
Refactoring Model of Legacy Software in Smart Grid based on Cloned
Codes Detection

Fanqi Meng1, Zhaoyang Qu2 and Xiaoli Guo3

 1 School of Information Engineering, Northeast Dianli University,Jilin, Jilin 132012, China

2 School of Information Engineering, Northeast Dianli University, Jilin, Jilin 132012, China

3 School of Information Engineering, Northeast Dianli University, Jilin, Jilin 132012, China

Abstract

The construction of smart grid relies on the development of
many new software systems, whereas it would be very expensive
and time-consuming if these new software systems are
completely developed anew. Since the existence of many legacy
software systems in the former power grid, the problem may be
solved well supposing that those legacy software systems are
reused reasonably and efficiently in the construction of smart
grid. In view of this situation, a refactoring model of legacy
software is proposed. The model is based on reverse engineering
and its kernel is cloned codes detection and components
extraction. Firstly, the cloned codes in the scanned source code
of the legacy software will be detected by means of CCFinder.
Secondly, the abstract syntax trees of the functions which
include the cloned codes will be created. Thirdly, the degree of
variation between the functions which include the cloned codes
belonging to the same clone set will be calculated according to
their abstract syntax trees, and then some functions whose
similarities of abstract syntax trees are in the allowed range will
be combined. Finally, the combined functions and other
frequently invoked functions will be encapsulated in a new class
(or a DLL file), and all of these classes (or DLL files) will be
reused as components in the development of new software
systems of the smart grid.
Keywords: Smart Grid, Legacy System, Code Clone,
Refactoring

1. Introduction

Although the term “smart grid” has been used since at
least 2005 [1], it still hasn’t a uniform definition in the
entire world. However, all of the countries consider smart
grid as the inevitable trend of the development of
electrical grid, so that smart grid has another name called
“electrical grid 2.0”. A smart grid is an advanced electrical
grid that can gather and process the information by using
computers and other technology. The gathered and
processed information has widely resources, ranging from
the behaviors of suppliers and consumers to the status of
devices running in smart grid. The processing of the
collection and computation of the information should be in
an automated fashion, in order to enhance the efficiency,

reliability, economics, and sustainability of the supply of
electricity [2]. The above background and the features
(especially for efficiency and reliability) of smart grid
decide that its construction relies on the development of
many new software systems (such as monitoring software,
controlling software, marketing software, etc.) to gather
and process the information. However, it must be very
expensive and time-consuming if these new software
systems are totally developed anew. The cost and deadline
of the task must be considered under the circumstances.
Thus, an efficiency software development mode for smart
grid is imperative.

Legacy software usually is a large-scale and complex
software system which has run for a long time (more than
20 years) [3]. Since the development language of legacy
software mostly is the third or early programming
language (such as ASM, COBOL or Turbo C etc.), and the
development framework of legacy software has been
outdated, the legacy software is hardly to be maintained
and evolved. Even if it is no longer used, legacy software
may continue to impact the organization due to its
historical role. Most functions in legacy software are
stability and credibility in processing the existing business,
thus the method that reuses these functions in developing
new software systems which can handle both existing
business and emerging business has been adopted by many
programmers. The smart grid commonly has many legacy
software systems which had been used by former electrical
grid. Using them efficiently in the construction of a smart
grid is potentially the solution to the above problem
(expensive and time-consuming). So the study of the
method to efficiently use legacy software is significant to
the construction of smart grid.

Refactoring is a programming technique for optimizing the
structure or pattern of an existing body of code by altering
its internal nonfunctional attributes without changing its
external behavior[4][5][6][7]. By applying a series of
"refactorings", the software can obtain some advantages,

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 296

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

including improved code readability and reduced
complexity to improve the maintainability of the source
code, as well as a more expressive internal architecture or
object model to improve extensibility. The code
refactoring of legacy software is one of basic methods to
achieve efficient reuse. This paper presents a study of how
to reuse the legacy software by means of refactoring. The
remainder of the paper is organized as follows. Section 2
gives an overview of the related work in the area. The
refactoring model of legacy software is proposed in
Section 3. And its kernel processes, cloned codes
detection and components extraction are presented in
Section 4. Section 5 analyzes the results obtained in a
number of experiments and Section 6 outlines the
conclusions and future work.

2. Related work

Software reuse is still a popular research issue in the field
of software engineering. The modernization of legacy
software is an important research direction of software
reuse. The evolution of software systems can be divided
into three types: maintenance, modernization and
replacement. Maintenance can only meet the small
changes of the requirements by correcting and enhancing
the functions of the software system. Replacement has
high risk and will cost long time to develop new system.
Replacement will not happen unless the system can’t be
maintained or modernized. So the modernization of legacy
software is now regarded as the most feasible method in
software reuse. There already exist several modernization
methods to deal with legacy systems, for reusing them in
the development of new systems. These methods mainly
fall into three categories: Redevelopment, Wrapping and
Migration.

2.1 Redevelopment

Redevelopment is a high-risk and low-reuse method,
almost abandons whole codes of the legacy systems. Since
the methods of this kind realize the functions of the legacy
systems in the new system via programming anew, they
are usually used to eliminate the structural flaws of legacy
systems. CORUM (Common Object-based Re-engineering
Unified Model), CORUMⅡ, MARMI-RE and OSET are
all the methods belonging to redevelopment[8][9][10].

2.2 Migration

Wrapping methods can be classified into three types: UI-
based wrapping (UI, user interface), data-based wrapping
and function-based wrapping, according to the wrapped
contents. UI-based wrapping reuses the UIs of the legacy
system in the new system by interface mapping. Data-

based wrapping includes the means, such as DB (data base)
gate, XML and data copy etc. Data-based wrapping
inherits the data structure of the legacy system, so the data
of the legacy system can be used in the new system.
Function-based wrapping uses component wrapping,
object wrapping and gate wrapping etc. to realize the
reusing of the service logic. These wrapping methods can
reuse legacy systems for a short time, but they will
increase difficulties in the maintenance and management
of the new system.

2.3 Migration

The migration of legacy systems usually divides into two
types: component-based migration and system-based
migration. Component-based migration classifies the
legacy system into independent components, and then
migrates the components singly. System-based migration
integrates the whole legacy system and its data into the
new system. Representative methods and models of
migration are Chicken Little, Butterfly, SGF and AGRIP
etc. Migration merely suits for small-scale legacy systems,
since it is more possible for losing information if the scale
of the legacy system is larger.

3. Refactoring model

The refactoring of legacy software is a process to
reengineering the old software system by component
technology. This process can be roughly divided into two
steps: The first step is reverse engineering. Reverse
engineering is the process of analyzing a subject system to
create representations of the system at a higher level of
abstraction [11]. It can also be seen as going backwards
through the development cycle. Reverse engineering often
involves taking computer program apart and analyzing its
workings in detail to be used in maintenance, or to try to
make a new program that does the same thing without
using or simply duplicating (without understanding) the
original. The second step is forward engineering. Forward
engineering has the process similar to conventional
development of software. It follows the flow: requirements
analysis, outline design, detailed design, testing and
modification. Figure 1 shows the refactoring model that is
built to reengineer the legacy software in smart grid based
on component extraction, update and reuse.

In this model, firstly, Requirement Change leads to the
Architecture Readjustment of legacy software system;
Then, Architecture Readjustment needs Component
Update to provide new components; Finally, Component
Update helps Software Refactoring coming true. On the
stage of requirement analysis, according to the change of
requirement, Requirements Analysis Engineers increase

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 297

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Reverse_engineering#cite_note-5#cite_note-5

new requirements or delete useless requirements based on
the result of Requirement Analysis that comes from the
reverse engineering of legacy software.

rev
ers

e

en
gineer

ing
forward

engineering
O

O
P

S
O

A

Fig. 1 The refactoring model of legacy software in Smart Grid

On the stage of outline design, engineers readjust the
architecture of legacy software to Service Oriented
Architecture (SOA). On the stage of detailed design,
programmers update component, including abandoning
useless components and regaining new components, in
order to make the components compatible with the
demand of Architecture Readjustment and Object-
Oriented Programming (OOP). Usually, three ways can be
used to gain the needed components. The first one is to
purchase from others; the second one is to renew
development by yourself; the last one is to extract
components from the source code of legacy software. The
model we proposed adopts the third method to get
components, so the Component Extraction in the model is
both the beginning of refactoring process and the kernel
method of the refactoring model.

4. Components extraction

The refactoring of legacy software is also known as
Software Systems Modernization. Software Systems
Modernization using SOAs and Web Services represents a
valuable option for extending the lifetime of mission-
critical legacy systems [12]. Components play an
important role in SOA. Software engineers regard
components as part of the starting platform for service-
orientation. Actually, the refactoring model uses
component-based software engineering (CBSE) as the
forward engineering method. Figure 2 shows the
refactoring process from component perspective.

4.1 Cloned codes detection

Copying code fragments and then reuse by passing with or
without minor modifications or adaptations are common
activities in software development. This type of reuse
approach of existing code is called code cloning and the

passed code fragment (with or without modifications) is
called a clone of the original. For instance, Baker has
found that on large systems between 13% - 20% of source
code can be cloned code. For an object-oriented COBOL
system, the rate of duplicated code is found even much
higher, about 50% [13].

Although code clones may adversely affect the software
systems’ quality, especially their maintainability and
comprehensibility, the cloned code in legacy software are
potentially most valuable code to be refactored into new
components. One piece of code is cloned more times, and
then it has more reuse value. So we should detect cloned
code before refactoring. In addition, cloned code detection
will compress the length of source code in legacy software,
and reduce the work load in component extraction.

We have used CCFinder to detect the cloned code in
legacy software. CCFinder is a token-based cloned code
detection tool [14]. The work principle of CCFinder is
followed: First, each line of source code is divided into
tokens by a lexer and the tokens of all source code are
then concatenated into a single token sequence. The token
sequence is then transformed. After that, each identifier
related to types, variables, and constants is replaced with a
special token. A suffix-tree based sub-string matching
algorithm is then used to find the similar sub-sequences on
the transformed token sequence where the similar sub-
sequence pairs are returned as clone pairs/clone classes.
Once the clone pair/clone class information is obtained
with respect to the token-sequence(s), a mapping is
required for obtaining the clone pair/clone class
information with respect to the original source code.
Figure 3 shows the detection interface of CCFinder
10.2.5.0 (download from http://www.ccfinder.net/)

BUS

Fig. 2 The process of component extraction

4.2 Abstract syntax trees creation

Abstract syntax tree is a production generated after the
lexical analysis and parsing of source code. Abstract

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 298

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

syntax tree fully reflects the grammatical structure of the
source code, and its leaves represent identifier or constant
etc. Figure 4 shows an abstract syntax tree of a code
segment.

Fig. 3 The detection interface of CCFinder

Fig. 4 An example of abstract syntax tree

Function is the basic unit in the third generation
programming languages which are the main tools used in
software development 20 years ago. Therefore the
emphasis of reusing legacy software is functional
refactoring for reuse. According to the refactoring model,
the functions include cloned code which will be compared
for calculating the similarity. Generally, the two functions
with similar syntax structure are probably the same. So the
abstract syntax tree of the functions includes cloned code
which should be built after code clone detection. Various
tools for building abstract syntax tree can be downloaded
easily from Internet, for example The GNU Compiler
Collection and JavaCC.

4.3 Differences degree calculation

The functions may be very different even though they
have cloned code belonging to the same clone set. The
relationship between the function and the cloned code
probably has two cases. In the first case, the function is
totally cloned (mainly exists between different legacy

software). In the second case, the function includes the
cloned code. Even though some large cloned code may
also include functions, but the larger cloned code can
finally be divided into the functions totally cloned and the
small cloned code pieces included by functions. In
addition, the relationship between cloned codes which are
detected by CCFinder also has three cases. In case one,
the two cloned codes are the same. In case two, they are
merely different in some identifiers’ name. In case three,
they may be minor different in variable types or syntax.
All above cases happened because the detective method of
CCFinder is token-based.

4.3.1 Totally cloned

If the function is totally cloned according to the detection
result presented by CCFinder (it still has three cases
discussed above), then we should calculate its difference
degree with other related cloned functions by traversing
abstract syntax tree twice. We directly compare the value
of the node of the abstract syntax trees with the functions
in the first traversing. If the result shows that the abstract
syntax trees are the same, it means that the two functions
are the same (note it as Type A). If not, we change all
customer identifiers into $ when traversing the abstract
syntax trees. If the result shows the same, the two
functions are merely different in some identifiers’ names
(note it as Type B); else they are different in variable
types or others (note it as Type C).

4.3.2 Partly cloned

If the function is partly cloned, it means that the function
includes cloned code in its body. We traverse the abstract
syntax tree of the function with changing customer
identifiers into $. Those functions which include the
cloned code belonging to the same clone set will be
compared with traversing results. We adopt Levenshtein
Distance (or Edit Distance) for the compare method. The
algorithm of the calculation of Levenshtein Distance
between the two string fp1 and fp2 is shown as follows
[15]. The different degree between two functions can be
gotten via calculating the expression: DD= (matrix (len1,
len2)/max (len1, len2))*100%. The bigger the value of
DD is, the more different the two functions are. We can
use a threshold value to decide whether the functions are
similar. If the value of DD is below the threshold value,
note the two functions as Type D, else noted them as
Type E.

4.4 Cloned functions combination

A cloned function is a function with cloned code. The
combination of cloned functions can be divided into five
cases according to the types of cloned function.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 299

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 5 The algorithm of Levenshtein Distance calculation [15]

Case 1, the functions which will be combined are Type A.
In this case, all of the functions are the same, so we select
one of them and add it into function base.

Case 2, the functions which will be combined are Type B.
In this case, all of the functions are very similar except
individual identifier’s name, so we select the shortest one
for saving space and add it into function base.

Case 3, the functions which will be combined are Type C.
In this case, the differences between the functions are in
types of variable or in other aspects, so we select the
longest one for retaining enough information and add it
into function base.

Case 4, the functions which will be combined are Type D.
In this case, even though the difference degree is lower
than a preset threshold value, the functions are more
different with each other than Type A, Type B and Type C.
so we should flexibly adopt various existent refactoring
method to combine the functions. The combined function
will be added into function base.

Case 5, the functions are Type E. Since the similarity is
too low, the functions are not recommended to combine.
All of the functions are respectively added into function
base.

All of the functions in the function base have a value
which denotes invoked times in legacy software. The
value is an important reference for component extraction.
In Case 1 to Case 4, the invoked time of a combined
function is the sum of invoked times of all related cloned
functions.

4.5 Component extraction

A component may be a software package, a Web service,
or a module that encapsulates a set of related functions (or

data). Programmers can use these functions which have
been stored in function base as various forms. For example,
some functions can be encapsulated into a new class as
function members by tiny modification, or assembling
some functions to generate a DLL files. In addition,
several tools have been used in extracting components,
such as CodeMiner, CARE (Computer-Aided Reuse
Engineering) and PATRicia (Program Analysis Tool for
Reuse) [16].

5. Analysis and result

We did some experiments about cloned code detection
which is the basic work in the model. We selected the
former versions of Cook, Snns, Weltab and Postgresql as
our experimental subjects. The four applications were both
written in C or C++. We used CCFinder to detect cloned
codes hidden in the four applications. Before the detection,
the value of Minimum Clone Length was set at 120 and
the value of Minimum TKS was set at 30. These values
were more suitable for two reasons: firstly, the codes will
be no much reuse value if its length is shorter than 40
characters and 10 TKS; secondly, the cloned codes usually
do not have a length longer than 200 characters and 50
TKS. The metric results are shown as Table 1, Table 2 and
Table 3.

Table 1: File metrics

Name Min. Max. Average

LEN 1 33586 1000.28

CLN 0 11 0.128866

NBR 0 11 0.181701

RSA 0 1 0.056779

RSI 0 0.51 0.008532

CVR 0 1 0.064539

RNR 0.024 1 0.900082

The meaning of the Names in the tables can be found at
http://www.ccfinder.net/doc/10.2/en /tutorial-gemx.html

Table 2: Clone set metrics

Name Min. Max. Average

LEN 123 3220 732.071

POP 2 12 3.38571

NIF 1 12 2.85714

RAD 0 6 1.2

RNR 0.52 0.996 0.789677

TKS 30 53 34.5143

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 300

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

LOOP 0 17 3.35714

COND 2 48 14.4714

McCabe 3 58 17.8286

Table 3: Line-based metrics

Name Total Min. Max. Average

LOC 432005 2 11618 278.354

SLOC 217849 0 5562 140.367

CLOC 12750 0 603 8.21521

CVRL - 0 1 0.058527

From Table 3, we know that the four applications have
432,005 lines in their source files, and 217,849 lines
including at least one token. In other words, 217,849 lines
are executable codes. 12,750 lines are cloned codes. The
ratio of the lines including cloned codes is 0.058527. The

ratio is lower than common case because of the bigger
preset value for Minimum Clone Length and Minimum
TKS. According to these results, we found some cloned
functions which can be treated as reusable component
candidates. Figure 6 shows a pair of Type A cloned
functions, named next_token. They are found in different
files of the same application (hba.c and miscinit.c in
postgresql). Figure 7 shows a pair of Type B cloned
functions, named TEST_JE_Backprop and
TEST_JE_BackpropMomentum. They are detected in the
same file of same application (learn_f.c in snns). Besides
the different function name, the two functions have
another difference in line 5698 and 5743 (if condition, <3,
<5). Figure 8 shows a pair of Type B cloned functions
found in different files of different applications (Lex.yyz.c
in snns and bootscanner.c in postgresql). More cloned
functions are Type D or Type E, but we didn’t further
study these partly cloned functions in our experiments.

Fig. 6 An example of Type A cloned functions from different files of the same applications

Fig. 7 An example of Type B cloned functions from a same file of a same application

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 301

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 8 An example of Type B cloned functions from different files of different applications

[5] Ibrahim, Safwat M.”Identification of Nominated Classes for
Software Refactoring Using Object-Oriented Cohesion
Metrics”, International Journal of Computer Science Issues,
v 9, n 2 2-2, p 68-76, 2012

6. Conclusions

[6] Ananda Rao, A. “Identifying clusters of concepts in a low
cohesive class for extract class refactoring using metrics
supplemented agglomerative clustering technique”,
International Journal of Computer Science Issues, v 8, n 5 5-
2, p 185-194, 2011.

The legacy software that was used by former electrical
grid may help the construction of smart grid in efficiencies
and costs, but it depends on whether the legacy software
can be reused. In order to reuse the legacy software
efficiently, we proposed a refactoring model based on
cloned code detection. By detecting cloned code, we can
firstly reduce the candidates for component extraction,
thereby lower the complexity; secondly, the remained
cloned functions after function combination are more
valuable for components generation, thus enhance the
reliability of the refactoring. However, the result shows
that the valuable cloned functions are not too much in
legacy software, so the method of this model should be
used as a subsidiary method in refactoring large-scale
legacy software.

[7] Arora, Madhulika. “Refactoring, way for software
maintenance”, International Journal of Computer Science
Issues, v 8, n 2, p 565-570, 2011

[8] Woods Steven, O'Brien Liam, Lin Tao, Gallagher Keith, “An
architecture for interoperable program understanding tools”,
6th International Workshop on Program Comprehension,
1998, pp. 54 – 63.

[9] Rick Kazman, Steven G. Woods, S. Jeromy Carrière,
“Requirements for Integrating Software Architecture and
Reengineering Models: CORUM II”, WCRE '98 Proceedings
of the Working Conference on Reverse Engineering, 1998,
pp. 154 – 163.

[10]Eun Sook Cho, Jung Eun Cha and Young Jong Yang,
“MARMI-RE: A Method and Tools for Legacy System
Modernization”, Lecture Notes in Computer Science, Vol.
3647, 2006, pp. 42-57.

Acknowledgments

This work was funded in part by Natural Science
Foundation of China (Grant Number 51077010) and
Natural Science Foundation of JiLin province of China
(Grant Number 20101517).

[11]Chikofsky, E. J.; Cross, J. H, "Reverse engineering and
design recovery: A taxonomy", IEEE Software, vol. 7, no. 1,
1990, pp. 13–17.

[12]Gerardo Canfora, Anna Rita Fasolino. “A wrapping
approach for migrating legacy systeminteractive
functionalities to Service Oriented Architectures”, The
Journal of Systems and Software,vol. 81, 2008, pp. 463–
480.

References
[1] S. Massoud Amin, Bruce F. Wollenberg, “Toward a smart

grid”, IEEE P&E Magazine, vol. 3, no. 5, 2005, pp. 34 – 41.
[13]Dongxiang Cai, Miryung Kim, “An Empirical Study of

Long-Lived Code Clones”, International Conference on
Fundamental Approaches to Software Engineering, 2011, pp.
432–446.

[2] Amrita Dey, Nabendu Chaki, Sugata Sanyal, "Modeling
Smart Grid using Generalized Stochastic Petri Net", JCIT,
AICIT, vol. 6, no. 11, 2011, pp. 104 – 114.

[3] Wen-Shin Hsu, Jiann-I Pan, Hua Hu, "Exercise Prescription
Monitoring System: Using Sensor Network and Service-
Oriented Architecture", IJMIA, AICIT, vol. 2, no. 2, 2012,
pp. 44 – 55.

[14]Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue,
“CCFinder: A Multilinguistic Token-Based Code Clone
Detection System for Large Scale Source Code”,
Transactions on Software Engineering, Vol. 28, no.7,
2002,pp. 654- 670.

[4] Nien-Lin Hsueh, Peng-Hua Chu, "A Pattern-based
Refactoring Approach for Multi-core System Design",
IJACT, AICIT, vol. 3, no. 9, 2011, pp. 196 -209.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 302

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[15]Wu Zhou, Yajin Zhou, Xuxian Jiang, “Detecting
Repackaged Smartphone Applications inThird-Party Android
Marketplaces”, In Proceedings of the 2nd ACM Conference
on Data and Application Security and Privacy,2012,pp.120-
130.

[16]MF Dunn, JC Knight, “Automating the detection of reusable
parts in existing software”, In Proceedings of the 15th
international conference, 1993, pp.10-19.

Fanqi Meng is a member of ACM, and received his M.S. degree in
computer science and technology from Northeast Dianlil University,
Jilin, China, in 2010. He is now a lecturer in the School of
Information Engineering, Northeast Dianlil University. His main
research interest is cloned code detection and refactoring.

Zhangyang Qu received his Ph.D. degree in power system
automation from North China Electric Power University, Bejing,
China, in 2010. He is now a professor and tutor of postgraduates
in the School of Information Engineering, Northeast Dianlil
University. His main research interest is power system information
processing.

Xiaoli Guo received her M.S. degree in computer science and
technology from Changchun University of Science and Technology,
Jilin, China, in 2006. She is now a professor and tutor of
postgraduates in the School of Information Engineering, Northeast
Dianlil University. Her main research interest is computer
education.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 303

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

