

Calculation in Parallel Sensitivity Function Using

Vector Presentation Algorithm (VPA)

Hamed Al Rjoub

Umm Al-Qura University

Computer Science Department, Makkah-Saudi Arabia

Abstract

This paper presents a new algorithm to

solve in parallel linear equations which

represent a mathematical model for a large

dimension control system and calculates in

parallel sensitivity function using n-1

processors where n is a number of linear

equation that can be represented as TX=W,

where T is a matrix of size nr× nc, X=T
-

1
W ,is a vector of unknowns, and ∂X/∂h=-

T
-1

(

(∂T/∂h)X-(∂W/∂h)) is a sensitivity

function with respect to variation of

system components h. The algorithm

(VPA) divides the mathematical input

model into two partitions and uses only (n-

1) processors to find out the vector of

unknowns for original system x=

(x1,x2,…,xn)
T
 and in parallel using (n-1)

processors to find the vector of unknowns

for similar system (x
|
)

t
=-d

t
T

-1
=

(x
|
1,x

|
2,…,x

|
n)

T
 where d is a constant

vector .Finally, the sensitivity function

(with respect to variation of any

component ∂X/∂hi = (xi × x
|
i) can be

calculated in parallel by multiplication

unknowns xi × x
|
i respectively, where

i=0,1,…n-1 .The running time t is reduced

by O(t/2) and the efficiency of (VPA) is

increased by 50-60% .
Key words: Parallel processing, Vector

Presentation, Sensitivity Function, Matrix,

Variation, Running Time, Mathematical

Model.

1. Introduction

The ability to develop mathematical

models in Biology, Physics, Geology and

other applied areas has pulled and has

been pushed by the advances in High

Performance Computing. Moreover, the

use of iterative methods has increased

substantially in many application areas in

the last years
[9, 5]

. One reason for that is

the advent of parallel Computing and its

impact in the overall performance of

various algorithms on numerical

analysis
[1]

.The use of clusters plays an

important role in such scenario as one of

the most effective manner to improve the

computational power without increasing

costs to prohibitive values. However, in

some cases, the solution of numerical

problems frequently presents accuracy

issues increasing the need for

computational power. Verified computing

provides an interval result that surely

contains the correct result
[6]

. Numerical

applications providing automatic result

verification may be useful in many fields

like simulation and modeling. Finding the

verified result often increases dramatically

the execution time
[2]

. However, in some

numerical problems, the accuracy is

mandatory. The requirements for

achieving this goal are: interval arithmetic,

high accuracy combined with well suitable

algorithms. The interval arithmetic defines

the operations for interval numbers, such

that the result is a new interval that

contains the set of all possible solutions.

The high accuracy arithmetic ensures that

the operation is performed without

rounding errors, and rounded only once in

the end of the computation. The

requirements for this arithmetic are: the

four basic operations with high accuracy,

optimal scalar product and direct rounding.

These arithmetics should be used in

appropriate algorithms to ensure that those

properties will be held. There is a

multitude of tools that provides verified

computing, among them an attractive

option is C-XSC (C for extended

Scientific Computing)
[3]

. CXSC is a free

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 499

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

and portable programming environment

for C and C++ programming Languages,

offering high accuracy and automatic

verified results. This programming Tool

allows the solution of several standard

problems, including many reliable

numerical parallel algorithms. The need to

solve systems of linear algebraic equations

arises frequently in scientific and

engineering applications, with the solution

being useful either by itself or as an

intermediate step in solving a larger

problem. In practical problems, the order,

n, may in many cases be large (100 – 1000)

or very large (many tens or hundreds of

thousands). The cost of a numerical

procedure is clearly an important

consideration — so too is the accuracy of

the method. Let us consider a system of

linear algebraic equations:

 Ax = b, …………………… ……. (1)

Where A = {aij }
 n

 i ,j=1 is a given matrix,

and b = (b1, . . . , bn)
t
 is a given vector. It

is well known (see, for example,
[4, 5]

) that

the solution, x, x Є R
n
, when it exists, can

be found using – direct methods, such as

Gaussian elimination, and LU and

Cholesky decomposition, taking O(n
3
)

time; – stationary iterative methods, such

as the Jacobi, Gauss- Seidel, and various

relaxation techniques, which reduce the

system to the form:

 x = Lx + f, ……………………… ... (2)

and then apply iterations as follows

x
(0)

 = f, x
(k)

 = Lx
(k−1)

 + f, , k = 1, 2, …... (3)

until desired accuracy is achieved this

takes O(n
2
) time per iteration. – Monte

Carlo methods (MC) use independent

random walks to give an Approximation to

the truncated sum (3)

 x
(l)

l

k

k fL
0

……………….…...(4)

taking time O(n) (to find n components of

the solution) per random step. Keeping

in mind that the convergence rate of MC

is O(N
−1/2

) , where N is the number

of random walks, millions of random

steps are typically needed to achieve

acceptable accuracy. The description

of the MC method used for linear systems

can be found in
[6], [7], [8]

. Different

improvements have been proposed, for

example, including sequential MC

techniques
[5]

, resolve-based MC methods
[1]

, etc., and have been successfully

implemented to reduce the number of

random steps. In this paper we study the

quasi-Monte Carlo (QMC) approach to

solve linear systems with an emphasis on

the parallel implementation of the

corresponding algorithm. The use of

quasirandom sequences improves the

accuracy of the method and preserves its

traditionally good parallel efficiency. The

paper is organized as follows: gives the

background - MC for linear systems and a

brief description of the quasirandom

sequences we use, describes parallel

strategies, presents some numerical results

and presents conclusions and ideas for

parallel processing.

2. RELATED WORK

Solution of large (dense or sparse) linear

systems is considered an important Part of

numerical analysis, and often requires a

large amount of scientific computations
[9,

10]
. More specifically, the most time

consuming operations in iterative methods

for solving linear equations are inner

products, vector successively updates,

matrix-vector products and also iterative

refinements
[11, 12]

. Tests pointed out that

the Newton-like iterative method, presents

a iterative refinement step and uses a

inverse matrix obtained through the

backward/forward substitution (after LU

decomposition), which are the most time

consuming operations. The parallel

solutions for linear solvers found in the

literature explore many aspects and

constraints related to the adaptation of the

numerical methods to high performance

environments
[3]

. However, the proposed

solutions are not often realistic, and mostly

deal with unsuitable models for high

performance environments of distributed

memory as clusters of workstations. In

many theoretical models (such as the

PRAM family) the transmission cost to

data exchange is not considered, but in

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 500

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

distributed memory architectures this issue

is crucial to gain performance.

Nevertheless, the difficulty in parallelizing

some numerical methods, mainly iterative

schemes, in an environment of distributed

memory, is the interdependency among

data (e.g. the LU decomposition) and the

consequent overhead needed to perform

inter process Communication (IPC)
[3]

.

Due to this, in a first approach some

modifications were done in the backward/

forward substitution procedure
 [7]

 to allow

less Communications and independent

computations over the matrix. Another

possible optimization when implementing

for such parallel environments is to reduce

communication cost through the use of

load balance techniques, as we can see in

some recent parallel solutions for linear

systems solvers
[8]

. Anyway, their focus

was toward the issues related to MPI

implementation through a theoretical

performance analysis. Few works were

found related to numerical analysis of

parallel implementations of iterative

solvers, mainly using MPI. Moreover,

some interesting papers found present

algorithm which allow the use of different

parallel environments
[9]

. However, those

papers (like others) do not deal with

verified computation. We also found some

works which focus on verified computing
[5]

 and both verified computing and

parallel implementations, but this thesis

implement other numerical problems or

use a different Parallel approach. Another

concern is the implementation of self

verified numerical solvers which allow

high accuracy operations. The researches

already made, show that the execution

time of the algorithms using this kind of

routines is much larger than the execution

time of the algorithms which do not use it
[11, 13]

. The C-XSC library was developed

to provide functionality and portability,

but early researches indicate that more

optimizations may be done to provide

more efficiency, due to additional

computational cost in sequential, and

consequently for other environments as

Itanium clusters. Some experiments were

conducted over Intel clusters to parallelize

self-verified numerical solvers that use

Newton-based techniques but there are

more tests that may be done
[2,14]

.

Sensitivity analysis defines the relative

sensitivity function for time

independent parameters as:

 Si,j = ∂Xi/∂hj ,……………………(5)

Where Xi represents the i-th state

variable, hj is the element of the

parameter vector. Hence the sensitivity

is given by the so-called sensitivity

matrix S, containing the sensitivity

coefficient Si,j ,equation 5 .The direct

approach of numerically differentiating

by means of numerical field

calculation software will lead to

diverse difficulties
[1,3]

. Therefore,

some ideas to overcome those

problems aim at performing

differentiations necessary for

sensitivity analysis prior to any

numerical treatment. Further

calculations are then carried out with a

commercially available field

calculation program. Such approach

has already been practical successfully
[7]

. As it considered that the linear system

(1) where A is a tridiagonal matrix of

order n of the form shown in (6),

x=(x0,x1,…..,xn-1)
T
 is the vector of

unknowns , and d=(d0,d1,…,dn-1)
T
 is a

vector of dimension n.

 b0 c0
 a1 b1 c1
 a2 b2 c2
A= … (6)
 an-1 bn-1 cn-1
 an-1 bn-1

In the LU factorization A, is decomposed

into a product of two bidiagonal matrices

L and U as A=LU, where

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 501

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 u0 c0
 u1 c1
 . .
U= . .
 un-2 cn-2
 un-1

The LU algorithm to solve the linear

system (1) then proceeds to solve for y

from Ly=d and then finds vector X in

parallel:

Step 1. Compute the decomposition of A

given by

 u0 = b0,

 hi=ai /ui-1, 1< = i < = n-1,

 ui= bi – hi * ci-1, 1< = i < = n-1,

Step 2. Solve for y from Ly =d using

 y0 = d0,

 yi = di – hi * y i-1 , 1< = i < = n-1.

Step 3. Compute X by solving ux = y

using

 x n-1 = yn-1 / un-1 ,

 x i = (yi – ci * xi+1)/ui , 0<=i <= n-2.

First we consider the parallelization of the

LU decomposition part of the LU

algorithm to solve (1), i.e. Step 1 above.

Once the diagonal entries u0,u1,…,un of U

have been calculated, h1,h2,…,hn-1can

subsequently be computed in a single

parallel step with n-1 processors. Thus it

concentrates on the computation of the ui's

3. Parallel Algorithm to Calculate

Sensitivity Function Using VP

Algorithm

The application of high performance

programming techniques for solution

of Electric Power Systems problems

has been increasing. Particularly,

parallel processing present's very

remising perspectives when heavy

amputation is required. It may consist

in a feasible alternative for solution of

several large-scale problems, which are

not well conditioned for a sequential

approach. Despite its potentiality in

engineering software development,

parallel algorithm philosophy is quite

different from that adopted by

sequential programs. This work

presents investigations regarding the

application of parallel processing to

calculate sensitivity function for a

large dimension control system which

we can write its mathematical model as

a system of linear equations.

3.1 VPA Description

The main goal of VP algorithm is

resolving in parallel linear equations

which represents as AX=W ,and calculate

sensitivity function of electric power

systems to obtain the result with respect

to variation any component of output

function F with respect to any component

of electric power systems h (∂f/∂h) . VP
algorithm contains the next stages:

distribution data(rows matrix A and

components vector W) to the p processors

where p= n (n is the number of rows ,m is

the number of columns) which represents

the mathematical model of electric system,

and calculate in parallel unknown vector

for origin system X=(x1,x2,…,xn)
T
.

Distribution data (at the same time) to p

processors, and calculate unknown vector

for similar system (x
|
)

t
=-d

t
T

-1
=

(x
|
1,x

|
2,…,x

|
n)

T
 . Multiplication operation

for unknown xi × x
|
i respectively using n-1

processors to find in parallel sensitivity

function for a large dimension system.

 1
 h1 1
 .. 1
L=

hn-

2 1
 hn-1 1

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 502

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3.2 Distribution data stage

 In this stage, we defined vectors

v1
0
,v2

0
…vn

0
. Figure 1, illustrates this stage.

v1

0 1 0 ….. 0
v2

0 0 1 ….. 0
vn

0 0 0 ….. 1

 Fig. 1: defined vectors

 v1
0
,v2

0
…vn

0
.

Given A1 first row matrix A, A2 second

row matrix A, and An last row matrix A

with unknown vector w. Figure. 2,

illustrates the mentioned above.

A1 a11 a12 ….. w1

A2 a21 a22 ….. w2

 …

An Am1 Am2 ….. wm

Fig. 2: Distribution rows stage matrix A with

unknown vector w .

3.3 Multiplication and division Stages

In this stage we find unknown:

C2
1
 = (A

1
* v2

0
) / (A

1
* v1

0
) and in parallel

we calculate variable C until Cm :

 C
n-1

m

 = An-1 * V

1
m/ An-1 * V

1
m-1

And in parallel we find vector V2
1
…Vm

1
:

V2
1
=V2

0
 – C2

1
 * V1

0

 …….

Vm
1
 = vm

0
 – vm

1
 * v1

0

Finally we calculate the equations:

Cm
n-1

 = An-1 * Vm
1
 / An-1 *Vn-1

1
,

and find unknown x1,x2..xn for original

system.

Vm
n-1

=Vm
1
 – Cm

n-1
 * Vn-1

1
.

Vm
n-1

 = (x1,x2,…,xn)
T
.

3.4 Distribution data for similar

system

 Distribute data to p= n-1 processors,

and calculate unknown vector for similar

system (x
|
)

t
=-d

t
T

-1
= (x

|
1,x

|
2,…,x

|
n), (we

do that at the same time when we

calculated unknown vector for original

system X= (x1,x2,…,xn)
 T

 as mentioned

above).

3.5 Calculate in parallel sensitivity

function algorithm

Step 1.Compute unknown vector for

similar system X
|
 = (x

|
1,x

|
2,…,x

|
n)

using next equation :

 (x
|
)

t
=-d

t
T

-1
………………..(7)

Step 2.multiplicate equation (6) from the

right side by matrix T and

transpose left and right side to

obtain a system with respect to X
|
:

 T
t
 x

|
 =d…………………….…..(8)

Step 3 . Calculate:

 ∂X/∂h=-T
-1

(∂T/∂h)X-(∂W/∂h)..(9)

Step 4. Find sensitivity Function f with

respect to h:

 ∂f/∂h=-d
t
 T

-1
(∂T/∂h X- ∂W/∂h).. (10)

Step 5. Put the expression (7) in (10)

then:

 ∂f/∂h=(x
|
)

t
∂T/∂hX-(x

|
)

t
 W/∂h…..(11)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 503

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

To implement the expression (11) we

just need to resolve in parallel the tow

linear systems (1) and (8) by using VP

algorithm.

4. A numerical Example

Figure. 3, illustrates the electric circuit,

in which we want to calculate in

parallel the sensitivity function of the

output potential vout with respect to

resistance g2, condensers c1, and c3,

respectively, the mathematical model

for this circuit is :

 Using VP algorithm in parallel, we

find unknowns vector X for original

system:

x =
v1

=
(3 - j) /5

v2 (2+j) /5

At the same time we find unknowns

vector X| for similar system :

x| =
v|

1
=

-(2+j)/5
v|

2 (-3+j)/5

 Finally we just do the multiplication

operation to find the sensitivity

function as follows:

∂ vout /∂ C1 = S v|
1 v1= 1-j7/25,

∂ vout /∂ G2 = (v|
1 - v|

2)(v1- v2) = -3-j4/ 25,

∂ vout /∂ C3 = S v|

2 v2 =1-j7/25.

Fig. 3: electric circuit to calculate sensitivity

function for vout with respect to

variation parameters (C1, G2, C3).

5. RESULTS

To calculate the accurate time and

performance we repeat the process m

times then we divide the measured time on

m for both single and multi-thread

versions, for single thread we start basic

multiplication division and subtraction

inside the Matrix until we get the upper of

that matrix, for multi-threading we use R-1

threads where R is the count of desired

matrix rows, we measured the longest

thread which is the last one in this present

case, then every thread take a part of the

matrix basic operations and we do that in

parallel for origin and similar systems.

Table 1 shows the time results done on

Pentium Due 1.8 GHZ processor with 1

GB Ram and shows the time when used

one processor (single thread) and the time

when used a multi processors in parallel

(multi thread) to calculate the unknown

vector. From the table 1, figure 4 and 5

show that time and performance is

increased with respect to the size of

matrix, which represents the linear system.

Table 1: Comparison between single and

multithread

performance
Multi

thread,
MS

Single
thread,

MS

M
a

trix

D
im

e
n

s
io

n

1.25 0.000002 0.000005 1x2

6.933 0.00001 0.000105 2x3

13.741 0.000025 0.000325 3x4

29.83 0.000033 0.000809 4x5

53.267 0.000027 0.001718 5x6

G1+G2+SC1+
+SC2

G2 - SC2

X

V1 1

G2 - SC2
G2+G3+SC2+

V2
=

0 +SC3

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 504

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig 4: Time comparison between single and

parallel to calculate unknown's vector

Fig 5: System performance with respect to

matrix dimension.

6. CONCLUSION

One of the most important fields in

sciences and techniques is to calculate a

sensitivity function for large dimension

control systems, this research

demonstrates new parallel algorithm to do

that, the idea of this algorithm is to

distribute the coefficient mathematical

model studies system to a number of

processors and use the parallelism to

reduce the running time for solving linear

equations of a big size by using original

and similar systems which working in

parallel, and that is confirmed in the

description of VP algorithm , The running

time is reduced by O(t/2) and, The

efficiency of VP algorithm is increased

by 50-60%.

 REFERENCES

[1] Duff, I.S. and H.A. van de Vorst,

1999.Developments and Trends in

parallel Solution of Linear Systems.

Technical Report RAL TR-1999-027.

 [2] Ogita, T, S. M. Rump, and S.

Oishi, 2005.Accurate Sum and Dot

Product.SIAM Journal on Scientific

Computing, 26(6):1955-1988.

[3] Klatte, R., U.Kulisch, and A.

Wiethoff.1993.C-XSC-A C++ Class

Library for Extended Scientific

Computing.Spriger-Verlag.

 [4] Duff, I.S., 1999.The Impact of

High Performance Computing in the

Solution of Linear Systems: Trend

and Proplems.Technical Report RAL

TR-1999-072.

[5] Facius, A., 2000.Iterative solution

of linear systems with improved

arithmetic and result verification

.PhD thesis, University of Karlsruhe.

[6] Bohlender, G., 1990.What Do

Need Beyond IEEE Arithmetic?

Computer Arithmetic and Self-

validation Numerical

Methods.Academic Press

Professional,Inc.,San Diego,CA.

[7]Eisentat,S.C.,M.T.Heath,1988.Mo

dified cyclic algorithm for solving

triangular system on distributed-

memory multiprocessor.SIAM

J.Stat.Comput.,9(3):589-600.

[8]Holbig,c.a.,P.S.Morandi,2004.Self

verifying Solvers for Linear Systems

of Equations in C-XSC.In Proceeding

of Parallel and Distributed

Programming (PPAM),volume

3019,pages 292-297.

[9] Cunha, R.D. and T.Hopkins,

1991.The parallel solution of

triangular systems of linear equations.

Technical Report 86*, University of

kent, Cantenbary, UK.

[10] Saad, Y., 1995.Iterative Methods

for Sparse Linear

Systems.Boston:PWS Publishing

Company.

[11] Feng, T., 2002.A Message-

Passing Distributed-Memory Newton-

GMRES Parallel Power Flow

Algorithm. Volume 3, pages 1477-

1482.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 505

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[12] Heath, J.W., 1993.Parallel

Numerical Linear Algebra.Technical

Report UCB CSD-92-703.

[13] Hedayat, G.A., 1993.Numerical

Linear Algebra and Computer

Architecture. Technical Report

UMCS-93-1-5.

[14] Lo, C.G. and D.W.Cheunge,

1997.Efficient Parallel Algorithm for

Dense Matrix LU Decomposition

with Pivoting on

Hypercubes.Computer &

Mathematics with Applications,

33(8):39-50.

Hamed Khaled Alrjoub
Alrjoub is an assistant professor in
computer science department,
deanship of preparatory year, Um
Alqura University/ Saudi Arabia. He was
a head of computer science
department, Irbid national university /
Jordan. He got a PhD from international
civil aviation university, Kiev / Ukraine,
his area of interest is Parallel
processing, E-commerce, e-
government, system analysis,
database, data mining, machine
learning.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 506

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

