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                                   Abstract 
The complex fourth-order as well as the complex shock partial 
differential equations (PDEs) is introduced for noise removal 
from medical images and 2D turbulent flow. The Lattice 
Boltzmann method (LBM) with a single relaxation model is used 
to obtain the velocity field of the turbulent flow. The two 
filtering methods are applied against the vorticity field of the 
flow. Comparisons between the results of the two methods for 
medical images and 2D turbulence are extensively studied. 
Investigation and identification of the filtering parameters are 
also considered. It is shown that the proposed filtering methods 
are effective for noise removal in both applications. Results 
indicate that the complex fourth-order PDE method extracts the 
coherent and incoherent parts more clearly compared with the 
shock method.     
Keywords: Complex fourth-order and shock PDEs filtering 
methods, medical images, 2D turbulence 

1. Introduction 

Filtering can be considered as one of the most important 
problems in signal and image processing as well as for 
studies of turbulent flow. The main objective of a filtering 
method is to extract the original image from the noisy one.  
In turbulence studies, the filtering method divides each 
turbulent flow field into two parts: one is the organized 
coherent part and the second is the randomly distributed 
incoherent part. 
A large number of filtering methods has been used for 
denoising, such as wavelet-based filtering that employs 
nonlinear thresholding [1-4], Curvelets [5, 6], total 
variation [7,8] and non-local mean filtering[9,10]. 
 
In recent years, PDEs start to play an important role for 
data filtering. Most PDEs filtering methods focused on 
parabolic equations. Osher and Rudian [11] proposed a 
hyperbolic equation, called shock filter that can serve as a 

stable deblurring algorithm approximating deconvolution.  
Alvarez and Mazorra [12] were the first to couple shock 
and diffusion for noise elimination and edge enhancement. 
Gilboa et al. [13] developed shock filter by adding a 
complex diffusion term to the shock equation. This new 
term is used to smooth out noise and indicate inflection 
points simultaneously. The imaginary value which is an 
approximated smooth second derivative that scaled by the 
time was used to control the process. They proved that, the 
results of this algorithm are robust on removing the signal 
noise. On the other hand, various approaches for filtering 
noise based on PDEs have been proposed and they are 
based on second order PDEs and scale space analysis. The 
methods include anisotropic diffusion equation [14] and a 
curve evolution equation that is based on geometric heat 
flow of the level sets of the data [15, 16]. You and Kaveh 
[17] found that these methods have been unable to achieve 
a good trade-off between noise removal and features 
preservation but they tend to cause the processed to look 
"blocky". They proposed a class of fourth-order PDEs to 
optimize the trade-off between noise removal and edge 
preservation.  
 
The time evolution of the PDEs seeks to minimize a cost 
functional which is an increasing function of the absolute 
value of the Laplacian of the image intensity function. In a 
planar image, the Laplacian of the image tends to zero in 
its neighborhood and hence these PDEs can remove noise 
and preserve edges by approximating an observed image 
with a piecewise planar image. 
Lysaker et al. [18] introduced a new method for image 
smoothing based on a fourth-order PDE model. The model 
is tested on a broad range of the real medical resonance 
image both in space and time, as well as on non medical 
synthesized images. This algorithm demonstrates good 
noise suppression without destruction of important 
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anatomical or functional details even at poor signal-to-
noise ratio. 
Rajan et al.[19] extended the second order nonlinear 
complex diffusion to fourth order complex PDE which 
produced a much better results. 
 
There are two aims for this paper: one is to compare and 
study the performance of the complex shock filter and 
complex fourth-order PDE filter for filtering medical 
images. The second is to employ the two proposed 
methods for coherent vortex extraction from 2D 
homogeneous isotropic turbulence. To our knowledge, 
many literatures use wavelet theory analysis [20, 21] for 
filtering turbulent flow. In wavelet filtering, the total flow 
is divided into two parts, namely the coherent and 
incoherent parts. In this paper, we introduce the filtering 
methods using PDEs in spatial domain rather than 
transformation of the test data into the frequency domain. 
This spatial filtering may reduce the numerical errors that 
occur during the Fourier and wavelet transformations and 
their inverse. This paper is organized as follows. Sec. 2 
discusses the proposed filtering methods and their 
implementations. Sec. 3 is devoted to discus the 
applications of the filtering methods to medical images 
and 2D turbulence. Results and discussion of the obtained 
results are introduced in sec.4 and finally sec.5 shows the 
conclusion of the results. 
 

2. Proposed Filtering Methods 

Let )(xQ be a digital image and )(0 xQ be its observation 

with random noise .,),( Ω∈∀ yxxψ  The noise is 

superimposed on the pixel intensity value by the formula 

)()()(0 xxQxQ ψ+=                            (1)  
Assume the noise level is approximately known, i.e. 

22
0

2

)(0 ))()(()()( 1 σ∫
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Ω
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L
(2)   

Since noise can be recognized as fast oscillating signals 
over small areas, the important idea for denoising is to 
filter out high frequency signals while preserving the 
important features in the images.                
  

2.1 The Complex-Shock Filtering Method 

The complex shock filter for 2D data can be written as [13] 
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With the initial condition 

0)0,( QxQ =       ,                                                          (4) 

and the boundary condition 

 )(on      0 Ω∂=
∂
∂
N

Q
   ,                                                (5) 

where the complex coefficient θλ ire= depends on the 

choice of the polar coordinates r and µθ  , is a real scale, 

A is a parameter that controls the sharpness of the slop 

near zero, N represents the perpendicular direction to the 

boundary  Ω∂  of the image, )(xηη = is the direction of 

Q∇ and 
Q

Q

∇
∇

=η , ξ  is the normal vector to η and 

ξξηη QQ , are the second derivative in the direction of η  

and ξ respectively.  

 

The condition 0=
∂
∂
N

Q
means that we minimize the 

boundary influence. The main properties and advantages 
of the shock filter for noise removal and edge 
enhancement can be found in [12]. The Numerical 
implementation of this model is based on the finite 
difference method. The finite difference method may be 
used to solve the PDE of the model by applying the 
iterative approach as follows. 
 
Assuming t∆ is the time step, and the space girds size  

1==∆=∆ hyx  then 
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where JI ×  is the size of the image. 
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Where yx DD
~

,
~

 are the first order symmetric 

approximations in x and y respectively. They are defined 
as, 
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 and 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013 
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 
www.IJCSI.org 96

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

ε
ηηη

++

++
== 22

22

2
2

yx

yyyyxxyxxx

QQ

QQQQQQQ
QQD (12) 

                                                                        

where  610−=ε  is used to avoid division by zero. 
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with the symmetric boundary conditions 

JjQQQQ n
jI

n
jI

n
j

n
j ,.....,1,0   ,    , ,,1,0,1 === +−       (17) 

 IiQQQQ n
Ji

n
Ji

n
i

n
i ,.....,1,0   ,    , ,1,0,1, === +−          (18)                           

The scheme is convergent if 
r

t
θcos

25.0≤∆ ,[13]. For 

r=1 the convergence condition becomes θcos25.0≤∆t . 

Gilboa [13] proved that 
1000

πθ = gives the best result 

according to experimental tests. In order to be more 
closely to analytic PDEs, a smaller time step may be used 
(according to convergent condition) at the beginning of 
the evolution and θ can be set to a very small value. The 
iterative scheme is ended if the following condition is 
satisfied  

41 10−+ ≤− nn QQ                                                   (19)  

                

2.2 The Complex Fourth-Order PDE Filtering 
Method 

 A Fourth –order PDE filtering method can be written as 
[17] 
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t

Q
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                                (20)    

and the same initial and boundary conditions (4) and (5) 
are considered. Here the function c(.) is a positive and 
non-increasing function and it is defined by 
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where k is a constant ( sometimes called the flow constant 
or the soft threshold). The complex version of the this 
model is  
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θ also represents the phase angle and Im(Q) is the 
imaginary part of the data. This partial differential 
equation can be solved numerically using the finite 
difference with the same methodology mentioned in 
Eqns.6-8 and 17-18. The scheme can be written as 
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The numerical implementation of this method can be 
summarized and simplified as follows. First consider the 
function 
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under the symmetric boundary condition 
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Finally, the numerical scheme can be finalized in the form 
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3. Applications of the Filtering Methods 

The applications of the two filtering methods are applied 
against 2D medical images as well as 2D homogeneous 
turbulence. First the methods are applied to 2D medical 
images and the important statistical parameters are 
estimated. Then the estimated parameters are examined in 
2D turbulent data. In the following section, the parameters 
estimation will be considered then in the next section the 
2D homogeneous turbulence data will be discussed. 

3.1 Filtering Parameters estimation 

The filtering methods are examined against several 
medical test images and here three test images are chosen 
with a size of  1282 (Fig.1(a), Fig.2(a) and Fig.2(c)). A 
Gaussian noise with a standard deviation 20=σ   is 
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additively considered in the original image (test image 1) 
as shown in Fig. 1(b). Also, Fig.2(b) and Fig.2(d) show 
the second and third test noisy images with standard 
deviations 10=σ and 15=σ , respectively. Fig.3 
shows another test data taken from 2D turbulent flow. The 
contours show the total vorticity of the turbulent flow.  
 
 
 
 
 
 
 
 
 
 
 
 

    (a)                                            (b) 
 

Figure 1: First test image (a) Original image (b) Noisy image 
 
 
 

 
 
 
 
 
 
 
 
 
 

(a)                                  (b) 
 
 
 

 
 
 
 
 
 
 
 
 

(c)                                     (d) 
 
 

Fig.2: The second and third test image (a) Original second image (b) 

Noisy image ( 10=σ ) (c) Original third image (d) Noisy image  

( 15=σ ) 
 
 

 
 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

Fig.3: Total vorticity 

 
 

Fig3. Total vorticity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Complex shock results for the parameter  A-estimation 
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Fig.5: Complex shock results for the parameter µ-estimation 
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Fig.6: Complex fourth- order results for the parameter K-estimation. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.7: Complex shock results for the number of iterations n- 
convergence. 

 

 
 
Several values of the parameters are tested in the filtering 
equations to reach the best values of the signal-to-noise-
ratio (SNR) which is defined as  
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where N is the image size. The parameters used in the 
complex shock method are the phase angle θ , the polar 
radius r, the constants A and µ . The choices of   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig.8: Complex fourth-order results for the number of iterations n 
convergence 

 
 

1000

πθ =  and r=1 are based on the study introduced in 

[13]. The parameters A and µ and the corresponding SNR 

values are shown in Fig.4 and Fig.5, respectively. It is 
clear that A=2 and 2.0=µ  gives the best SNR values. 

Also, the soft threshold coefficient k in the complex 
fourth-order method is chosen as k=0.5. Fig.6 shows that 
at k=0.5, the best value of SNR can be reached. The 
number of iterations n is depicted in Figs. 7 and 8 against 
the SNR values for the complex shock and complex 
fourth-order methods, respectively. In the complex shock 
method the number of iterations n=10 leads to the best 
estimation of SNR as well as it satisfies the convergence 
condition sated in Eq.19. In the case of the complex 
fourth-order the value is chosen as  n=11  for the same 
reasons. Finally, the time step is chosen as   1.0=∆t  in 
the two filtering methods for the stability condition [13].   
 

3.2  2D Homogeneous Turbulence 

The lattice Boltzmann method (LBM) is used for 
simulations of 2D and 3D decaying homogeneous 
turbulence (e.g. Xu et al.[22] and Abdel Kareem[23]). In 
this paper the LBM method is used to investigate the 2D 
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forced turbulence. The velocity data xu  and yu  of a 2D 

turbulent flow are generated using the  D2Q9  single 
relaxation time (SRT) model where, the LBM equation can 
be written   

( ) ( )

( ) ( )( ) ( ),3,,
1

,,

Fetxftxf

txftttexf

eq •+−−=

−++

αααα

ααα

ρω
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where ),( txf eq
α  is the equilibrium distribution function.  

The discrete velocity set and the respective weighting 

coefficients are αe and αω  , respectively. The force 

jFiFF yx
ˆˆ +=  is defined as follows 
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and 

)sin( φ+= xKAF xy                                                 (32)  

Here φ is the random phase and A is the forcing amplitude. 

The equilibrium distribution function is defined as4 
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The mathematical definitions of the discrete velocity set 
and the corresponding weighting coefficients are 
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The simulations are done in a square computation domain 
with a resolution of 512512× The vorticity is calculated 
from the velocity using the mathematical expression 

u×∇ and hence the vorticity can be calculated as  

x

u

y

u yx

∂
∂

−
∂
∂

=ω . The filtering methods are applied 

against the vorticity in the spatial domain. The number of 
iterations used in the two methods is fixed and it is chosen 
as n=10. This number of iterations leads to a good 
convergence.  

4. Results and Discussion 

The shock and fourth-order PDEs filtering methods are 
applied to different types of data. The first data type is 
taken from image processing problems and the second 
type is taken from a study of turbulent flow. The 
applications of these methods to turbulent flow indicate 
that moving from image processing filtering to turbulence 
filtering can be achieved and lead to reasonable and 
important physical results. These physical results may help 
understanding important features of turbulence. The 
important results of the filtering methods can be discussed 
as follows. 
 
4.1 Complex Shock and Fourth-Order PDEs Filtering 
Results 
 
Fig.9 shows the denoised and noise image parts using the 
complex shock method for the first test image. Fig.10 
shows the results extracted by the fourth-order method for 
the first test image, where the denoised and noise image 
parts are depicted. It can be observed that the extracted 
denoised image resemble the original image and the noise 
part doesn't contain any features from the original image. 
It can be also observed from the results that the method 
preserves the important features of the original image and 
isolates the noise from the image in a reasonable way.  
Figs. 11 and 12 show the filtering results for the second 
and third test images, respectively. Fig.11(a) shows the 
denoised image that extracted using the complex shock 
filtering method. Fig.11(c) shows the denoised image that 
extracted using the complex fourth-order method.  
Figs.11(b) and 11(d) show the corresponding extracted 
noisy parts. Also, Fig.12(a) and (c) show the denoised 
parts extracted by the complex shock and complex fourth-
order, respectively. The removed noisy parts are shown in 
Figs.12(b) and 12(d), respectively.  It is clear that the 
noisy parts don't include important features from the 
original images. For turbulent flow, Fig.13 shows the 
extracted coherent and incoherent parts of the flow field 
using the complex shock method. It can be observed that 
the coherent field is similar to the total vorticity field 
which is depicted in Fig.3. The incoherent part is smoothly 
distributed along the square region and no coherent 
regions can be observed. 
For the complex fourth-order results that depicted in 
Fig.14, the coherent and incoherent parts of the flow field 
are also extracted smoothly.  The coherent field is found 
similar to the total vorticity field and the incoherent part is 
smoothly distributed along the square region and no 
coherent regions can be observed. 
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(a)                                       (b) 
Fig.9: Complex shock results for the test image: (a) denoised (b) noise 

 

 
 
 
 
 
 
 
 
 

(a)                                               (b) 
Fig. 10: complex fourth-order resu;ts for the test image: (a) denoised (b) 

noise. 
 

 
 
 
 
 
 
 
 
 

(a)                           (b) 
 

 
 
 
 
 
 
 
 

(c)                               (d) 
Fig.11: Results for the second test images: (a) denoised by complex shock 

(b) noise  (c) denoised by complex fourth (d) noise 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

(a)                            (b) 
 

 
 
 
 
 
 

           (c)                                     (d) 
Fig.12: Results for the third test images: (a) denoised by complex shock 

(b) noise part (c) denoised by complex fourth (d) noise 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

                   
                            (a)                            (b) 

 
Fig.13: Complex shock results for turbulent flow: (a) coherent part (b) 

incoherent part 
 
 
 

 
 
 
 
 
 
 
 

(a)                               (b) 
Fig.14: Complex fourth-order results for turbulent flow: (a) coherent part 

(b) incoherent part 
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Fig.15: Complex shock: Probability density function (PDF) for the total 
vorticity, coherent and incoherent parts. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16: Complex fourth order: Probability density function (PDF) for the 

total vorticity, coherent and incoherent parts. 
 

4.2 Analysis and Comparisons of the Filtering Methods 
 
The SNR in the medical image application is found as 
25.927 and 30.6712 for the complex shock and complex 
fourth-order methods, respectively. The noisy image SNR 
was found as 21.135 which indicate that the two methods 
are succeeded in the noise removal process. The higher 
value of the complex-fourth-order SNR indicates that the 
complex fourth-order is more efficient than the complex 
shock method. The following tables show the SNR values 
estimated for the three test images at four different noisy 
standard deviations. 

 

Table 1: SNR for the first test image 

σ  
Noisy image 

Complex 
shock 

Complex fourth-
order PDE 

5 
 35.9874  36.4274  36.9324 

10 
 29.9818  30.8293  31.3778 

15 
26.2685 28.3086 29.514 

20 
21.135 25.927 30.6712 

 
The results in the tables support that the fourth-order 
method is superior to the complex shock filtering method. 
The SNR values are found larger in all test image cases 
even at different values of the standard deviation. 

Table 2: SNR for the second test image 

σ  Noisy 
image 

Complex 
shock 

Complex fourth-
order PDE 

5 
 36.231  37.15  39.526 

10   
33.1873  35.4226  37.3295 

15 
 26.151  27.0219  28.7613 

20 
23.2150  26.518  29.9814 

 
For the turbulent flow, it can be observed that the complex 
fourth-order coherent part is more smoothly compared 
with the complex shock results. It can be observed that 
some coherent vortices are smoothly visualized using the 
complex fourth-order results. 

Table 3: SNR for the third test image 

σ  Noisy 
image 

Complex 
shock 

Complex fourth-
order PDE 

5   
35.0352  36.9761 37.7521 

10   
32.3156 33.6213  34.8191 

15  
25.5096  27.0552 29.2892 

20  
22.5316 28.0532 31.9731 
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Also, the incoherent part in the complex fourth-order is 
distributed smoothly in the region. However, some 
vortical regions, though it is very small, can be observed 
in the complex shock filtering results. The probability 
density functions (PDFs) for the total vorticity, coherent 
and incoherent parts are shown in Figs. 15 and 16. Fig. 15 
shows the PDF for the shock results and Fig. 16 shows the 
results for the fourth-order results. It can be observed that 
in both cases, the coherent part is almost similar to the 
total vorticity. The PDF for the incoherent part is Gaussian 
in both cases. There is a difference between the PDF for 
the incoherent parts, where in the shock-case a Gaussian 
PDF with very weak tails can be observed. The PDF for 
the fourth-order incoherent part is larger than the shock 
result because in the fourth-order case many noisy regions 
are extracted without affecting the vortical regions.   
        

5. Conclusions 

The complex shock and the complex fourth-order PDEs 
filtering methods are proposed to extract coherent and 
incoherent parts of some important experimental data. The 
test data are of two different types. One of the data set 
corresponds to medical applications and the second 
corresponds to turbulent flow. It was shown that the two 
methods can extract important features in both 
applications. It was also statistically shown that the 
complex fourth-order method is superior to the shock 
method. The characteristics of the extracted coherent and 
incoherent parts are found similar to previous efforts using 
the wavelet decompositions. The coherent part is found 
similar to the non-filtered field and the incoherent part is 
structuresless. The fourth-order method smoothly 
extracted the coherent vortices and removed the 
incoherent background without affecting the geometrical 
shapes of the vortices.  
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