

Towards a GraphTowards a GraphTowards a GraphTowards a Graph----Based Approach for Web Services CompositionBased Approach for Web Services CompositionBased Approach for Web Services CompositionBased Approach for Web Services Composition

Chaker BEN MAHMOUD 1, Fathia BETTAHAR 2, Hajer ABDERRAHIM 3 and Houda SAIDI4

1ENIG, University of Gabès
Gabès, Tunisia

2ISIMG, University of Gabès

Gabès, Tunisia

3ISIMG, University of Gabès
Gabès, Tunisia

4ISIMG, University of Gabès

Gabès, Tunisia

Abstract

Nowadays, Web services (WS) remain a main actor in the
implementation of distributed applications. They represent a new
promising paradigm for the development, deployment and
integration of Internet applications. The aim of Web services
composition is to use the skills of several departments to resolve
any problem that cannot be solved individually. The result of this
composition is a compound of Web services that define how they
will be used. In this paper, we propose an approach for automatic
web services composition based on the concepts of directed
graphs for the representation and description of Web services,
and the ordering of web services compound execution. In this
context, the user query, defined by a set of inputs and outputs,
can be viewed as a directed graph composed of Web services.

Keywords:Web Services, Automatic composition, WSDL,
service-oriented architecture, Theory of graphs.

1. Introduction

Web services provide a new way to develop distributed
and dynamic applications. They are considered to be a
good solution for interoperability during data exchange
between heterogeneous applications within an organization.
One of the most important advantages of the Web service is
reuse. In fact, Web services are conceptually limited to
relatively simple features which are modeled by a
collection of operations.

The use and composition of Web services to solve
problems remains a difficult task to achieve, however. Web
services composition refers to the process of creating a
composite service with new functionality from existing
relatively simple Web services. This process includes
discovery, integration and execution of Web services in a
specific order to meet an identified need.

Intense research activities have been conducted in this
area in order to achieve correct web services composition.
In fact, composition of Web services is not just simple
grouping, but rather a composition in which the web
services are ordered according to the relations between

their semantics. These are usually provided by different
organizations independently from any execution context.
Since each organization has its own working rules, Web
services should be treated as strictly autonomous units.

2. Related work

Several approaches have been developed for Web
services composition. Only few used the concept of graph
theory. In what follows, we present three approaches
closely related to the one presented in this paper.

Elmaghraoui et al. presented in [1] a solution for
optimizing the computational effort in Web services
composition. This approach is based on graph theory. It
consists in modeling the relationship between the involved
semantic Web services in a directed graph, and calculating
the shortest path by using an extended version of the Floyd-
Warshall algorithm. This optimization approach is based on
two pillars: i) the first is defining the semantic relationships
between the available Web services using an directed graph
called Service Composition Graph (SCG), and ii) the
second is applying a graph search algorithm to calculate the
shortest paths between all nodes. Finally, the results of the
algorithm are stored in a matrix called the Shortest
Predecessor Matrix (SPM).

Hashemian et al. [2] has created composite Web
services using a graph search algorithm based on
input/output dependencies between Web services. In fact,
the composite Web services are presented as a dependency
graph built using input-ouptut requirements of available
elementary web services. A dependency graph G = (V, E)
contains information about the existing Web services in the
repository as well as their input/output. The set of nodes V
represents the actions or statements on inputs/outputs
included in the list of inputs/ outputs. There is a directed
edge from node vx to node vy in the graph (where vx, vy∈
V) if and only if there exists at least one dependency vx→vy
in the list of dependencies between inputs and outputs.
Each edge in E is a set that contains all web services in the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 351

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

repository having that dependency in one of their
dependency sets. This algorithm resolved the composition
problem in two steps: i) find Web services that can
potentially participate in the composition, ii) find the
composition based on these Web services. The author
considered the dependencies between input and output
parameters without considering the semantic functions, so
they cannot guarantee that the generated composite service
correctly provides the requested functionality.

Samuel et al. presented in [3] a composition technique
based on weighted planning graph in which the
composition can be found in polynomial dynamic time and
in heterogeneous environment. The author conceived the
composition problem as a problem of generating the
required outputs from the given inputs. Therefore, the order
of actions is not important, except that he supposed that the
inputs arrive before outputs. Many information systems fall
into this category where the inputs and outputs can be
retrieved from different WSDL files. It uses a special graph
structure called dependency graph to construct an index of
available web services and their input/output information.
This graph can be considered as a model for the repository
specification, because it is accessible by the composition
planner in response to a request. The planning graph is a
layered directed graph. The vertices can be of two types.
The first is the collection of propositions (pre-and post-
conditions of Web services), called P and the second is the
actions (set of Web services), called A. The edges connect
one layer to another. The quality attributes can be assigned
on the edges as weights. After the construction of the
planning graph for composition, it applies the non-
functional quality parameters to find a better composition
scheme.

3. Model of Web services composition-based
graph

The automatic composition of Web services is a
complex task. Indeed, the use of Web services is limited,
firstly because they perform a specific task. On the other
hand, the structure and the availability of these services are
not stable because of the exponential evolution of the
Web. In this context, we propose a system for automatic
composition of Web services. To achieve this goal, we
consider that a solution for composition must be engaged
from the Web services discovery to the interaction with
users. From a user perspective, once the query is defined,
the system commits to identify Web services necessary to
satisfy the problem. In order to achieve these objectives,
we propose a graph-based model for automatically
composing Web services.

3.1 Principle

We assume that Web services are defined by a set of
inputs and outputs describing their semantics. The user

defines his needs in terms of inputs/outputs with a textual
description. These needs must be validated with respect to
the domain ontology (concept or term). The proposed
system selects the Web service that is the most adapted to
the given user inputs and uses the results to continue to
meet the goal (all outputs). The resulting Web service can
then be viewed as a Web services-based graph constructed
according to input/output similarity. This approach covers
the following features: service composition, discovery,
execution and publication of the composite service.

3.2 Web service modeling

Each Web service contains different operations and is
defined by its name, parameter, and state of the world in
which it operates. In this work, we assume that each Web
service consists in a single operation. For sake of
simplicity, we use operation and Web service terms
interchangeably.

We propose the following formalism:

WebService (Parameters, State-of-the-world) (1)

This representation allows us to introduce a Web
service as an entity that is fully defined by its parameters
("PARAMETERS ") and the state of the world ("State-of-
the-world ") where it acts. Parameters are represented by
the inputs and outputs of Web service, and the state of the
world is represented by its preconditions and its effects.

WebService (Inputs, Outputs, Pre-conditions, effects) (2)

Where, Inputs, Outputs ⊂ Parameters and Pre-
Conditions, Effects ⊂ State-of-the-world.

This second representation was used to introduce a web
service as an entity capable of producing one or more
concrete results based on inputs/outputs requirements. Pre-
conditions provide information about the state in which the
world must come before the invocation of a service. The
effects indicate the state of the world after the invocation of
the service.

3.2.1 Conditions on web service’s inputs and outputs

The inputs and outputs of a Web service should be able
identifiable by a concept defined within a well-established
ontology. Therefore, the different parameters of a Web
service can be represented by instances of concepts
belonging to different ontologies.

For example, the web service "Find_Doctor" uses a
single input parameter (denoted City_Name) represented
by the concept of "CITY", belonging to the ontology
CNAMOnto.

So "Find_Doctor" requires an instance of the concept
"CITY". The only output parameter (Doctor) is represented
by an instance of the concept DOCTOR present in the
ontology CNAMOnto. "Find_Doctor" will return an
instance of the concept "Doctor" if the preconditions are

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 352

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

validated. So the inputs and outputs of a web service are
clearly defined in terms of concepts of a specialized
ontology and for the attributes (e.g.CIN of any person or
other).

3.2.2 Conditions on the state of the world (preconditions
and effects) of the web service

In order to facilitate reasoning about preconditions and
effects, we present them using the first-order predicate
logic. Indeed, the preconditions and effects of web services
are used to estimate the state of the world in a given
situation. It is therefore essential to be able to reason with
these world estimators.

So we adopt the following formalism to define the state
of the world (preconditions and effects) of a web service:

PreCondition(WS,PC1,..,PCn)←Valid(PC1)∧...∧Valid(PCn) (3)

Effect (WebService,E1, ...,En) ← E1∧ ... ∧En (4)

In fact, a web service is defined by its parameters, but

also the states of the world through which it passes. It is
therefore necessary to integrate the pre-conditions and
effects in the definition of a web service. For example, the
web service "Find_Doctor" said two predicates P1 (pre-
conditions on the service) and E1 (effects on the service).

P1 (Find_Doctor, CITY) ← Exist (DOCTOR) ∧ Valid(CITY)
E1 (Find_Doctor, DOCTOR) ← List (DOCTOR)

3.3 Operation of the automatic web services
composition

3.3.1 Composition module

In this phase, we proceed to the automatic composition
of web services. We focus on the operational aspects of
web services and we concentrate particularly on the input
parameters and output web services. An interaction graph
of web services is represented as an oriented graph in
which the vertices represent the set of web services and
links materialize the flow of information between two web
services.

To represent the interactions between a set of web
services in the form of oriented graph, vertices can be
defined using levels of details (parameter, service).

In an oriented graph, whose vertices are web services,
links represent the common parameters (input / output) that
allow web services interact.

Let A be a web service described by WSA (IA, OA,
PreA, EfA), where IA is the set of inputs, OA the set of
outputs, PreA refers to preconditions and EfA refers the
effects.

In order to create a link between a source web service A
described by (IA, OA, PreA, EfA) and a target Web service
described by B (IB, OB, PreB, EfB), the number of output
parameters OA of web service A must be greater than or
equal to the number of input parameters IB of web service

B. In this context, two cases may arise: complete relation or
partial relation:

• Complete relation: if and only if, for each input
parameter of the target web service B, there is an
output parameter similar in the web service A.

• Partial relation: there are at least one output
parameter of the source web service similar to an
input parameter of the target web service

Process of building the graph composition

In our approach to composition, the user request passes
through several processing stages before constructing the
graph composition. The resolution of this problem of
composition identifies the resolution of a goal (outputs)
described by the user's query.

Fig. 1 Process of building graph composition

Example:
Let a set of web services declared as follows:

WS1 ({a,b},{c,d,f},{P1},{EF1,EF2}) ,
WS2 ({c},{m,k},{P2},{ ∅}) ,
WS3 ({w,m},{t},{P3,P4},{EF3}) ,
WS4 ({k,d,i},{p},{P5},{EF4}) ,
WS5 ({f},{i,g},{P6},{EF5}) ,
WS6 ({h,g,n},{y,q},{P7},{EF5}) ,
WS7 ({a},{f},{P8},{EF}) ,
WS8 ({t},{z,g},{P9},{ ∅})

And the request of the user is defined as follows:
ReqUti ({a,b,w},{t,p})

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 353

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 2 Search Interface

The graph composition result in the execution of the
user query is as follows:

Fig. 3 Result of the composition (composition graph)

3.3.2 Discovery module

This module searches for a list of web services that
meets the requirements expressed by the composition
module.

The discovery module uses the properties of web
services in order to find the ones that best respond to a
query. In the discovery process, our module seeks the
similarities between the query definition parameters and the
web services ones published in registries.

The similarity calculation has a great influence on the
search of web services for discovery and composition. For
the discovery, the similarity calculation is based on textual
descriptions, on the input and output parameters, and the
state of the world of web services. For the composition, the
similarity calculation is applied to the output parameters of
the first service compared and on the input parameters of
the second service compared.

Moreover, according to the nature of objects to
compare, the similarity can be broken down into syntactic
similarity or semantic similarity. Note that the matching
semantics can be used on syntactic descriptions by
enriching the descriptions for the treatment. Various
solutions have been proposed in the literature like the use
of tools such as lexical database WordNet [4] or methods
such as latent semantic analysis [5].

Syntactic similarity

Syntactic similarity compares parameters from their
respective orthographies. Two distinct similarities can be
distinguished, the approximate similarity and the equal one.

• The equal similarity uses the strict syntactic
equivalence. Two objects are said to be similar if
and only if they have the same orthography.

• The approximate similarity uses distance
functions d(x,y) to quantify the similarity between
two character strings x and y. If the distance
between two objects is above a certain threshold,
these objects are said similar.

Semantic similarity

For comparing the outputs of a request to the outputs of
a published service, four degrees of matching are used [6]:

• Exact matching: select a web service if he
corresponds exactly at the request
(request = Service) that is to say, the inputs and
outputs of the request are equal to the inputs and
outputs of the web service.

• Plug-in matching: returns a web service if he
includes a request (request < Service) that is to
say, the input of the request includes the inputs of
the web service and outputs of the request are
subsumed by the outputs of the web service. In
this case, the web service is a set that generalizes
the request.

• Subsumes matching: returns a Web service, if he
included in a query (request > Service). In this
case, the service does not completely satisfy the
request. This service may be used to achieve
partially the purpose of the request. One or more
additional services may need to be used to meet
all the goals of the user.

• Fail matching: returns false if no match between
the query and service.

In terms of satisfaction of the request, the semantic

matching degrees can be ordered according to a scale of
preference as follows:

Exact > Plugin > Subsumes > Fail

In our approach, the discovery of web services is to find

links and semantic correspondences between the
parameters of the request with Web Services. This

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 354

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

discovery is essentially based on the parameters and the
state of the world of web services.

In this context, the similarity can be divided into two
parts: parameters similarity (Input and Output) and
similarity of state of the world (Pre-condition and Effect).

The system measures the similarity of the parameters
(input and output) by attributing a score for each mode of
matching: Exact (score=3), Plug-In (score=2), Subsumes
(score=1), Fail (score=0). Then, it assigns a score according
to the valid states of the world of web services.

Therefore, the matching between the request and a set
of Web services can be measured quantitatively. The
service has a high similarity score represents the service the
most accurate for the request.

The following equation generalizes the comparison
between the proposed request by the composition module
and web services:

Sim (Req,SW) = SimIn/Out (Req,SW) + SimPre/Effet (SW) (5)

Where

Sim In/Out (Req,SW) =

(6)

SimPre/Effet (SW) =

(7)

With: InReq denotes the inputs of the request; OutReq

denotes the outputs of the request; InSW denotes the inputs
of the web service; OutSW denotes the outputs of the web
service.

The architecture of this module is illustrated in the

diagram below:

Fig. 3 Architecture of discovery module

Discovery algorithms

Let:
SW: a set of existing Web services in the directory.
SReq: the sub query.
SWF: selected Web service

Algorithm 1:Module Discovery
Input: SW, SReq
Output: SWF
Taux_sim←←←←0
 For each S in SW do
 If Similarité (SReq,S) >Taux_sim Then
 Taux_sim←←←←Similarité (SReq,S)
SWF ←←←← S
 End if
 End for
 Return (SWF)
End.

Algorithm 2: Semantic Similarity
Input : SW, SReq
Output :Taux_Sim
If EntReq = EntSW and SortReq = SortSW Then
Taux_Sim←←←← 3
Else if EntReq ⊃ EntSW and SortReq ⊂ SortSW Then

Taux_Sim←←←← 2
Else if SortReq ⊃ SortSWThen
Taux_Sim←←←← 1
Else

Taux_Sim←←←← 0
End if
If Pre-ConditionSW = vrai and EffetSW = vrai Then
Taux_Sim←←←← Taux_Sim+2
Else if Pre-ConditionSW = vrai or EffetSW = vrai Then

Taux_Sim←←←←Taux_Sim+ 1
End if
Return (Taux_Sim)
End.

4. Conclusion

In this paper, we proposed an approach for automated
Web services composition based on directed graphs theory.
In this approach, we proposed a formal method for
describing Web services, then selecting and ordering the
ones which satisfy the required inputs and outputs for the
compound Web service.

In future work, we will be working on a module for the
verification and validation of composition with respect to
user needs. We will also be working on a model of
semantic representation of web services in order to assess
the degree of similarity or the possibility of interaction
between Web services.

3 (Exact) if InReq = InSW
and OutReq = OutSW

2 (plug-in) if InReq ⊃ InSW
and OutReq ⊂ OutSW

1 (Subsumes) ifOutReq ⊃ OutSW

0 (Fail) if OutReq <> OutSW

2 if Valid(Pre-Condition)∧Valid(Effet)

1 if Valid(Pre-Condition)∨Valid(Effet)

0 if ¬Valid(Pre-Condition)∧¬Valid(Effet)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 355

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

References

[1] Hajar Elmaghraoui, Imane Zaoui, Dalila Chiadmi and Laila
Benhlima, “Graph based E-Government web service composition,”
in International Journal of Computer Science Issues (IJCSI), Vol. 8,
Issue 5, No 1, pp. 103–110, September 2011.

[2] Seyyed Vahid Hashemian and Farhad Mavaddat, “A Graph-Based
Approach to Web Services Composition,”In Proceedings of the
2005 Symposium on Applications and the Internet (SAINT’05).

[3] S. Justin Samuel and T. Sasipraba , “AN APPROACH FOR
GRAPH BASEDPLANNING AND QUALITY
DRIVENCOMPOSITION OF WEB SERVICES,” in Indian Journal
of Computer Science and Engineering (IJCSE), Vol. 2, No. 5, p672-
679, Oct-Nov 2011.

[4] Seog-Chan Oh, Dongwon Lee, and Soundar R.T. Kumara,
“Effective Web Services Composition in diverse and large-scale
services networks,”in IEEE TRANSACTIONS ON SERVICES
COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2008.

[5] Jiangang Ma and Yanchun Zhang , “Web Services Discovery Based
on Latent Semantic Approach,”in IEEE International Conference on
Web Services, 2008, pp. 740- 747.

[6] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic
Matching of Web Services Capabilities,” in International Semantic
Web Conference, 2002, pp. 333-347.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 356

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

