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Abstract 
 

This paper presents a new algorithm to 

solve in parallel linear equations which 

represent a mathematical model for a large 

dimension control system and calculates in 

parallel sensitivity function using n-1 

processors where n is a number of linear 

equation that can be represented as TX=W, 

where T is a matrix of size   nr× nc, X=T
-

1
W ,is a vector of unknowns, and ∂X/∂h=-

T
-1

(
  

(∂T/∂h)X-(∂W/∂h)) is a sensitivity 

function with respect to variation of 

system components h. The algorithm 

(VPA) divides the mathematical input 

model into two partitions and uses only (n-

1) processors to   find out the vector of 

unknowns for   original    system  x= 

(x1,x2,…,xn)
T
 and in parallel using (n-1) 

processors to find the vector of unknowns 

for similar system (x
|
)

t
=-d

t
T

-1
= 

(x
|
1,x

|
2,…,x

|
n)

T
 where d is a constant 

vector .Finally, the sensitivity function  

(with respect to variation of any 

component  ∂X/∂hi  = ( xi × x
|
i ) can be 

calculated in parallel by multiplication 

unknowns xi × x
|
i  respectively, where 

i=0,1,…n-1  .The running time t is reduced 

by O(t/2) and the efficiency of  (VPA ) is 

increased by 50-60% . 
Key words: Parallel processing, Vector 

Presentation, Sensitivity Function, Matrix, 

Variation, Running Time, Mathematical 

Model. 

 
1. Introduction 
 

The ability to develop mathematical 

models in Biology, Physics, Geology and 

other applied areas has pulled and has 

been pushed by the advances in High 

Performance Computing. Moreover, the 

use of iterative methods has increased 

substantially in many application areas in  

 

 

the last years 
[9, 5]

. One reason for that is 

the advent of parallel Computing and its 

impact in the overall performance of 

various algorithms on numerical 

analysis
[1]

.The use of clusters plays an 

important role in such scenario as one of 

the most effective manner to improve the 

computational power without increasing 

costs to prohibitive values. However, in 

some cases, the solution of numerical 

problems frequently presents accuracy 

issues increasing the need for 

computational power. Verified computing 

provides an interval result that surely 

contains the correct result 
[6]

. Numerical 

applications providing automatic result 

verification may be useful in many fields 

like simulation and modeling. Finding the 

verified result often increases dramatically 

the execution time 
[2]

. However, in some 

numerical problems, the accuracy is 

mandatory. The requirements for 

achieving this goal are: interval arithmetic, 

high accuracy combined with well suitable 

algorithms. The interval arithmetic defines 

the operations for interval numbers, such 

that the result is a new interval that 

contains the set of all possible solutions. 

The high accuracy arithmetic ensures that 

the operation is performed without 

rounding errors, and rounded only once in 

the end of the computation. The 

requirements for this arithmetic are: the 

four basic operations with high accuracy, 

optimal scalar product and direct rounding. 

These arithmetics should be used in 

appropriate algorithms to ensure that those 

properties will be held. There is a 

multitude of tools that provides verified 

computing, among them an attractive 

option is C-XSC (C for extended 

Scientific Computing) 
[3]

. CXSC is a free 
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and portable programming environment 

for C and C++ programming Languages, 

offering high accuracy and automatic 

verified results. This programming Tool 

allows the solution of several standard 

problems, including many reliable 

numerical parallel algorithms. The need to 

solve systems of linear algebraic equations 

arises frequently in scientific and 

engineering applications, with the solution 

being useful either by itself or as an 

intermediate step in solving a larger 

problem. In practical problems, the order, 

n, may in many cases be large (100 – 1000) 

or very large (many tens or hundreds of 

thousands). The cost of a numerical 

procedure is clearly an important 

consideration — so too is the accuracy of 

the method. Let us consider a system of 

linear algebraic equations: 

 

   Ax = b, ……………………  …….  (1) 

 

Where A = {aij }
 n

  i  ,j=1 is a given matrix, 

and b = (b1, . . . , bn)
t
 is a given vector. It 

is well known (see, for example, 
[4, 5]

) that 

the solution, x, x Є R
n
, when it exists, can 

be found using – direct methods, such as 

Gaussian elimination, and LU and 

Cholesky decomposition, taking O(n
3
) 

time; – stationary iterative methods, such 

as the Jacobi, Gauss- Seidel,  and   various  

relaxation techniques, which reduce the 

system to the form: 

 

 x = Lx + f, ……………………… ...  (2) 

 

and then apply iterations as follows 

 

x
(0)

 = f, x
(k)

 = Lx
(k−1)

 + f, , k = 1, 2, …... (3) 

 

until desired accuracy is achieved this 

takes O(n
2
) time per iteration. – Monte 

Carlo methods (MC) use independent 

random walks to give an Approximation to 

the truncated sum (3) 

 x
(l)

 



l

k

k fL
0

……………….…...(4) 

 

taking time O(n) (to find n components of 

the solution) per random step. Keeping    

in mind  that  the  convergence rate of MC 

is O( N 
−1/2

 ) ,   where N is the    number   

of random walks, millions  of  random  

steps are typically needed to achieve 

acceptable accuracy.  The    description   

of the MC method used for linear systems 

can be found in 
[6], [7], [8]

. Different 

improvements have been proposed, for 

example, including sequential MC 

techniques 
[5]

, resolve-based MC methods 
[1]

, etc., and have been successfully 

implemented to reduce the number of 

random steps. In this paper we study the 

quasi-Monte Carlo (QMC) approach to 

solve linear systems with an emphasis on 

the parallel implementation of the 

corresponding algorithm. The use of 

quasirandom sequences improves the 

accuracy of the method and preserves its 

traditionally good parallel efficiency. The 

paper is organized as follows: gives the 

background - MC for linear systems and a 

brief description of the quasirandom 

sequences we use, describes parallel 

strategies, presents some numerical results 

and presents conclusions and ideas for 

parallel processing. 

  

2.  RELATED WORK 
 

Solution of large (dense or sparse) linear 

systems is considered an important Part of 

numerical analysis, and often requires a 

large amount of scientific computations 
[9, 

10]
. More specifically, the most time 

consuming operations in iterative methods 

for solving linear equations are inner 

products, vector successively updates, 

matrix-vector products and also iterative 

refinements 
[11, 12]

. Tests pointed out that 

the Newton-like iterative method, presents 

a iterative refinement step and uses a 

inverse matrix obtained through the 

backward/forward substitution (after LU 

decomposition), which are the most time 

consuming operations. The parallel 

solutions for linear solvers found in the 

literature explore many aspects and 

constraints related to the adaptation of the 

numerical methods to high performance 

environments 
[3]

. However, the proposed 

solutions are not often realistic, and mostly 

deal with unsuitable models for high 

performance environments of distributed 

memory as clusters of workstations. In 

many theoretical models (such as the 

PRAM family) the transmission cost to 

data exchange is not considered, but in 
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distributed memory architectures this issue 

is crucial to gain performance. 

Nevertheless, the difficulty in parallelizing 

some numerical methods, mainly iterative 

schemes, in an environment of distributed 

memory, is the interdependency among 

data (e.g. the LU decomposition) and the 

consequent overhead needed to perform 

inter process Communication (IPC) 
[3]

. 

Due to this, in a first approach some 

modifications were done in the backward/ 

forward substitution procedure
 [7]

 to allow 

less Communications and independent 

computations over the matrix. Another 

possible optimization when implementing 

for such parallel environments is to reduce 

communication cost through the use of 

load balance techniques, as we can see in 

some recent parallel solutions for linear 

systems solvers 
[8]

. Anyway, their focus 

was toward the issues related to MPI 

implementation through a theoretical 

performance analysis. Few works were 

found related to numerical analysis of 

parallel implementations of iterative 

solvers, mainly using MPI. Moreover, 

some interesting papers found present 

algorithm which allow the use of different 

parallel environments 
[9]

. However, those 

papers (like others) do not deal with 

verified computation. We also found some 

works which focus on verified computing 
[5]

 and both verified computing and 

parallel implementations, but this thesis 

implement other numerical problems or 

use a different Parallel approach. Another 

concern is the implementation of self 

verified numerical solvers which allow 

high accuracy operations. The researches 

already made, show that the execution 

time of the algorithms using this kind of 

routines is much larger than the execution 

time of the algorithms which do not use it 
[11, 13]

. The C-XSC library was developed 

to provide functionality and portability, 

but early researches indicate that more 

optimizations may be done to provide 

more efficiency, due to additional 

computational cost in sequential, and 

consequently for other environments as 

Itanium clusters. Some experiments were 

conducted over Intel clusters to parallelize 

self-verified numerical solvers that use 

Newton-based techniques but there are 

more tests that may be done 
[2,14]

.  

Sensitivity analysis defines the relative 

sensitivity function for time 

independent parameters as: 

 

     Si,j = ∂Xi/∂hj ,……………………(5)   

 

Where Xi represents the i-th state 

variable, hj is the element of the 

parameter vector. Hence the sensitivity 

is given by the so-called sensitivity 

matrix S, containing the sensitivity 

coefficient Si,j ,equation 5 .The direct 

approach of numerically differentiating 

by means of numerical field 

calculation software will lead to 

diverse difficulties 
[1,3]

. Therefore, 

some ideas to overcome those 

problems aim at performing 

differentiations necessary for 

sensitivity analysis prior to any 

numerical treatment. Further 

calculations are then carried out with a 

commercially available field 

calculation program. Such approach 

has already been practical successfully 
[7]

.  As it considered that the linear system 

(1) where A is a tridiagonal matrix of 

order n of the form shown in (6), 

x=(x0,x1,…..,xn-1)
T
 is the       vector        of    

unknowns  ,    and d=(d0,d1,…,dn-1)
T
 is a 

vector of dimension n. 

 

 

 
       
 
     

 
  

 b0 c0     
 a1 b1 c1    
  a2 b2 c2   
A=   .. ..  … (6) 
   an-1 bn-1 cn-1  
    an-1 bn-1  
       

       
In the LU factorization A, is decomposed 

into a product of two bidiagonal matrices  

L and U as A=LU, where  
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 u0 c0     
  u1 c1    
      . .   
U=         .               .   
      un-2 cn-2  
     un-1  
       

 

 

 

The LU algorithm to solve the linear 

system (1) then proceeds to solve for y 

from Ly=d and then finds vector X in 

parallel:  

Step 1. Compute the decomposition of A 

given by  

 

   u0 = b0, 

   hi=ai /ui-1,  1< = i < = n-1, 

   ui= bi – hi * ci-1, 1< = i < = n-1, 

 

Step 2.  Solve for y from   Ly =d     using  

 

   y0 = d0, 

   yi = di – hi * y i-1 ,  1< = i < = n-1. 

 

Step 3. Compute X by solving ux = y 

using  

 

   x n-1 = yn-1 / un-1 , 

   x i = ( yi – ci * xi+1 )/ui , 0<=i <= n-2. 

 

First we consider the parallelization of the 

LU decomposition part of the LU 

algorithm to solve (1), i.e. Step 1 above. 

Once the diagonal entries u0,u1,…,un of U  

have been calculated, h1,h2,…,hn-1can 

subsequently be computed in a single 

parallel step with n-1 processors. Thus it 

concentrates on the computation of the ui's  

 

3. Parallel Algorithm to Calculate 

Sensitivity Function Using VP 

Algorithm 
 

The application of high performance 

programming techniques for solution 

of Electric Power Systems problems 

has been increasing. Particularly, 

parallel processing present's very 

remising perspectives when heavy 

amputation is required. It may consist 

in a feasible alternative for solution of 

several large-scale problems, which are 

not well conditioned for a sequential 

approach. Despite its potentiality in 

engineering software development, 

parallel algorithm philosophy is quite 

different from that adopted by 

sequential programs. This work 

presents investigations regarding the 

application of parallel processing to 

calculate sensitivity function for a 

large dimension control system which 

we can write its mathematical model as 

a system of linear equations.  
 

3.1 VPA Description 
 
The main goal of VP algorithm is 

resolving  in parallel linear equations 

which represents as AX=W ,and calculate 

sensitivity function of electric power 

systems to obtain the result with respect 

to variation any component of output 

function F with respect to any component 

of electric power systems h (∂f/∂h) . VP 
algorithm contains the next stages: 

distribution data( rows matrix A and 

components vector W ) to the p processors 

where p= n (n is the number of rows ,m is 

the number of columns) which represents 

the mathematical model of electric system, 

and calculate in parallel unknown vector 

for origin system X=(x1,x2,…,xn)
T
. 

Distribution data (at the same time) to p 

processors, and calculate unknown vector 

for similar system    (x
|
)

t
=-d

t
T

-1
= 

(x
|
1,x

|
2,…,x

|
n)

T
 . Multiplication operation 

for unknown  xi × x
|
i respectively using n-1 

processors to find in parallel sensitivity 

function for a large dimension system. 

 

 

 
     

 
  

 1      
 h1 1     
  .. 1    
L=   .. ..   

   
hn-

2 1   
    hn-1 1  
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3.2 Distribution data stage 
 

 In this stage, we defined vectors 

v1
0
,v2

0
…vn

0
. Figure 1, illustrates this stage. 

 

 
v1

0 1 0 ….. 0 
v2

0 0 1 ….. 0 
vn

0 0 0 ….. 1 
     

             

                   Fig. 1: defined vectors 

                          v1
0
,v2

0
…vn

0
. 

 

Given A1 first row matrix A, A2 second 

row matrix A, and An last row matrix A 

with unknown vector w. Figure. 2, 

illustrates the mentioned above. 

                                                                        

 
 
A1 a11 a12 ….. w1 
 

 
 
A2 a21 a22 ….. w2 
 

                    … 
 
An Am1 Am2 ….. wm 
 

 
 

Fig. 2: Distribution rows stage matrix A with   

unknown vector w . 

 

3.3 Multiplication and division Stages 

  

In this stage we find unknown: 

C2
1
 = (A

1
* v2

0 
) / (A

1
* v1

0 
) and in parallel 

we calculate variable C until Cm  : 

 

 C
n-1

m
 
 = An-1 * V

1
m/ An-1 * V

1
m-1 

 

And in parallel we find vector V2
1
…Vm

1
: 

 

V2
1
=V2

0
 – C2

1
 * V1

0
 

 

    ……. 

 

Vm
1
 = vm

0
 – vm

1
 * v1

0
 

 

Finally we calculate the equations: 

 

Cm
n-1

 = An-1 * Vm
1
 / An-1 *Vn-1

1
, 

and find unknown x1,x2..xn for original 

system. 

Vm
n-1

=Vm
1
 – Cm

n-1
 * Vn-1

1
. 

 

 

Vm
n-1

    =  (x1,x2,…,xn)
T
. 

 
 

3.4 Distribution data for similar 

system 
 

 Distribute data to        p= n-1 processors, 

and calculate unknown vector for similar 

system    (x
|
)

t
=-d

t
T

-1
= (x

|
1,x

|
2,…,x

|
n), (we  

do that  at the same time  when we 

calculated unknown vector for original 

system X= (x1,x2,…,xn)
 T

  as mentioned 

above ). 

 

3.5 Calculate in parallel sensitivity 

function algorithm 
 

Step 1.Compute unknown vector for 

similar system X
|
 = (x

|
1,x

|
2,…,x

|
n) 

using next equation  : 

 

                   (x
|
)

t
=-d

t
T

-1
………………..(7) 

 

Step 2.multiplicate equation (6) from the 

right side by matrix T and 

transpose left and right side to 

obtain a system with respect to X
|
: 

 

            T 
t
 x

|
 =d…………………….…..(8) 

 

 

Step 3 .  Calculate: 

 

 

             ∂X/∂h=-T
-1  

(∂T/∂h)X-(∂W/∂h)..(9) 

 

 

 

Step 4. Find sensitivity     Function f with 

respect to h: 

 

             ∂f/∂h=-d
t
 T

-1 
(∂T/∂h X- ∂W/∂h).. (10) 

 

 

Step  5.  Put the expression (7) in (10) 

then: 

 

             ∂f/∂h=(x
|
)

t
∂T/∂hX-(x

|
)

t
 W/∂h…..(11) 
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To implement the expression (11) we 

just need to resolve in parallel the tow 

linear systems (1) and (8) by using VP 

algorithm. 

 

4. A numerical Example 
 

Figure. 3, illustrates the electric circuit, 

in which we want to calculate in 

parallel the sensitivity function of the 

output potential vout with respect to 

resistance g2, condensers c1, and c3, 

respectively, the mathematical model 

for this circuit is : 

 

 

 

                                                    

 Using VP algorithm in parallel, we 

find unknowns vector X for original 

system: 

 

 

x = 
v1 

= 
(3 - j) /5   

v2 ( 2+j ) /5   
 

At the same time we find unknowns 

vector X|  for similar system : 

 

 

x| = 
v|

1 
= 

-(2+j)/5   
v|

2 (-3+j)/5   
 

 

 Finally we just do the multiplication 

operation to find the sensitivity 

function as follows:  

 

∂ vout /∂ C1 = S v|
1 v1= 1-j7/25, 

 

∂ vout /∂ G2 = (v|
1 - v|

2)( v1- v2) = -3-j4/ 25, 
 
 
∂ vout /∂ C3 = S v|

2 v2 =1-j7/25. 

 
 

Fig. 3: electric circuit to calculate sensitivity 

function for vout with respect to 

variation parameters (C1, G2, C3). 

 

5. RESULTS 
 

To calculate the accurate time and 

performance we repeat the process m 

times then we divide the measured time on 

m for both single and multi-thread 

versions, for single thread we start basic 

multiplication division and subtraction 

inside the Matrix until we get the upper of 

that matrix, for multi-threading we use R-1 

threads where R is the count of desired 

matrix rows, we measured the longest 

thread which is the last one in this present 

case, then every thread take a part of the 

matrix basic operations and we do that in 

parallel for origin and similar systems. 

Table 1 shows the time results done on 

Pentium Due 1.8 GHZ processor with 1 

GB Ram and shows the time when used 

one processor (single thread) and the time 

when used a multi processors in parallel 

(multi thread) to calculate the unknown 

vector. From the table 1, figure 4 and 5 

show that time and performance is 

increased with respect to the size of 

matrix, which represents the linear system. 

 
Table 1: Comparison between single and 

multithread 

 

performance  
Multi 

thread, 
MS  

Single 
thread, 

MS 

M
a

trix
 

D
im

e
n

s
io

n
 

1.25 0.000002 0.000005 1x2 

6.933 0.00001 0.000105 2x3 

13.741 0.000025 0.000325 3x4 

29.83 0.000033 0.000809 4x5 

53.267 0.000027 0.001718 5x6 

G1+G2+SC1+         
+SC2 

G2 - SC2 

X             

V1  1 

G2 - SC2 
G2+G3+SC2+ 

V2 
=  

0 +SC3  
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Fig 4: Time comparison between single and 

parallel to calculate unknown's vector 

 

 
 

Fig 5: System performance with respect to 

matrix dimension. 

  

6. CONCLUSION 
 

One of the most important fields in 

sciences and techniques is to calculate a 

sensitivity function for large dimension 

control systems, this research 

demonstrates new parallel algorithm to do 

that, the idea of this algorithm is to 

distribute the coefficient mathematical 

model studies system to a number of 

processors and use the parallelism to 

reduce the running time for solving linear 

equations of a big size by using original 

and similar systems which working in 

parallel, and  that is confirmed in the 

description of VP algorithm  , The running 

time is reduced by O(t/2) and, The 

efficiency of  VP algorithm is increased 

by 50-60%. 

      REFERENCES 
 

[1]  Duff, I.S. and H.A. van de Vorst, 

1999.Developments and Trends in 

parallel Solution of Linear Systems. 

Technical Report RAL TR-1999-027.  

       [2] Ogita, T, S. M. Rump, and S.     

Oishi, 2005.Accurate Sum and Dot 

Product.SIAM Journal on Scientific 

Computing, 26(6):1955-1988. 

[3] Klatte, R., U.Kulisch, and A. 

Wiethoff.1993.C-XSC-A C++ Class 

Library for Extended Scientific 

Computing.Spriger-Verlag. 

       [4] Duff, I.S., 1999.The Impact of 

High Performance Computing in the 

Solution of Linear Systems: Trend 

and Proplems.Technical Report RAL 

TR-1999-072. 

[5] Facius, A., 2000.Iterative solution 

of linear systems with improved 

arithmetic and result verification 

.PhD thesis, University of Karlsruhe. 

[6] Bohlender, G., 1990.What Do 

Need Beyond IEEE Arithmetic? 

Computer Arithmetic and Self-

validation Numerical 

Methods.Academic Press 

Professional,Inc.,San Diego,CA. 

[7]Eisentat,S.C.,M.T.Heath,1988.Mo

dified cyclic algorithm for solving 

triangular system on distributed-

memory multiprocessor.SIAM 

J.Stat.Comput.,9(3):589-600. 

[8]Holbig,c.a.,P.S.Morandi,2004.Self

verifying Solvers for Linear Systems 

of Equations in C-XSC.In Proceeding 

of Parallel and Distributed 

Programming (PPAM),volume 

3019,pages 292-297. 

[9] Cunha, R.D. and T.Hopkins, 

1991.The parallel solution of 

triangular systems of linear equations. 

Technical Report 86*, University of 

kent, Cantenbary, UK. 

[10] Saad, Y., 1995.Iterative Methods 

for Sparse Linear 

Systems.Boston:PWS Publishing 

Company. 

[11] Feng, T., 2002.A Message-

Passing Distributed-Memory Newton-

GMRES Parallel Power Flow 

Algorithm. Volume 3, pages 1477-

1482. 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013 
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 
www.IJCSI.org 505

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

[12] Heath, J.W., 1993.Parallel 

Numerical Linear Algebra.Technical 

Report UCB CSD-92-703. 

[13]  Hedayat, G.A., 1993.Numerical 

Linear Algebra and Computer 

Architecture.    Technical Report 

UMCS-93-1-5. 

[14] Lo, C.G. and D.W.Cheunge, 

1997.Efficient Parallel Algorithm for 

Dense Matrix LU Decomposition 

with Pivoting on 

Hypercubes.Computer & 

Mathematics with Applications, 

33(8):39-50.  

Hamed Khaled Alrjoub 
Alrjoub is an assistant professor in 
computer science department, 
deanship of preparatory year, Um 
Alqura University/ Saudi Arabia. He was 
a head of computer science 
department, Irbid national university / 
Jordan. He got a PhD from international 
civil aviation university, Kiev / Ukraine, 
his area of interest is Parallel 
processing, E-commerce, e-
government, system analysis, 
database, data mining, machine 
learning.  

  

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013 
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 
www.IJCSI.org 506

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.




