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Abstract 
 

Genetic algorithms (GAs) are multi-dimensional and stochastic 

search methods, involving complex interactions among their 

parameters. Researchers have been trying to understand the 

mechanics of GA parameter interactions by using various 

techniques. It still remains an open question for practitioners as 

to what values of GA parameters (such as population size, choice 

of GA operators, operator probabilities, and others) to use in an 

arbitrary problem. 

Genetic algorithm (GA) parameters are explored to minimize the 

time needed to find a solution. The basic GA code stays the same 

throughout the entire system. Variable parameters include 

mutation rate, crossover rate, crossover operator, number of 

generations, population size, etc. When an optimization problem 

is encoded using genetic algorithms, one must address issues of 

population size, crossover and mutation operators and 

probabilities, stopping criteria, selection operator and pressure, 

and fitness function to be used in order to solve the problem. 

This paper tests a relationship between (1) size of initial 

population, (2) mutation probability, and (3) number of 

generations in runs of Genetic Algorithm for solving the TSP. 

TSP is an NP hard problem, so using Genetic Algorithm we can 

find a solution on reasonable amount of time. In this paper we 

describe the results of the solution for the Traveling Salesman 

Problem (TSP) for Kosovo municipalities, using the genetic 

algorithm, with different settings for the parameters of the 

Genetic Algorithm [12]. 
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1. Introduction 

TSP is a problem, where traveling salesman wants to visit 

each of a set of cities exactly once, starting from 

hometown and returning to his hometown. His problem is  

 

 

to find the shortest route for such a trip. TSP has a model 

character in many branches of Mathematics, Computer 

Science, Operations Research, etc. Linear programing, 

heuristics and  branch and bound which are main 

components for the most successful approaches to hard 

combinatorial optimization problems, were first formulated 

for the TSP and used to solve practical problem instances 

in 1954 by Dantzig, Fulkerson and Johnson. 

When the theory of NP-completeness developed, the TSP 

was one of the first problems to be proven NP-hard by 

Karp in 1972. New algorithmic techniques have first been 

developed for or at least have been applied to the TSP to 

show their effectiveness. Such examples are branch and 

bound, Lagrangean relaxation, Lin-Kernighan type 

methods, simulated annealing, etc. [3]. 

Representation model is: Let Kn=(Vn, En) be the complete 

undirected graph with n=|Vn| nodes and m=|En|= 








2

n
 

edges. An edge e with endpoints i and j is also denoted by 

ij, or by (i,j). We denote by R
En 

the space of real vectors 

whose components are indexed by the elements of En. The 

component of any vector nz ER   indexed by the edge 

e=ij is denoted by ze, zij, or z(i,j). 

Given an objective function nc ER   , that associates a 

“length” ce with every edge e of Kn, the symmetric 

traveling salesman problem consists of finding a 

Hamiltonian cycle such that its c-length (the sum of the 

lengths of its edges) is as small as possible.  

Of special interest are the Euclidean instances of the 

traveling salesman problem. In these instances the nodes 

defining the problem correspond to points in the two-

dimensional plane and the distance between two nodes is 

the Euclidean distance between their corresponding points. 
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More generally, instances that satisfy the triangle 

inequality, i.e., ikjkij ccc   for all the three distinct i,j 

and k, are of particular interest. 

For our case, we consider the locations of the 

cities/municipalities in Kosovo map as nodes of the graph. 

For to do this, we take their geographic coordinates and 

then based on that, we calculate their position in our map 

scaled to a smaller size, for to calculate the real positions 

and distances, by using the real life values for distances in 

kilometers between the cities. 

2. Genetic Algorithms 

Genetic Algorithms (GA) [1,2] are computer algorithms 

that search for good solutions to a problem within a large 

number of possible solutions. They were proposed and 

developed in the 1960s by John Holland, his students, and 

his colleagues at the University of Michigan. These 

computational paradigms were inspired by the mechanics 

of natural evolution, including survival of the fittest, 

reproduction, and mutation. These mechanics are well 

suited to resolve a variety of practical problems, including 

computational problems, in many fields. Some applications 

of GAs are optimization, automatic programming, machine 

learning, economics, immune systems, population genetic, 

and social system.  

GAs have been successfully applied to many problems of 

business, engineering, and science. Because of their 

operational simplicity and wide applicability, GAs play an 

important role in computational optimization and 

operations research [6]. 

The genetic algorithm transforms a population (set) of 

individual objects, each with an associated fitness value, 

into a new generation of the population using the 

Darwinian principle of reproduction and survival of the 

fittest and analogs of naturally occurring genetic operations 

such as crossover (sexual recombination) and mutation. 

Each individual in the population represents a possible 

solution to a given problem. The genetic algorithm 

attempts to find a very good (or best) solution to the 

problem by genetically breeding the population of 

individuals over a series of generations. 

2.1 Basic elements of GAs 

Most GAs methods are based on the following elements: 

populations of chromosomes, selection according to 

fitness, crossover to produce new offspring, and random 

mutation of new offspring. The chromosomes in GAs 

represent the space of candidate solutions. Possible 

chromosomes encodings are binary, permutation, value, 

and tree encodings. GAs require a fitness function which 

allocates a score to each chromosome in the current 

population. Thus, it can calculate how well the solutions 

are coded and how well they solve the problem [2]. 

The selection process is based on fitness. Chromosomes 

that are evaluated with higher values (fitter) will most 

likely be selected to reproduce, whereas, those with low 

values will be discarded. The fittest chromosomes may be 

selected several times, however, the number of 

chromosomes selected to reproduce is equal to the 

population size, therefore, keeping the size constant for 

every generation. This phase has an element of randomness 

just like the survival of organisms in nature. The most used 

selection methods, are roulette-wheel, rank selection, 

steady-state selection, and some others. Moreover, to 

increase the performance of GAs, the selection methods 

are enhanced by elitism. Elitism is a method, which first 

copies a few of the top scored chromosomes to the new 

population and then continues generating the rest of the 

population. Thus, it prevents losing the few best found 

solutions. 

Crossover is the process of combining the bits of one 

chromosome with those of another to create an offspring 

for the next generation that inherits traits of both parents.  

Mutation is performed after crossover to prevent falling all 

solutions in the population into a local optimum of solved 

problem.  

So, general outline of basic GA is: 

1. Start: Randomly generate a population of N 

chromosomes. 

2. Fitness: Calculate the fitness of all chromosomes. 

3. Create a new population: 

a. Selection: According to the selection method select 2 

chromosomes from the population. 

b. Crossover: Perform crossover on the 2 chromosomes 

selected. 

c. Mutation: Perform mutation on the chromosomes 

obtained. 

4. Replace: Replace the current population with the new 

population. 

5. Test: Test whether the end condition is satisfied. If so, 

stop. If not, return the best solution in current population 

and go to Step 2. 

Each iteration of this process is called generation. 

The genetic algorithm object determines which individuals 

should survive, which should reproduce, and which should 

die. It also records statistics and decides how long the 

evolution should continue. A typical genetic algorithm will 

run forever, so we must build functions for specifying 

when the algorithm should terminate. These include 

terminate-upon generation, in which you specify a certain 

number of generations for which the algorithm should run, 

and terminate-upon-convergence, in which you specify a 

value to which the best-of-generation score should 

converge. One can customize the termination function to 

use own stopping criterion and must tell the algorithm 
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when to stop. Often the number-of generations is used as a 

stopping measure, but you can use goodness-of-best-

solution, convergence-of-population, or any problem-

specific criterion if you prefer. 

There are some flavors of genetic algorithms. For example, 

the first is the standard 'simple genetic algorithm' described 

by Goldberg in his book [2]. This algorithm uses non-

overlapping populations and optional elitism. Each 

generation the algorithm creates an entirely new population 

of individuals. The second is a 'steady-state genetic 

algorithm' that uses overlapping populations. In this 

variation, you can specify how much of the population 

should be replaced in each generation. The third variation 

is the 'incremental genetic algorithm', in which each 

generation consists of only one or two children. The 

incremental genetic algorithms allow custom replacement 

methods to define how the new generation should be 

integrated into the population. So, for example, a newly 

generated child could replace its parent, replace a random 

individual in the population, or replace an individual that is 

most like it. The fourth type is the 'deme' genetic 

algorithm. This algorithm evolves multiple populations in 

parallel using a steady-state algorithm. Each generation the 

algorithm migrates some of the individuals from each 

population to one of the other populations. 

The base genetic algorithm class contains operators and 

data common to most genetic algorithms.  

The genetic algorithm contains the statistics, replacement 

strategy, and parameters for running the algorithm. The 

population object, a container for genomes, also contains 

some statistics as well as selection and scaling operators.  

The number of function evaluations is a good way to 

compare different genetic algorithms with various other 

search methods[3]. The basic algorithm is as follows: 

 

 
Figure 1 – Genetic Algorithm 

 

2.2 TSP  

In order to calculate the shortest traveling distance from an 

initial city, by visiting each one only once and returning to 

the initial one, we consider the locations as nodes of the 

graph, in the graph model. In the meantime, the distances 

between the cities are edges of the graph.  

For length of the edges we take inter-city distances in 

kilometers. We have created a matrix of distances between 

all the municipalities, where the matrix elements cij are 

elements of the square symmetrical matrix, since distance 

ij is equal to the distance in the other side ji. The diagonal 

of the matrix will contain zero values, since diagonal 

elements of the matrix cij, where i=j, will represent the 

distance of the city to itself, so in fact it will be the 

traveling distance of zero kilometers, therefore these 

elements will be equal to cij=0. 

By using complete graph in the definition of the TSP, the 

existence of a feasible solution is guaranteed, while for 

general graphs deciding the existence of a Hamiltonian 

cycle is an NP-complete problem. The number of 

Hamiltonian cycles in Kn, i.e. the size of the set of feasible 

solutions of the TSP is (n-1)!/2.  

The algorithmic treatment of the TSP ensures an 

approximation algorithm that cannot guarantee to find the 

optimum, but which is the only available technique to find 

a good solution to a large problem instances. To assess the 

quality of a solution, one has to be able to compute a lower 

bound on the value of the shortest Hamiltonian cycle. 

We have built an application in C#, with an image with the 

small-scaled size of the Kosovo map, with depicted 

municipality boundaries and locations (Figure 2).  

It is possible to select a particular city by clicking on the 

map and we have also added buttons that make it possible 

to create locations for the biggest cities and locations for 

the all municipalities. 

 

 
 

Figure 2 – Screenshot of the application 
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We used the geographical coordinates of the cities, to 

calculate their positions. By running the application, we 

can calculate the shortest traveling distance between the 

selected cities, by finding a solution of the TSP using a 

genetic algorithm. 

 

User can set up the values for initial population, maximal 

number of generations, size of the group, percentage of 

mutations and number of close cities/locations (used by the 

algorithm, while finding closest locations). 

3. Simulation and Results 

We analyzed the results of different cases with different 

values for the parameters of initial population, probability 

of mutation and number of generations. 

 

Firstly, we have set the value of the maximal number of 

generations to 10,000 and we calculated the fitness for the 

cases where the size of the initial population is: 1000, 5000 

and 10000 and for each of these cases, we calculated the 

results for the mutation rate of: 1%, 3%, 5% and 10% (as 

in Figures: 3, 4 and 5). 

 

Then, we compared the results for each value of the 

mutation rate (1%, 3%, 5% and 10%), with different values 

of the initial population parameter values (1000, 5000 and 

10000, as in Figures:  6, 7, 8 and  9). 

 

We repeated this for the values of maximal number of 

generations of 50,000 and 100,000,  too (see Appendix). 

 

In each figure, the y-axis is the value of the fitness and the 

x-axis is the maximal number of generations, which serves 

as the interruption parameter for the genetic algorithm.  

 

 
Figure 3 – Initial population size: 1000; pm=1%, 3%, 5%  and 10%. 

 

 
Figure 4 – Initial population size: 5000; pm=1%, 3%, 5%  and 10%. 

 

 
Figure 5 – Initial population size: 10000; pm=1%, 3%, 5%  and 10%. 

 

Now we present the results for the cases when, for some 

particular probability of mutation, we take different values 

for the parameter of the Initial Population. In Figure 6 we 

show the changes in fitness for different values of the 

number of initial population, having the same probability 

of mutation (pm=1%).  Similarly, for other pm values (3%, 

5% and 10%), in Figure 7, 8 and 9. 

 

 
Figure 6 – pm=1%,; Initial population sizes: 1000, 5000 and 10000.  
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Figure 7 - pm=3%,; Initial population sizes: 1000, 5000 and 10000 

 

 
Figure 8 - pm=5%,; Initial population sizes: 1000, 5000 and 10000 

 

 
Figure 9 - pm=10%,; Initial population sizes: 1000, 5000 and 10000 

4. Conclusions 

Since the use of correct population size is a crucial factor 

for successful GA applications, more efforts need to be 

spent in finding correct population sizing estimates for 

particular problems. Our results show that there is a slight 

or no difference in fitness results for the case of TSP with 

GA, for different values of the initial population size, with 

all tested values of mutation parameter. So increasing the 

mutation rate doesn’t contribute to a better results. 

There is no use of increasing the value of the probability of 

mutation, since it doesn’t pay-off as it increases the 

execution time/processor time and doesn’t contribute to a 

much better fitness result. 

 

Considering the effect of changing the initial population 

size for fixed mutation rate, we see that the effect of the 

mutation is important for small initial populations, since it 

contributes to promoting new solutions in the solution 

space.  

 

For each percentage of the mutation, results show that the 

bigger the value of the initial population, the less is the 

fitness value improved. 

 

The effect of mutation is especially noticed in the first 

generations of the cases with small value of the intimal 

population (when there is no enough number of good 

solutions). Otherwise, when the initial population is of 

higher value, it means that there is a higher diversity of 

solutions and so the mutation doesn’t bring much new and 

better solutions. 

 

When the population is large, the diversity in the initial 

random population is large and the best solution in the 

population is expected to be close to the optimal solution. 

Appendix 

Here we will present the results for the cases when the 

value of the parameter of maximal number of generations 

is: 50,000 and 100,000. 

 

For each value of the number of generations, we present 

the results for cases with values of the initial population 

(1000, 5000 and 10000) for different values of the 

probability of mutation (1%, 3%, 5% and 10%) and then 

cases with same probabilities of mutation for different 

values of initial population (1000, 5000 and 10000) . 
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