

Enhanced Intrusion Detection System for Input Validation

Attacks in Web Application

Puspendra Kumar1, R. K. Pateriya2

 1 M Tech Scholar ,Computer Science & Engineering Department,

Maulana Azad National Institute of Technology

Bhopal, 462051, India

2 Associate Professor, Computer Science & Engineering Department,

Maulana Azad National Institute of Technology

Bhopal, 462051, India

Abstract

Internet continues to expand exponentially and access to the

Internet become more prevalent in our daily life but at the same

time web application are becoming most attractive targets for

hacker and cyber criminals. This paper presents an enhanced

intrusion detection system approach for detecting input

validation attacks in the web application. The existing IDS for

Input validation attacks are language dependent. The proposed

IDS is language independent i.e. it works for any web application

developed with the aid of java, php, dot net etc. In addition the

proposed system detects directory traversal attacks, command

injection attacks, cross site scripting attacks and SQL injection

attacks, those were not detected in the existing IDS. This is an

automatic technique for detection vulnerabilities over the

internet. Our technique is based on the web application

parameter which is in form of POST and GET which has

generalized structure and values. This technique reduces analysis

time of input validation attacks.

Keywords: SQL Injection attacks, XSS attacks, directory

traversal attacks, GET and POST data, Detection.

1. Introduction

Web Application are most widely used for providing

service to the user like online shopping, online reservation,

and many more application which is designed in

perspective of user. So the web application is popular

attacks target due to time and financial constraints, limited

knowledge of the programming, limited knowledge

security awareness, misconfiguration that is meant lack of

awareness of the security configuration deployment on the

part of the programmer. With the aid of the input

validation attacks attacker can steal the confidential data

which decrease the market values of the organization. Web

applications generally use TCP port for the communication

with server. This communication is not protected by the

IVAs [1].

Current Intrusion detection systems are designed in such a

way that detects SQL injection attacks, XSS attacks but

they do not detect the directory traversal attacks, and

command injection attacks. Such IDS are designed

language specific for example IDS for PHP based web

application, IDS for JAVA based web application [2, 3, 4].

The proposed enhanced IDS approach detect SQL

Injection attacks, XSS attacks, Directory Traversal attacks

and command injection, and is not programming language

specific. This IDS approach require only window

environment for detecting IVA over the internet. It analyze

web request data to detect that if any type of IVA exists.

Then the detection system automatically generate the

report against input validation attacks and send it to the

server owner.

The enhanced IDS approach can be more effective for

finding out any type of Input validation attacks and with

the aid of this approach server administrator can take

effective action against these attacks. So in this way this

approach reduces the analysis time and also increase the

efficiency of the system.

Rest of the paper is organized as follows: Section 2

describes the input validation attacks and section 3

describes the related work. Proposed enhanced IDS

approach is given in section 4 this section also discusses

how to analyze the raw data. Section 5 describes the

comparison with existing IDS. Finally conclusion is given

in section 6.

2. Input Validation Attacks

The Input Validation Attacks (IVAs) attempt to submit

data which the web application does not expect to receive,

that causes very serious consequences like session hijack,

SQL poisoning, source code disclosure, directory browsing

etc. Input validation is a security issue if an attacker

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 435

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

discovers that the application makes unfounded

assumptions about the type, length, format, or range of

input data. The attacker can then supply carefully crafted

input that compromises the application. When network and

host level entry points are fully secured; the public

interfaces exposed by the application become the only

source of attack. The input to the application is a means to

both test the system and a way to execute code on an

attacker’s behalf. If the applications blindly trust input. It

may be susceptible to the following:

2.1 Buffer Overflows Attacks

Buffer overflow vulnerabilities can lead to denial of

service attacks or code injection. A denial of service attack

causes a process crash. Code injection alters the program

execution address to run an attacker’s injected code.

2.2 Cross-Site Scripting Attacks

An XSS attack can cause arbitrary code to run in a user’s

browser while the browser is connected to a trusted Web

site. The attack targets the application’s users and not the

application itself, but it uses the application as the vehicle

for the attack. Because the script code is downloaded by

the browser from a trusted site, the browser has no way of

knowing that the code is not legitimate. Internet Explorer

security zones provide no defense. Since the attacker’s

code has access to the cookies associated with the trusted

site and are stored on the user’s local computer, a user’s

authentication cookies are typically the target of attack.

Example of Cross-Site Scripting:

To initiate the attack, the attacker must convince the user

to click on a carefully crafted hyperlink, for example, by

embedding a link in an email sent to the user or by adding

a malicious link to a newsgroup posting. The link points to

a vulnerable page in the application that echoes the

invalidated input back to the browser in the HTML output

stream. For example, consider the following two links.

Here is a legitimate link:

www.webapplication.com/logon.aspx?username=puspendr

a

Here is a malicious link:

www.webapplication.com/logon.aspx?username=<script>a

lert ('hacker code') </script>

If the Web application takes the query string, fails to

properly validate it, and then returns it to the browser, the

script code executes in the browser. The preceding

example displays a harmless pop-up message. With the

appropriate script, the attacker can easily extract the user’s

authentication cookie, post it to his site, and subsequently

make a request to the target Web site as the authenticated

user.

2.3 SQL Injection Attacks

A SQL injection attack exploits vulnerabilities in input

validation to run arbitrary commands in the database. It

can occur when the application uses input to construct

dynamic SQL statements to access the database. It can also

occur if code uses stored procedures that are passed strings

that contain unfiltered user input. Using the SQL injection

attack, the attacker can execute arbitrary commands in the

database. The issue is enhance if the application uses an

over-privileged account to connect to the database. In this

instance it is possible to use the database server to run

operating system commands and potentially compromise

other servers, in addition to being able to retrieve,

manipulate, and destroy data.

2.4 Canonicalization

Different forms of input that resolve to the same standard

name (the canonical name), is referred to as

canonicalization. Code is particularly susceptible to

canonicalization issues if it makes security decisions based

on the name of a resource that is passed to the program as

input. Files, paths, and URLs are resource types that are

vulnerable to canonicalization because in each case there

are many different ways to represent the same name. File

names are also problematic.

3. Related Work

3.1 ARDILLA Tool[2]

This tool is developed by Adam Kie˙zun, Philip J. Guo,

Karthick Jayaraman, Michael D. Ernst. This tool is useful

for identifying the SQL Injection attacks and XSS

vulnerabilities. This technique works on unmodified

existing code, generate concrete input that expose

vulnerabilities and operate before software is deployed.

ARDILLA is an automated tool for creating attacks. It is

white box testing tool means that it requires source code of

the application. It is based on the input generation, taint

propagation and input mutation to find variants of an

execution that exploit vulnerability.

3.2 Protect Web Application using Positive Tainting
and Syntax-Aware Evaluation[3]

This approach is proposed by William G.J. Halfond,

Alessandro Orso and Panagiotis Manolios. This approach

uses four term to detect SQLIA Positive tainting, Accurate

and efficient taint propagation, Syntax-aware evaluation of

queries string and Minimal deployment requirement.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 436

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.webapplication.com/logon.aspx?username=puspendra
http://www.webapplication.com/logon.aspx?username=puspendra

3.3 VIPER for Detecting SQL Injection Attacks[4]

In this techniques SQL Injection attacks detected by using

heuristic based approach. It basically performs panetration

testing of the web application .This approach analyzes the

web application for detrmininng hyperlinks structure and

input supplied from the user and gives error message, if

any type of SQL injection occurres.

3.4 Runtime Monitoring Technique[5]

AMNESIA technique is used for detecting SQL Injection

attacks over the web application. These technique workes

on both static approach and runtime monitoring. It detects

injected query before executed on the database server

using model based approach.This approach have two part

static part which automatically builds a legel queries using

program analysis on the other hand in dynamic part it

dynamically generates the queries against statically build

queries using runtime monitoring. If queries violate the

approach then this approach perevents the execution of the

queries on the database server. This technique has four

steps for preventing injection Identify the hotspot, Build

SQL-query models, Instrument application, Runtime

monitoring.

3.5 Detection by Feature of Single Character[6]

This techniques used to sigmoid function for detecting

SQL injection attacks. They proposed detection algorithm

of SQL Injection Attack based on single character. When

the SQL character string is the SQL Injection, it call an

attack character string. With the aid of this approach

minimizes the predictive error in SQL Injection attack

detection.

3.6 Obfuscation-based Analysis of SQL Injection
Attacks[7]

This approach is proposed by Raju Halder and Agostino

Cortesi. They implemented combined structure of static

and dynamic analysis which is based on the obfuscation

and de-obfuscation of SQLcommands SQL Injection

attacks can be easily detected because dynamic verification

is carried out on the obfuscated queries , at atomic formula

level only those atomic formulas are tagged as vulnerable.

And this approach finds the root cause of the SQL

Injection attacks in dynamic query generation.

4. Enhanced IDS Approach

This section describe the enhanced IDS for Input

Validation Attacks in web application. This proposed

approach will perform on the Application layer of the OSI

model. So that with the aid of application layer we can

obtain POST and GET data over the network

communication with server. C# language using socket

programming [8] will be used to develop the proposed

IDS. This approach will work in six steps for performing

detection of input validation attacks (IVAs) as shown in

following block diagram.

CLIENT
INTERNET

REQUEST

RESPONSE

Collection of
Raw Data

Preprocessing
of Raw Data

Extract
Keyword

Sending Email

Comparison
Measurement

Generate
Report

REQUEST

RESPONSE

SERVER OWNER

INTERNET

D
at

a
C

ol
le

ct
io

n
M

od
ul

e
A

na
ly

si
s

M
od

ul
e

M
an

ag
em

en
t

M
od

ul
e

S
E

R
V

E
R

Fig. 1 Block Diagram of Proposed Enhanced IDS

4.1 Collection of Raw Data

In this step we collect the HTTP header data which

contains GET and POST data which are used to pass the

parameter value to the web server over the internet. The

HTTP header data works as raw data for the proposed IDS.

Raw data will be stored in text file. These file contains

both request data and response data which is analyzed by

proposed approach for finding out IVA attacks. The

process of raw data collection is given stepwise in

following DFD.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 437

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Start

Window Service

Capturing The
Packets

Data

Chek the data is
empty or not

Check Data have GET
and POST value

Stored Raw
Data

Terminate

Yes

No

Yes

No

 Fig. 2 DFD of Collection of Raw Data

4.2 Preprocessing of the Raw Data

The raw data collected in step 4.1 is preprocessed in this

step the raw data is filtered to keep GET and POST data

and to remove unnecessary information like http header

details. These preprocessing data are generated in XML

format. In this step we analyze the raw data and fetch

useful data from raw text file. Following steps are used for

preprocessing of the data.

Step 1: Input text file (.Text) containing raw data which is

obtained in step1.

Step 2: Read file by line by line and match with HTTP

header information like referrer, Host, and cookie etc. If

match found then corresponding value will be stored in

DataItem class. This task is performed until the entire

HTTP header is not matched.

Step 3: After data stored in DataItem class then these add

in the ArrayList collection.

Step 4: Repeat step 2 and step 3 until all of the data is read

from text file.

Step 5: Add DataItem class in ArrayList collection. Now

we need to fetch DataItem properties values like Host,

Referrer and Cookie etc and assigned to the predefined the

XML document.

Step 6: The generated output is in the form of XML format

which contained the root node, child node.

Following screen shot shows the preprocessing of data in

XML format.

4.3 Keyword Extraction

After preprocessing of the raw data we extract keywords

from the xml file of the preprocessed data. In this step we

extract GET and POST data from xml file or preprocessed

file and perform analysis on extracted data. Following

steps are used to Extract Keywords:

Step 1: Input the XML file which contains preprocessed

data.

Step 2: Read the file according to Root node like POST

and GET.

Step 3: If root node is POST then we extracts data of child

node which will be source address, destination address,

source port, destination port and its data, which is stored in

Extracted DataItem collection class.

Step 4: If root node is GET then we extracts data of child

node which will be source address, destination address,

source port, destination port and its data, Get data to store

in Extracted DataItem collection class. Otherwise go to

step 6.

Step 5: Repeat step 3
rd

 and step 4
th

until read operation in

XML or preprocessing file is complete.

Step 6: End process.

The process of keyword extraction is given in following

DFD.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 438

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Start

Obtained
processed

data

Check
Preprocessed
data have the

value

Read Process

IF

Extract Data Extract Data

Extracted data
stored in collection

Check
Preprocessed

data is empty or
not

End terminator

Data is
Post

Data is
Get

No

Yes

Yes

No

 Fig. 3 DFD of Extracted Keyword

4.4 Comparison Measurement

In this step templates for SQL Injection attacks, cross site

scripting attacks, command injection attacks directory

traversal attacks will be created these templates will

contain values corresponding to these attacks.

The data value of generated templates are compared with

the data value of templates obtained in the step 4.3. If a

match is found then these are marked as attacks like SQL

Injection attacks, Cross site scripting attacks, command

injection attacks and directory traversal attacks, and stored

in the hard drive.

Following steps are used for the Comparison

Measurement:

Step 1: Get the Extracted data which is found in step3.

Step 2: Perform matching process.

Step 3: Match data value with SQL Injection attacks

template if match found then go to Step 7 otherwise go to

next step.

Step 4: Match data value with Cross site scripting attacks

template if match found then go to Step 7 otherwise go to

next step.

Step 5: Match data value with Command Injection attacks

template if match found then go to Step 7 otherwise go to

next step.

Step 6: Match data value with Directory traversal attacks

template if match found then go to Step 7 otherwise go to

step 9.

Step 7: In this step data value is marked as an attack

corresponding attacks template.

Step 8: In this step marked data value will stored in stored

file.

Step 9: End process.

These steps clearly understood by data flow diagram of

Comparison Measurement as shown in figure 5.

Start

Extracted Data

Match with SQL Injection
attcks template

Match with CSS attacks
template

Match with Command
injection attacks template

Match with Directory
traversal attacks template

Data value marked as a
attack

Marked data
stored in file

Yes Yes Yes Yes

End Terminator

No NoNo
No

Fig. 4 DFD of Comparison Measurement

4.5 Report Generation

This step is for automatic report generation whenever any

attacks is detected than automatic report is generated

immediately in this step. This report has information about

attacks like SQL Injection attacks, Command Injection

Attacks, and Directory browsing attacks. The generated

report also have the information about source address,

destination address, source port, destination port, host, data

and type of attacks performed on the data.

Following screen shots shows the attack report.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 439

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4.6 Sending Email

The generated report in step 4.5 is sent to server owner by

email. With the aid of this report, server owner becomes

aware with the online attacks on the server and take

appropriate action to protect the server from web input

validation attacks. This email sending is also automatic

process.

5. Comparison with Existing IDS

This section shows that why proposed approach is better

than previous IDS to detect input validation attacks in web

application. Table 1 gives the comparative view of the

existing IDS with proposed IDS.

Table 1: Comparison with existing IDS

Techniques Language Attacks

ARDILLA[2] PHP based Web
Application

Sql Injection ,
XSS attacks

WASP[3] JAVA based Web
Application SQL Injection

VIPER[4] ANY SQL Injection

Our
Proposed

IDS
ANY

SQL Injection,
XSS attacks,
Command
Injection,
Directory

Traversal Attacks

It is clear from the comparison that the proposed IDS will

support to all web applications which are developed using

any language like java, PHP, Dot Net etc. The proposed

IDS will also detect to the SQL Injection attacks, XSS

attacks, Directory Traversal attacks and Command

injection attacks. Previous IDS system ARDILLA [2] do

not detect command injection attacks, directory traversal

attacks and they perform detection on only on PHP based

web application. WASP [3] do not detect XSS attacks;

command injection attacks and directory traversal attacks

and they perform detection only on java based web

application. And another tool is VIPER [4] do not detect

XSS attacks, command injection attacks and directory

traversal attacks.

6. Conclusion

In this paper, an enhanced intrusion detection system for

input validation attacks on web application is proposed.

The proposed intrusion detection system detect SQL

injection attacks, XSS attacks, command injection attacks

and also detect to directory traversal attacks. In addition

with this the proposed IDS support all web applications

which are developed using any language like java, php,

Dot Net etc. Web application security can be improved

with proposed IDS by making security provision active in

advance .The analysis time to detect IVA is reduced in this

IDS because whole process is operated without developer

intervention.

References

[1] OWASPD-Open Web Application Security Project. “Top ten

most critical Web Application Security Risks”,

https://www.owasp.org/index.php/Top_10_2010-Main.

[2] Adam Kie˙zun,Philip J. Guo,Karthick Jayaraman,Michael D.

Ernst:“Automatic Creation of SQL Injection and Cross-Site

Scripting AttackS”, ICSE‟09, May 16-24, 2009, Vancouver,

Canada.

[3] William G.J. Halfond, Alessandro Orso.” WASP: Protecting

Web Applications Using Positive Tainting and Syntax-Aware

Evaluation” IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 34, NO. 1, JANUARY/FEBRUARY

2008.

[4] Angelo Ciampa, Corrado Aaron Visaggio, Massimiliano Di

Penta :”A heuristic-based approach for detecting SQL-

injection vulnerabilities in Web applications”. SESS’10 , May

2, 2010, Cape Town, South Africa Copyright 2010 ACM.

[5] William G.J. Halfond and Alessandro Orso,” Preventing SQL

Injection Attacks Using AMNESIA” ICSE’06, May 20–28,

2006, Shanghai, China ACM 06/0005.

[6] Takeshi Matsuda,Daiki Koizumi,Michio Sonoda,Shigeichi

Hirasawa, ”On predictive errors of SQL injection attack

detection by the feature of the single character” Systems,

Man, and Cybernetics (SMC), 2011 IEEE International

Conference on 9-12 Oct 2011, On Page 1722-1727.

[7] Raju haldar and Agostino Cortesi, “Obfuscation-based

Analysis of SQL Injection Attacks” IEEE.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 440

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

https://www.owasp.org/index.php/Top_10_2010-Main
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6070513
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6070513
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6070513

[8] C# Network Programming by Richard Blum ISBN:

0782141765, Sybex@2003.

[9] Y.Xie and A. Aiken." Static detection of Security

vulnerabilities in scripting language", In USENIX.2006.

[10] A. Sabelfeld and A. Myers."Language-based information

flow security". Selected Areas in Communications 2003.

[11] R.McClure and I. Kruger."SQL DOM: compile time

checking of dynamic SQL statements". In ICSE, 2005.

[12] M. Martin and M. Lam."Automatic generation of XSS and

SQL injection attacks with goal-directed model checking”.

In USENIX SEcurity,2008.

[13] S. Bandhakavi. P. Bisht, P. Madhusudan, and V.N.

Venkatakrishan."CANDID: preventing SQL injection

attacks using dynamic candidate evaluations". In CCS,2007.

[14] Z. Su and G. Wassermann,"The Essence of Command

Injection Attacks in Web Applications". Proc.33rd Ann.

Symp. Principles of Programming Language, p.372-382, Jan

2006.

[15] D. Scott and R. Sharp,"Avstracting Application-Level Web

Security", Proc. 11th Int'l Conf. World Wide Web, p.396-

407, May 2002.

[16] W. R. Cook and S. Rai, "Safe Query Objects: Statically

Typed Objects as Remotely Executable Queries" Proc. 27th

Int'l Conf. Software Eng. p.97-106, May2005.

First Author Puspendra Kumar perusing Master of technology in
Information security from Maulana Azad national Institute of
Technology Bhopal.

Second Author Dr. R.K. Pateriya working as Associate Professor
in computer science and engineering department of Maulana Azad
National Institute of Technology, Bhopal.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 441

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

