 shows the pseudocode

of ESB.

Algorithm 1 Pseudocode of ESB
ESB(pkt, LMIF, DstLmifEnt)

1: len = pkt.hdr.length;

2: tPktDeque = (tnow = GetCurrentTime()) - TLUinterval; //TLUinterval is used

to calculate the traffic rate, and hence the LU.

3: PktDeque(LMIF.ALLif.iface,DstLmifEnt.ALLnif.iface,tPktDeque);

//pop up all (len, trcv) before tPktDeque from each element of iface or

niface arrays of the input parameters and subtract the

corresponding len from the trf field in each element. The trf only

contains the traffic from connected hosts.

4: if(GetCachePath(pkt, &IP1, &IP3, &IP2, &hd, &hs, &proto, a,

tnow) == false) then //If GetCachePath() == false, a new stream is

initiated. Otherwise, pkt belongs to an existing stream of which

the path has been cached in the current router. Then, the

combination of the source/destination IPes and TCP or UDP ports

is used as the index to get the cached router IPes. Meanwhile, “a”

is set into pkt.hdr.ptl and the len is accumulated on the

correspondingly cached interfaces (i.e., the trf fields) such that the

paths can be chosen reasonably when the next stream is initiated.

5: la=minLUindex(LMIF.ALLif.iface); //obtain the minimum output

LU interface, the bandwidth is employed.

6: LMIF.ALLif.iface[la].trf += len;

7: LMIF.ALLif.iface[la].PktEnque(len, tnow); //push in queue

//accumulate the output traffic in Tinterval on the interface.

8: lb = 1; //init lb

9: if(LMIF.ALLif.iface[la].NeighborIPnum>1) then

//multiple interfaces of neighbors are connected to the router

interface

10: lb=minLUindex(LMIF.ALLif.iface[la].niface);

//LMIF.ALLif.iface[la].niface is the interface array of the

neighbor routers of la interface.

11: end if

12: LMIF.ALLif.iface[la].niface[lb].trf += len;

13: LMIF.ALLif.iface[la].niface[lb].PktEnque(len, tnow);

14: da=minLUindex(DstLmifEnt.ALLnif.iface);//obtain the minimum

input LU interface of the destination router neighbors.

15: DstLmifEnt.ALLnif.iface[da].trf += len;

16: DstLmifEnt.ALLnif.iface[da].PktEnque(len, tnow);

17: db = 1; //init db

18: if(DstLmifEnt.ALLnif.iface[da].router.ifaceNum>1)then

//DstLmifEnt.ALLnif.iface[da].router.ifaceNum is the number of

the interfaces which are connected with the destination router

and belongs to the router that has DstLmifEnt.ALLnif.iface[da].

19: DstNeighbor = DstLmifEnt.ALLnif.iface[da].router;

20: db = minLUindex(DstNeighbor.iface); //DstNeighbor.iface is

the interface array of the selected destination router neighbor.

The interfaces are connected with the destination router.

21: end if

22: DstNeighbor.iface[db].trf += len;

23: DstNeighbor.iface[db].PktEnque(len, tnow);

//Encapsulate pkt and modify pkt.hdr.ptl

24: proto = pkt.hdr.ptl;

25: pkt.hdr.ptl = a; //set it to “a” for neighbor receiving

26: hs = pkt.hdr.srcIP;

27: hd = pkt.hdr.destIP;

28: pkt.hdr.srcIP = LMIF.ALLif.iface[la].IP;

29: pkt.hdr.destIP = LMIF.ALLif.iface[la].niface[lb].IP;

30: IP1 = DstLmifEnt.ALLnif.iface[da].IP; //destination neighbor

31: IP2 = DstNeighbor.iface[db].IP; //destination neighbor

32: IP3 = DstNeighbor.iface[db].peerIP; //destination router

33: SetCachePath(pkt, IP1, IP3, IP2, la, lb, da, db, tnow); //Cache the

router IPes. The corresponding interface indexes are also cached

to record the following traffic of the same stream on the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 760

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

interfaces.

34: end if

35: Encapsulate (pkt, IP1, IP3, IP2, hd, hs, proto);

36: return;

Delete the cached paths when the timer of the corresponding

streams are timeout:

//GetCachePath() resets timer of the stream only if the stream has

existed. SetCachePath() resets the stream timer when it is called,

that is, when the stream is initiated.

1: DelCachePath(pkt);

In the statement “32”, the peerIP indicates the destination

router interface that connected with IP2. Because two

interfaces of a router can’t be connected in the real

network, the peerIP is unique for each IP2. The function

“DelCachePath” is used to delete the path which has been

indicated for a stream when the path is timeout for this

stream. This is because, when a stream is released or

cancelled by a host, or be even “silent” for some reason,

the router which is connected with the host can’t be aware.

Thus, we should delete the cached stream path in the local

router. When the router receives any new packet of this

stream from its connected host, it takes the packet as a

start of an initiating stream and assigns a new path for it.

We can see that, both the multipath routing scheme and

ESB algorithm only process each packet locally, while

without communicating to any other router or central

system beyond the address separating mechanism and

routing protocol. Furthermore, ESB only chooses path by

collecting and analyzing the realtime traffic that is sent

from or destined to the local hosts, rather than using global

traffic information or static traffic demands.

Time Complexity. In Algorithm 1, the time complexity of

ESB is mainly made up of three phases. The first is

“minLUindex” which performs the selection of the

interface with minimum input or output LU. In the worst

case, it sequentially traverses the interface array with

random stored elements. Thus, the worst time complexity

will be proportional to the array length. Assuming there

are k neighbors per router and n interfaces between two

routers at most, the interface number (connected with

router) of a router won’t be more than k*n. The total time

complexity of the four invoking of “minLUindex” is

         1()
la lb da db

min indexTotal k n k k k n nO O O OO LU     , (1)

where each term with subscript is the corresponding time

complexity of the invoking in Algorithm 1. The largest

array is DstLifEnt.ALLnif.iface with at most k routers. The

length is no more than k*(k-1)*n (the destination router is

a neighbor of each destination router neighbor). Hence,

O(TotalminLUindex) is at most O(k2n). Generally, n is

always far less than k (In general, two links between two

routers at most). Thus, O(TotalminLUindex) won’t be

higher than O(k3). The second phase is “PktDeque” which

maintains the traffic records in the most recent Tinterval for

all interfaces in the LMIFes. Similarly with “minLUindex”,

“PktDeque” also has to sequentially traverse the four

interface arrays. However, each interface in the arrays has

a First In First Out (FIFO) queue which contains the

traffic elements of “(len, trcv)” sorted by time. “PktDeque”

finds the first element that succeeds tPktDeque in each queue

and clear all elements which prior to the element. Thus,

the realtime traffic rate and LU can be obtained. Since the

FIFO is sequentially sorted and can be saved in array, we

can use binary search to find the successor of tPktDeque in

each queue. The complexity is log2Npkt, where Npkt is the

number of traffic elements per queue. Therefore, the time

complexity of “PktDeque” is

     2 pk tTotalmin index NPktDeque LU logO O O . (2)

The third phase is made up of “SetCachePath” and

“GetCachePath”. Generally, the packet number of a

stream is much higher than one, and “GetCachePath” is

called each time a packet is received while

“SetCachePath” is only called when the first packet of a

stream is received. Thus, we can use “SetCachePath” to

create a completely ordered list, and do binary search in

“GetCachePath”. Therefore, the worst time complexity of

“GetCachePath” is

      2 2 22 2 2 2TCP UDPIP IPl ll lGetCachePathO log  , (3)

where lIP is the length of IP address and lTCP/lUDP is the

length of TCP/UDP port. Such we have

   IP TCP UDPGetCachePathO l max l ,l  . (4)

Hence, the total time complexity of ESB is

      ()ESB Totalmin index PktDequeLUO O O O GetCachePath   , (5)

Thus, the worst O(ESB) is O(k3log2Npkt+lIP+lTCP). In the

existing Internet, lIP is at most 128 [21], and lTCP is equal

to lUDP which is 16 [22][23]. To our knowledge, the

maximum bandwidth of a router interface today is less

than 160Gbps [24]. Assuming Tinterval is 1 second (long

enough to calculate LU), due to the IP packet size is at

least 20Bytes, Npkt is less than 230. Thus in the worst

condition, O(ESB) is still very small (less than 30k3).

Compared to LP and ILP which is usually a non-

polynomial (NP) or high order polynomial (P) problem [8,

25], ESB is a low order P problem thus can work well in

realtime.

4. Evaluation

In this section, we perform the simulations in numerous

scenarios to evaluate the performance of our approach in

different network conditions. Then, we measure and

analyze the unused link ratio (ULR) and the traffic

distribution.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 761

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4.1 Simulation Environment

In this paper, we simulate 432 scenarios (144 scenarios for

each algorithm) in NS2 [28]. Each scenario is made up of

a certain case of each dimension shown in Table 1. The

Host Number has two values which are used to simulate

the lower and higher total network traffic. The Traffic

Source Type can either be Pareto of which the burst

interval is distributed in power law (e.g., some Web

traffic), or the Constant Bit Rate (CBR) of which the burst

interval is constant (e.g., live video). We also attach 7

traffic sources per host on average according to Traffic

Dist. Each source rate is 1Mb/s and the bandwidth of each

link is 7Mb/s. The Host Dist refers to the distribution of

the hosts along the routers, and the Traffic Dist refers to

that of the traffic sources along the hosts. All distribution

types of Host Dist and Traffic Dist are used to simulate as

many cases as possible in the real network.

Table 1: The Cases Of Dimensions Of The Scenarios

Dimensions Case

Synthetic Topology randloose randtight powloose powtight

Host Number 100 500

Traffic Source type Constant Bit Rate (CBR) Pareto

Host Dist Uniform Exponential Pareto

Traffic Dist Uniform Exponential Pareto

Scheduling Algorithm NONE Round Robin (RR) ESB

Table 2: Synthetic Topology Information

Name Topology Router # Link # Prob. One-Nbr.

randloose Pure-random 100 152 0.03 Random

randtight Pure-random 100 491 0.1 Random

powloose Power Law 100 151 0.03 0.25

powtight Power Law 100 497 0.1 0.25

Table 2 shows the detailed topology information in Table

1. We set 100 routers in each synthetic topology and the

number of links is also listed. The One-Nbr. refers to the

fraction of routers which only have one neighbor. The first

and the second topologies are random graphs generated by

GT-ITM [27] while the others are power law graphs

generated by Inet-3.0 [28] with our modification on its

supported Prob.. The randloose and randtight are

generated by the pure-random algorithm with constant

connection probability (i.e., the Prob.) between each pair

of routers. Hence, there are more paths between the

routers in randtight than in randloose according to Table

2. The Prob. of powloose and powtight are equal to that of

the corresponding random graphs such that the influence

of the degree distribution can be observed. Meanwhile,

there are 25% routers in powloose and powtight with only

one neighbor. Notice that, our approach works as single

path routing while the stream is established between the

hosts that connected with these routers.

Why only Synthetic Topologies and Scenarios are

included? This is because we are to find out which

specific topology model (other than the approximate ones,

e.g., the real topology) is more appropriate for performing

our approach on average of all specific traffic models. The

results can be used as a reference to estimate the

performance of our approach when using into practice,

e.g., a real topology with predicted traffic demands.

4.2 Unused Link Ratio (ULR)

Fig. 4 shows the ULR of all scenarios. The ULR is defined

as the ratio of the number of links without data traffic to

the total link number in the topology. Due to round robin

(RR) or ESB may select different source and destination

router neighbors for the identical host pair, compared to

single path routing (i.e., NONE in Fig. 4), more links can

be used to transmit the traffic of the same host pair on the

incompletely overlapped paths. Hence, the ULR of NONE

is always larger than RR and ESB. Due to the average link

number per router in randtight/powtight is higher than that

in randloose/powloose, the ULR in randtight/powtight is

higher under NONE because higher ratio of links are not

on the shortest path between any communication pair, and

is lower under RR or ESB because the path number

between each pair of routers is three order of neighbor

(thus the link) number of each router on average such that

higher ratio of links can be covered by the paths in

randtight/powtight. Compared powloose/powtight to

randloose/randtight, the ULR in powloose/powtight is

always higher under NONE because most shortest paths

between routers pass through the links that connected with

the hub nodes in powloose/powtight such that the links

(major part of all links) which are not connected with the

hubs are much less probable to be used than all links in

randloose/randtight. The ULR in powloose/powtight is

also higher under RR or ESB because most routers have

lesser neighbors than those in randloose/randtight such

that the path number between each pair of routers is much

lower (due to the three order relationship mentioned above)

than randloose/randtight on average, thus more links are

not used. Fig. 4 also indicates that the ULR is higher when

the host number is lower in the same condition. In each

grid divided by the solid and dash lines, the front part of

each curve is always lower than the back part. This is

because the Host Dist of the front part is uniform.

Although the Traffic Dist is Pareto in some cases of the

front part while it is uniform in the back part, the traffic

source number is 7 times of the host in each scenario (by

our setting) such that all communication paths in the front

part in each grid of each curve cover more links than the

back ones. In Fig. 4, we can also easily find that the

randtight is most appropriate for the multipath routing

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 762

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

scheme (the ULR reduces most sharply when using the

algorithms) while both powloose and randloose have

worse effects. That means, the multipath routing schem

takes better effect when the number of links among routers

is higher and the links distribute more uniformly on the

routers. Meanwhile, the scenarios in randloose have worse

effect is because the ULR of NONE is much lower than

other topologies. Since RR has used practically all

neighbors of the source and destination router of a stream,

the ULR performance of ESB is a little lower than RR.

Compared to NONE, the average reduction of ULR of all

scenarios is 82.4% when using RR, and is 82.0% when

using ESB.

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Simulation Scenarios

U
L

R

NONE

RR

ESB
randtight powtightpowloose

randloose

400 100400100100400100 400

Fig. 4 ULR. The vertical solid lines separate different topologies while

the dash ones separate different host number in each topology.

4.3 Traffic Distribution

Due to the total network traffic in different scenarios may

not be equal (e.g., different Host Number), we use the

normalized link utilization (NLU) which is the ratio of LU

to maximum link utilization (MLU), to present the traffic

distribution of all scenarios in a same scale [17]. Figs. 5-8

show respectively the traffic ratio (TR) along NLU which

of a scenario can be calculated as:

()

()
() ()()

i

i

maxLUTrfi

jlink j

link j
link jlink sim jsim j

max TrfTrf LU
NLU

B TTB

  
     
   

, (6)

where ()ilink jTrf and maxLUTrfj are respectively the traffic

on linki and the link with MLU during the simulation time

Tsim(j) in scenario j,
ilinkB and ()maxLUTrflink jB are respectively

the bandwidth of linki and the link with maxLUTrfj. Due to

the bandwidth of each link in each topology and Tsim(j) in

each scenario are both set the same in our simulation, we

have

() ()i i
link j link j j

NLU Trf max TrfLU . (7)

TR is defined as the ratio of the traffic on links of a certain

NLU range to the total network traffic:

(,)

()

() ()
1 1

()

NLUk

k ii k

link j n

NLU link j link j
i i

TR j TrfTrf
 

  , (8)

where
(,) ()i klink jTrf is the traffic of the ith link in

()
kNLUlink j and n is the number of links in the topology

of scenario j. Combining (6) and (8), we have

(,)

()

()()
1 1

()

NLUk

k ii k

link j n

NLU link jlink j
i i

TR j NLU NLU
 

  , (9)

where
(,) ()i klink j

NLU is the NLU of the ith link in

()
kNLUlink j . That is, TR can be calculated by using NLU.

In Figs. 5-8, since each point is the mean value of TR of

all scenarios under the corresponding topology and

algorithm, and the standard deviation (STDEV) is small,

the average traffic distribution of the scenarios can be

generally represented by the corresponding curve.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

NLU

T
R

NONE

RR

ESB

randloose

Fig. 5 Traffic Ratio.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

NLU

T
R

NONE

RR

ESB

randtight

Fig. 6 Traffic Ratio.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 763

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

NLU

T
R

NONE

RR

ESB

powloose

Fig. 7 Traffic Ratio.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

NLU

T
R

NONE

RR

ESB

powtight

Fig. 8 Traffic Ratio.

In Figs. 5-8, compared to NONE, the TR of RR or ESB is

higher when NLU nears to the middle and is lower when it

nears to the two ends. This is because RR or ESB splits

the traffic of the links with higher LU onto the links many

of which are with lower LU, such that the LU and NLU of

these links “move” towards each other. Hence, the

increasing of TR in the middle part of NLU arises from

balancing the LU of most links. Along with LU balancing,

the increasing part of TR will be higher and move to right

on NLU. That is, the LU of more links will be closer to

MLU which will be smaller in each scenario accordingly.

Ideally, if the TR is 1 when NLU is 1, MLU is the

minimum.

In Fig. 8, we notice that the TR in the lower part of NONE

is lower than RR and ESB. That is because the ULR of

NONE is too high in powtight. More links can only get

much lower traffic in powtight than in other topologies

when using RR or ESB. Therefore, RR or ESB can only

make those links, which are actually “idle” in NONE, with

low LU. And hence, RR or ESB make TR higher in the

lower part of NLU than NONE. We use the sum of TR in

the NLU range of [0, 0.1] and [0.9, 1] to present the effect

of LU balance shown in Table 3. Since the LU of most

links in each scenario are all still much lower than the

MLU, the traffic is more balanced when the sum is lower.

Table 3: Sum of Traffic Ratio

Topology
TR (NLU in [0, 0.1] and [0.9, 1])

NONE RR ESB

randloose 24.4% 17.7% 16.1%

randtight 25.3% 17.6% 13.4%

powloose 36.5% 27.9% 25.7%

powtight 27.1% 23.4% 23.1%

In Table 3, ESB is better in each topology. This is because

ESB always uses the path which has the minimum LU on

the two ends currently for each stream. Compared to

NONE of the 4 topologies, in the relative sense, the

average reduction of the sum of TR is 23.7% when using

RR, and is 31.3% when using ESB. The randtight has the

best effect (reduces 30.5% in RR and 47.1% in ESB)

because more paths can be used to carry the split traffic

for most streams. The powtight has the worst effect

(reduces 13.5% in RR and 14.6% in ESB) because the TR

of RR or ESB is higher than NONE when NLU in [0, 0.1],

which means more “idle” links just start to carry traffic

when RR or ESB are used in powtight than in other

topologies.

5. Conclusions

In this paper, we have proposed a load balance approach

by separating the host and router IP addresses into two

spaces. In our approach, we have proposed a scheduling

algorithm, named ESB, which is used by the proposed

multipath routing scheme based on the address space

separation. Each router can schedule each stream that is

initiated by the connected host onto the proper path to the

destination host by ESB dynamically. The multiple paths

between any pair of hosts can be obtained by the

connected routers by using the address separating

mechanism. The merit of our approach is that: it balances

the network traffic dynamically while being free of traffic

demand assumption and offline flow optimization. The

path of each stream is selected by each router individually

other than using central system based on the address

separation. The time complexity of ESB is much lower

than the LP and ILP which are used in flow optimization.

Simulation results have shown that on average of all

simulated scenarios, compared to the existing single path

routing which is based on the address separating, our

approach evidently reduces the ULR and in relative terms,

balances the traffic across the network.

Acknowledgments

This work is supported in part by NSF of China under

Grant No. 61232017 and 61102049, in part by National

High Technology Research and Development

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 764

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Program("863"Program) of China under Grant No.

2011AA010701 and 2011AA01A101, in part by

Fundamental Research Funds for the Central Universities

under Grant No. 2011JBM009 and in part by Innovation

Funds for Excellent PhDs of Beijing JiaoTong University

under Grant No. 2011YJS207.

References
[1] J. He and J. Rexford, "Toward Internet-Wide Multipath

Routing", IEEE Network, 2008, Vol. 22, pp. 16 - 21.

[2] W. Willinger, V. Paxson, and M. S. Taqqu. “Self-similarity

and heavy tails: Structural modeling of network traffic”, A

Practical Guide to Heavy Tails: Statistical Techniques and

Applications, 1998.

[3] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law

relationships of the internet topology”, in Proc. ACM

SIGCOMM, 1999.

[4] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-

optimal traffic engineering solutions for current OSPF/IS-IS

networks”, IEEE/ACM Trans. on Networking, Apr. 2005.

[5] B. Fortz and M. Thorup, “Internet Traffic Engineering by

Optimizing OSPF Weights”, Proc. IEEE INFOCOM 2000.

[6] Z. Wang, Y. Wang, and L. Zhang, “Internet traffic

engineering without full mesh overlaying”, Proc. IEEE

INFOCOM 2001.

[7] D. Xu et. al., “Link-state routing with hop-by-hop

forwarding can achieve optimal traffic engineering”, IEEE

Trans. on Networking, Apr. 2011.

[8] M. Antic et. al., “Two Phase Load Balanced Routing using

OSPF”, IEEE Jour. of Selected Area in Comm., Jan. 2010.

[9] S. Tsunoda, et. al., “Load-Balanced Shortest-Path-Based

Routing Without Traffic Splitting in Hose Model”, Proc.

IEEE ICC 2011.

[10] E. Keller, et. al., "Rehoming edge links for better traffic

engineering,", ACM SIGCOMM CCR, Mar. 2012.

[11] D. Saucez, et. al., “Interdomain Traffic Engineering in a

Locator/Identifier Separation Context”, Proc. INM, Oct.

2008.

[12] S. Paul, et. al., "An Identifier/Locator Split Architecture for

Exploring Path Diversity through Site Multi-homing - A

Hybrid Host-Network Cooperative Approach" Proc., IEEE

ICC 2010.

[13] D. Farinacci, et. al., “Locator/ID separation protocol (LISP)”,

IETF, Internet Draft draft-ietf-lisp-16, Nov. 2011.

[14] R. Moskowitz, et. al., “Host identity protocol”, RFC5201,

Apr. 2008.

[15] E. Nordmark and M. Bagnulo, “Shim6: Level 3 multihoming

shim protocol for IPv6”, IETF, RFC 5533, Jun. 2009.

[16] C. Kim et. al., “Floodless in SEATTLE: A Scalable Ethernet

Architecture for Large Enterprises”, Proc. ACM

SIGCOMM 2008.

[17] Sanqi Zhou, Jia Chen, Hongbin Luo and Hongke Zhang,

Proceedings of 2012 World Congress on Information and

Communication Technologies (WICT2012), Nov. 2012.

[18] J. Moy, “OSPF Version 2”, IETF, RFC 2328, Apr. 1998.

[19] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1

(SHA1)”, IETF RFC3174, Sep. 2001.

[20] “Internet Protocol”, IETF, RFC 791, Sep. 1981.

[21] “Internet Protocol, Version 6”, IETF, RFC 2460, Dec. 1998.

[22] “Transmission Control Protocol”, IETF, RFC793, Sep. 1981.

[23] “User Datagram Protocol”, IETF, RFC 768, Aug. 1980.

[24] Cisco, U.S. [Online] http://www.cisco.com/en/US/prod/

collateral/routers/ps5763/CRS-FP-140_DS.pdf.

[25] A. Elwalid et. al., “MATE: MPLS adaptive traffic

engineering”, Proc. IEEE INFOCOM, 2001.

[26] “NS2”, USC/ISI, Xerox PARC, LBNL and UCB, U.S.

[Online].

[27] “GT-ITM”, CC, Georgia Institute of Technology, U.S.

[Online].

[28] “Inet-3.0”, CCES, University of Michigan, U.S. [Online].

Sanqi Zhou received the B.S. degree in electrical engineering and
automation from North China Power Electric University, Beijing,
China, in 2007. He received the M.S. degree in Traffic Information
Engineering and Control from Beijing JiaoTong University, China,
in 2009. He is pursuing the Ph.D. degree at national engineering
laboratory for next generation Internet interconnection devices,
Beijing Jiaotong University. His research interests include network
traffic engineering, energy efficiency and the next generation
Internet technology.

Jia Chen received her B.S. degree in Communication Engineering
in 2005 from Beijing University of Posts and Telecommunications
in China. She received Master of Research (M.R.) degree in
Telecommunications in 2006, and the Ph.D degree in Electrical
and Electronic Engineering 2010 from Department of Electrical and
Electronic Engineering, University College London, UK. She
worked in British Telecommunication (UK) for an industry
fellowship position from Jan. 2009 to Apr. 2009. She joined Beijing
Jiaotong University (Beijing, China) as a lecturer since July 2010.
Her current research interests include architecture and protocol
design and analysis for the future Internet.

Huachun Zhou received his B.S. degree from People ’ s

PoliceOfficer University of China in 1986, and the M.S. and Ph.D.
degree from Beijing Jiaotong University of China in 1989 and 2008,
respectively. He is currently a professor with the Institute of
Electronic Information Engineering, Beijing Jiaotong University of
China. His main research interests are in the area of mobility
management, mobile and secure computing, routing protocols,
network management technologies and database applications.

Hongke Zhang received his M.S. and Ph.D. degrees in
Electricaland Communication Systems from the University of
Electronic Science and Technology of China in 1988 and 1992,
respectively. From Sep. 1992 to June 1994, he was a post-doc
research associate at Beijing Jiaotong University. In July 1994, he
jointed Beijing Jiaotong University, where he is a professor. He has
published more than 100 research papers in the areas of
communications, computer networks and information theory. He is
the director of the National Engineering Laboratory for Next
Generation Internet Interconnection Devices.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 765

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

