
*
 Corresponding author

Survey on Services Composition Synthesis Model

Ibrahima Kalil Toure1,*, Yang Yang2 and Shariq Hussain3

 1,2,3 School of Computer and Communication Engineering, University of Science and Technology Beijing

Beijing, 100083, China

Abstract
Current web services development tools are more sophisticated

though ease of use, which leverage the creation of more web

services thereof. This is the fact that, web services are being

created and updated frequently, this multiplication of web

services cannot be easily controlled by human being because it is

almost impossible to analyze them and generate the composition

plan. Composition of web services is the issue of synthesizing a

new composite web service, obtained by combining a set of

available (component) services, when a client request cannot be

satisfied by available web services. To address this issue, three

main models have been proposed as a solution. The OWL-S

model, the Conversational model and the Roman model which is

investigated here. In this paper, we propose a survey on the so-

called Roman model and present the framework and all its

extension. We also underline its drawback, shortcomings and

some advantages, and then try to provide some research direction.

Keywords: Web Service, Composition, Synthesis, Behavior

1. Introduction

The rapid development of the information technology has

facilitated the construction of application and their

publication over the internet. Currently we are witnessing

presence of large number of services, which make it

difficult; to choose the right services to satisfy the user

request, to coordinate available service for building more

complicated and more flexible applications. Research on

web services considers, as fundamental service

composition i.e. how to compose and coordinate different

services, to be assembled together in order to support more

complex services and goals. Interestingly, many

contributions on this issue come from the Artificial

Intelligence (AI) community [1–2, 4, 8]. Despite the work

done so far, service composition is still largely unexplored

and to the best of our knowledge an overall agreed upon

comprehension of what service and service composition

are, in an abstraction and general fashion is still lacking.

Research on services composition encompasses many

challenges, such as description, discovery, composition,

synchronization, coordination, and verification [38]. In

[39], the Service Oriented Architecture (SOA) is

developed, which is seen as the basis architecture for

services. SOA provides the basic operations necessary to

describe, publish, find and invoke services. One of the

main issues in Service Oriented Computing (SOC) is

service composition [40]. The composition is required in

the situation where any single available services cannot

satisfy the client request, but a combination of them. In

other words, the client request can only be satisfied by

suitably combining (parts of) available services, also called

component services in this context. Composition mainly

enclosed two different issues [37]. The first, typically

called composition synthesis, is concerned with

synthesizing a composition of available services that

satisfies a client request. The synthesis process produces a

specification of how to coordinate, or orchestrate, the

component services to fulfill the client request. Such a

specification can be produced either automatically, i.e.

using a tool that implements a composition algorithm, or

manually by a human. The second issue, often referred to

as orchestration, is concerned with how to actually execute

the composition of the services produced by the

composition synthesis, by suitably supervising and

monitoring both the control flow and the data flow among

the involved services.

In this paper, we are going to follow the footstep of [3]

which proposed a brief survey on the Roman model, to

provide a deep survey on this area with more detail and

also we shall provide some research direction. The

remainder this paper is organized as follows: Section 2

presents the Roman model and provides a description of its

framework. Section 3 describes different extensions and

variants of the Roman model including the techniques used.

In Section 4 we conclude the paper and try to provide

future research direction.

2. Roman Model

In the Roman model, the services are represented as finite

transition system with respect to their conversational

behavior. In [3] the Roman model is a framework for

composing conversational services, where:

(i) Each service is formally specified as a transition

system that captures the possible conversation with a

generic client;

(ii) The desired specification is a target service, that

described itself as transition system;

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 754

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

(iii) The aim is to synthesize an orchestrator which realizes

the target service by exploiting execution fragments of

available services.

The Roman model well exemplifies what can be achieved

by composing conversational services and, also uncovers

relationships with automated synthesis of reactive

processes in verification and planning AI.

2.1 General Framework

In this section we provide a description of the Roman

model, by following [5, 22–23, 28]. The service is defined

as a software artifact (delivered over the internet) that

interacts with its client in order to perform a specified task

[5]. This framework can be built from an abstract and

conceptual point of view, based on the following two

facets:

(i) The service scheme specifying functional

requirements (a service scheme may also specify non-

functional requirements, such as quality and

performance), i.e. what a service does;

(ii) The service instance occurred as a result of service

being effectively run and constantly interacting with a

client.

A client can be a human or another service. A service is

characterized in terms of sequence of actions that is able to

execute, meaning its behavior. Typically, an atomic

interaction results from the following steps:

(i) At current state, client can request different operations

depending on the availability of service;

(ii) The client selects one of the offered operations;

(iii) The available service executes client’s selection,

moves to a new state, according to its behavioral

specification, and iterates to the next step (iterates the

process).

Originally, in Roman model [23–24], available services are

deterministic, which makes them fully controllable and the

result of executing an operation in a given state is a certain

successor state. In a clear expression, one can fully control

available services transition by assigning operation

execution.

Formally, a service behavior is a transition system

S = {O, S, s
0
, S

f
, g} where:

(i) O is the set of possible operations that the service

recognizes, also called alphabets of operation;

(ii) S is the finite set of service's states;

(iii) s0
 ∈S is the initial state;

(iv) Sf
 ⊆ S is the set of final states, i.e. those states where

the interaction with the service can be legally

terminated by the client (though she does not need to);

(v) g ⊆ S × O × S is the service's transition relation,

which accounts for its state changes.

When s, , s , we say that transition
 s s is

in S . Given a state s S , if there exists a transition
 s s in S , then operation o is said to be executable

in s . A transition
 s s in S denotes that s is a

possible successor state of s , when operation o is

executed in s .

We see that when executing a given operation in a given

state, there may be two different transitions systems

possible as results, which are describe as follows:

- A service S is deterministic if there are no two

distinct transitions
 s s and

s s such

that s s . Notice that given a deterministic

service’s state and an executable operation in that

state, unique next service’s state is always known.

That is, deterministic services are indeed fully

controllable by just selecting the operation to perform

next. 1TS is deterministic and models the case in

which after operation a one can perform both

b and c .

- 2TS A service S is non-deterministic, when

executing a given operation in a given state several

transition can take place. So, when choosing the

operation to execute next, the client of the service

cannot be certain of which choices will be available

later on, this depending on which transition actually

takes place. In other words, non-deterministic

services are only partially controllable. 2TS is non-

deterministic and models the case in which after

operation a , one is allowed to perform either b or c ,

depending on the actual transition that takes place

after executing a .

Fig. 1 Two different transition systems

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 755

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

As it turns out, finite state machine (and language theory)

non-determinism is angelic and becomes just a compact

way to represent the set of accepted operation sequences.

On the other hand, Transition System in non-determinism

is devilish, meaning that the client can ask for operation

execution but the actual transition is chosen (in a devilish

manner) by the transition system. As anticipated, we follow

the original proposal of the Roman model and focus on

deterministic transition systems only.

Available Services: the software artifact which is directly

available to the client is called available services. They are

defined once for all and develop gradually according to

their behavior. The only thing one can do with them is to

control their gradual development by instructing them to

execute legal operation sequences. Most of the time, there

are many (1,...,)is i n and each of them has a transition

system , , , , f

i i i io i is O S s S .

Service Community: is formally characterized by:

(i) A finite common set of actions, called the alphabet of

the community;

(ii) A set of services specified in terms of the common set

of actions.

Therefore a service needs to export its common set of

actions to service community. A service community can

delegate the execution of some or all its actions to other

service instances in the community that is called the added

value of the community of services or service composite.

Target service: is generated by the community. Its

execution is a complete delegated action to other members

of the community. Its generation is made by suitably

composing parts of services instances in the community.

The target service is coherent with the virtual service and it

is also deterministic. The target service is defined as a

transition system as follows 0(, , , ,)t t t t t tTS S s G F ,

and we have to notice that it does not exist in the service

community and it has to be built by suitably combining

parts of available services.

Orchestrator: In [3] the orchestrator is formally a

function from (a) the history of the whole system (which

includes the state trajectories of all available services and

the trace of the operations chosen by the client, and

executed by the services), and (b) the operation currently

chosen by the client, to the index i of the service iS to

which the operation has to be delegated. Intuitively, the

orchestrator realizes a target service if and only if, at every

step given the current history of the system is able to

delegate every operation executable by the target to one of

the available services. This certainly means that an

orchestrator is a system component that could activate,

stop, and resume any of the available services, and to order

them to perform an operation among those which are

executable in their state. The orchestrator is the engine of

the composition mechanism, it has full observability on

available services states, at any step, will consider the

operation chosen by the client (according to the target

service) and delegate it to one of the services for which the

operation is executable, and so on. It keeps tracking (at

runtime) the availability of the current state during their

interaction with the client to avoid any failure.

2.2 Composition Techniques

The aim of the service composition, in the Roman model,

is to synthesize an orchestrator that can build the target

service from the available service community. The specific

composition problem has been addressed using different

techniques.

Firstly, Berardi et al. proposed an automatic composition

synthesis technique, in which the fundamental idea is to

put the client request and some domain independent

conditions into code by means of a specific description

logics, and to reduce service composition problem to

satisfiability by using Propositional Dynamic Logics

(PDLs) [23–24, 27–28]. Notably, Logics of Programs are

tightly related to Description Logics (DLs), for which

highly optimized satisfiability checkers exist (e.g.,

RacerPro, Pellet, FACT, etc.). Berardi et al. [25]

succeeded in building a single orchestrator by relying on

the technique cited above to deal with non-deterministic

finite state services. It is advocated by Fabio et al. [5] that

this technique can only build finite state orchestrators, and

it is actually made effective by a crucial result, showing

that if an orchestrator exists then there exists one which is

finite [25]. The conceptual schema of PDL-based approach

to service composition is described by the following steps:

(i) The Roman model is used to describe the problem

instance where the services are modeled as a finite

state machine and then as transition system.

(ii) In the generated abstract PDL formula, each finite

state corresponds to a finite state orchestrator as a

solution to the original problem, vice versa; each

composition problem’s finite state solution has a

corresponding model of the PDL formula.

(iii) In this phase the generated abstract PDL formula is

encoded into DL knowledge based.

(iv) DL Reasoner uses this encoding for suitably

generating a model of knowledge base, provided it is

consistent.

The generated model corresponds to a model of the

original PDL formula, which also correspond to a

composition problem’s solution. A tool was developed to

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 756

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 2 Conceptual Schema of PDL-based approach to service

composition

support this conceptual model in [25].

 More recently [23], the problem has drawn favorable

attention and was approach by the techniques of

Linear Time Logic (LTL) synthesis [35], based on

model checking of game structures for the so called

safety games (see also ATL [41–42]).

 Another approach recently proposed is based on

directly computing compositions by exploiting

(variants of) the formal notion of simulation relation

between transition systems [5, 22, 43].

The two latter approaches promise both a high level of

scalability, since in practice they can be based on symbolic

model checking technologies. In [5] they do not use pure

finite state machine to model service, instead they

proposed a generic transition system which are suitable for

such simulation model, capable of dealing with non-

deterministic communities. Basically simulation based

solutions are finite structures that represent all possible and

even infinite state orchestrators that realize a target service

called composition generators. The observation shows that

the composition problem is proven EXPTIME-complete.

A conceptual schema of such an approach is depicted in [5]

as synthesis engine are available, they proposed a

translation module that implements a procedure for

automatic reduction of a service composition instances into

a game structure.

Fig. 3 Conceptual Schema of the Game-based approach to service

Composition.

3. Extensions and Variants of the Roman

Model

The success of the service composition technique in [25]

base on the reduction to satisfiability in PDL; is the fact

that PDL satisfiability shares the same basic algorithm

behind the success of the description logics based

reasoning systems (Fact, Racer, Pellet) used for OWL, and

since the applicability of these reasoning system in the

context composition it appears to be quite promising [13].

Thus, many extension and variants has been proposed to

improve the original technique of composition, such as the

following:

3.1 Forms of Target Service’s Loose Specifications:

(or Non-deterministic (angelic) target specification)

[31]

The author in [31] proposed a method of automatic

composition synthesis of service by representing the

service behavior as finite state machine, based on PDL,

under the assumption of a possibly incomplete

specification of the sequences of actions and a set of

available services. The authors followed the approach in

[6], upon which they build their approach by introducing

two fundamental extensions:

(i) The composition is not only based on controlling the

concurrent execution of the available component

services, but also it allows the synchronization and

communication between the component services. They

introduce the notion of initiator and servant, and work

under the assumption that each action involves one

initiator and one or more servants that suitably

synchronize and exchange information in order to

complete the action. The composition can control who

is interacting at each step and allows two component

services to interact and synchronize suitably before

starting to serve the client, or while serving it.

(ii) The client request is a specification of transition

system that the client is interested in being able to

execute. They present several form of under-

specification of such a transition system:

 By introducing forms which do not care either

there is non-determinism (angelic non-

determinism) on the next set of transitions

available to the client or there isn't; it mean that

the client lets the composition synthesizes to

resolve non-deterministic choices by taking

advantage of what the available component

services can do at that point of their computation;

 This has to be contrasted with the fact that at the

same time the composition synthesis must

generate a composition that allows the client to

make all choices specified in its transition system.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 757

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 And by letting the activities in which the client is

involved to be interleaved in specified point with

activities that are performed by the component

service without the client intervention (but of

which the client is in any case aware); allows the

client (a) to exploit the synchronization and

communication abilities that the component

services have, and (b) to allow such service to

perform some preliminary/extra work before or

while serving it.

The author’s main result is a composition synthesis

technique, which supposes that a composition of the

available component service realizing the client

specification exists, and then such a technique will actually

produce one such composition. Since the result produced is

FSM, based on the collateral result of their synthesis

technique, they demonstrate that if composition exists then

the existence is in the finite state. They solve the problem

as EXPTIME-Hard. The synthesis technique is based on

reducing the problem of checking the existence of a

composition into checking satisfability of a formula

expressed in variant of PDL [23], equipped with graded

modalities [14, 16, 20, 44]. Interestingly such logic

corresponds to a particular expressive DL, namely

ALCQreg, which is well-studied from the computational

point of view (see, e.g., [7] in [10]). This correspondence

allows them in principle, to exploit the highly optimized

DL-based reasoning systems, currently available [10, 17–

19].

3.2 Look-ahead:

To address automated composition problem, the look-

ahead technique was firstly adopted in [11] to extend the

Roman model where only regular activities are considered

because the activities are modeled by finite state automata.

To this purpose, the authors introduce the notion of

delegator that can settle the assignment according to entire

sequence of activities, check the existence of the mediator

in EXPTIME complexity, and when any of the available

delegator can simulate the target service the k look-ahead

delegator solution technique is proposed for building the

delegator which can do the right delegations, since the

delegator informs about the client’s immediate choice and

its future choice in next move. They also show the

existence of a strict hierarchy of k look-ahead delegation

problem.

Instead of considering regular activities under which

activity models are finite automata [11], author proposed a

framework in which more complex and non-regular

activity sequence are possible. In [26] the automata

theoretic techniques use are different from the techniques

used in [11]. Reference [26] firstly approach composability

issue, in [11], it was shown that composability is decidable

for a system 1(; ,...,)rA A A of deterministic finite

automata (DFA). [26] Generalizes this result to the case

when A is an NPCM (non-deterministic pushdown

automaton with reversal-bounded counters) and the iA ’s

are DFAs. In contrast, [26] shows that it is undecidable to

determine, given DFAs A and 1A , and a deterministic

reversal-bounded counter-machine (DCM) 2A with only

one 1-reversal counter (i.e. once the counter decrements it

can no longer increment), whether is composable.

Secondly, follows the approach in [11] for providing the k

look-ahead delegator for infinite state automata that can

check the existence of deterministic delegator within some

resource bound. The delegator does not need to look back

to its delegation history to decide where the current activity

shall be delegated. For a positive integer k , a k delegator

for 1(; ,...,)rA A A is a deterministic reversal-bounded

counter-machine D which, knowing (a) the current state

of
1,; ..., rA A A and the signs of their counter (zero or non

zero), and (b) the k -look-ahead symbols (the k future

activities) to the right of the current input symbol being

processed, can deterministically determine the iA to

assign the current symbol. In addition, every string w

delegated accepted by A is also accepted by D , which

imply that the subsequence of string w delegated by D to

each iA is accepted by iA . In other words, if a system

1(; ,...,)rA A A has a k -delegator for some k , then it

must be composable.

3.3 Security and Trust-aware Services Composition

[13]:

The authors tackle the automatic composition problem in

the presence of component services that have access

control and authorization constraints, and impose further

reputation constraints on other component services. We

are in trust community, where different component

services may either have trust or not for others. To enhance

this model in secure manner, the authors provide an access

control model based on credentials which restrict the set of

the client and subjects that can invoke service’s operation.

Credentials are signed assertions describing properties of a

subject that are used to establish trust between two

unknown communicating parties before allowing access to

information or services.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 758

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

The behavior of the available services is considered to be

non-deterministic and not fully controllable by the

orchestrator. In addition, the security constraint is imposed

to control the access, authorization and reputation. The

model used is based on reduction to satisfiability in PDL

[23] with a limited use of the reflexive-transitive-closure

operator. Now, PDL satisfability shares the same basic

algorithms, which are also behind the success of the

description logics-based reasoning systems used for OWL2,

such as FaCT3, Racer4, Pellet5, and hence its applicability

in the context of composition synthesis appears to be quite

promising.

The framework is formally define as in [24, 31, 9], but also

added novel notion such as reputation matrix Rep which

has rows available services and columns available services

and possibly third parties. The cell Rep (,)i j represents

the reputation level (set of all possible levels are finite)

that the available service iS has on the available services

jS or on the third party
j nP

 . In addition, a set of

credentials is defined to let the client has various part of an

available service to execute.

Credential: is the trust relation between client and service

provider. Formally let 1{ ,..., }mC c c be the set of

credentials that are associated to clients. Each hc is a pair

of variable ,Attr Issuer where Attr is the attribute

variable of the credential, whose value characterizes the

client and Issuer is the issuer variable that contains the

name of the entity that issued the value for the attribute

variable. is the finite domain.

 1,..., , 1,...,I n n n l , where 1,...,n are

identifiers of available services and 1,...,n n l are

identifiers of third parties 1,... lP P .

Available Services: are programs which provide client

with a choice of available actions; the client selects one of

them, the action is executed; and so on. Available services

use credentials in order to decide which actions at each

point of their execution are actually available to the client

executing it (i.e. the client is authorized to execute the

action).

3.4 Distributed Orchestrator

In [21] the available behaviors are partially controllable,

and a controller is design to coordinate available behavior

for realizing target behavior. The authors claimed that

often a centralized orchestration is unrealistic: e.g. services

deployed on mobile devices are;

 Too tight coordination

 Too much communication

 Orchestrator cannot be embodied anywhere

The authors drop centralized orchestrator in favor of

independent controllers on single available services

(exchanging messages). Under suitable conditions, a

distributed orchestrator exists if only if a centralized one

does. And then demonstrate that the EXPTIME-complete

is still usable.

3.5 Shared Environments or Other Infrastructure for

Communication among Services

The techniques for solving composition problem presented

in [15] is not only applied to more realistic scenario, but

also show how a workflow done by a team of cooperating

agents, is realized as result of coordination, or more

precisely orchestration of several behaviors which provide

high-level descriptions of agents’ capabilities. The main

technical results in this paper demonstrate that there is an

existence of a sound, complete and terminating procedure

for computing a distributed orchestrator

1(,...,)nX O O that realizes a workflow W over a

WfSK relative to service 1,..., nS S over and

blackboard state o . Moreover each local orchestrator

iO returned by such a procedure is finite state and require

a finite number of messages (more precisely message

types).

In [12] the composition technique proposed a model that

allows dynamic and finite-state data structure

representation in certain cases; they first modeled the

problem in an abstract framework based on the formal

definition. Secondly, they develop new method for

performing automatic synthesis of the fully controllable

module. The setting used in this framework is made by the

following part:

 A shared environment structured by a finite set of

shared actions, a finite set of possible environment

states, an initial state of the environment and the

transition relation among states. It is also non-

deterministic.

 A behavior according to the shared environment

defined on top, is non-deterministic and characterized

by a finite set of behavior states; an initial state of the

behavior; a set of guards; the behavior transition

relation; and the set of final states of the behavior.

 Runs and traces where run is a possibly alternating

sequence of behavior over shared environment; and

trace is a sequence of pair actions guided by the

behavior.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 759

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 The system is formed by the observable environment

and the available behaviors.

 The problem raised a solution technique for building

an orchestrator that realizes the target behavior if it

realizes all its traces.

After all, by mean of an example, the authors used the

technique based on reduction to satisfability in PDL [28],

with a limited use of the reflexive-transitive-closure

operator, to show that the solution technique developed is

sound and terminating optimal with respect to

computational complexity.

3.6 Data-aware Services

The service should give us the property that has the ability

to manage data: in reality, services deal with data. The

service describe in [28], is characterize by four

components:

(i) Real world state, which is database instance over a

relational database schema.

(ii) Atomic process is the functionalities or the operations

that services are capable of doing, such as access and

modification of the database, and also conditional

effects. The services community is composed of web

services, clients and any other participant of this

community have to share the same ontology.

(iii) Message passing behavior is composed of send and

receive message by the web service from the

community. It is much more about the message types

(classes) than message contents.

(iv) The behavior of the web service is composed of

multiple atomic processes and message passing

activities. Guarded automata are used in this

framework. Guarded automaton is a finite state

machine, such that from one transition to another can

be clearly defined. A transition moves to the next

stage only if its condition is evaluated to be true.

There are four kinds of web services defined in this

framework, called “Colombo”, they all belong to the same

community and modeled by using guarded automata:

(i) Non-Client Web Service are well described services

published in UDDI registry, capable of performing

functionalities and operations.

(ii) Client Web Services is a behavior, which represents

the interaction (send and receive) between client and

the web services invocated by the client. Note that the

client behavior is non-deterministic in term of actions

made and choices selected by the client. Then guarded

automata will only conceive two states, which are

“ReadyToTransmit” and “ReadyToReceive”. The

client choice will be switching between the two states

until it ends.

(iii) Goal Service is the desired behavior to realize. It is

also specified as a guarded automaton in terms of

alphabet of atomic processes O.

(iv) Mediator Service in Colombo framework used the

topological approach for composition. This approach

has a virtual service also called Mediator which is

responsible of controlling data flow and control flow

among participant services. Its behavior simulates the

behavior of the goal service. The mediator service

represents the composition synthesis specification

which should be orchestrated to fulfill client request, it

represents the expected output from the Colombo

automatic composition algorithm.

In this framework each non-client and mediator web

services instance possess includes the followings:

(i) A Local Store (LStore) is a database table that is used

to store parameters values of incoming messages and

output messages, and to populate parameters of

outgoing messages and input parameters to atomic

processes. The conditional branching of web services

behavior at any time is based on the values stored in

its LStore at this time.

(ii) A port for each incoming and outgoing message to let

web services communicate among themselves.

(iii) A Queue Store (QStore) for each incoming message.

The work in [28] has proposed a new solution for

automatic service composition algorithm in the presence of

data.

3.7 Artificial Intelligence Planning

In [29], a novel framework is built for automated

composition of web services based on planning method in

asynchronous domains. In this frame work, BPEL4WS

concrete process is automatically generated from a given

set of BPEL4WS abstract specification of published web

service and given a composition requirement; the

generated BPEL4WS process can interact asynchronously

with the published services. The deployment and the

execution of the generated BPEL4WS are characterized by

the following steps:

(i) The BPEL4WS abstract process is defined by

transition system which is capable of communicating

by asynchronous input/output actions (published

protocol) or by means of internal actions (internal

behavior not visible to external parties).

(ii) Within asynchronous conversation, the input queue

mechanism is modeled in such a way that a process

can immediately receive a message or after an internal

action, which prevent the message being lost.

(iii) Under this modeling supposition a novel method

planning is developed in asynchronous domain for

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 760

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4 Approach

generating executable and deployable BPEL4WS code

that is depicted in Figure 4.

4. Conclusions and Future work

Generally there are differences between the approach in

which the interaction between services and their clients is

modeled through actions, and the approach that can be

found in standard languages such as WSDL [23] where the

focus is on exchanged messages. For example, in WSDL,

an interaction between the service and the client is

modeled by an operation, say search by author with a

message that the client sends to the service for requesting a

search say search by author request, and a message that the

service sends back to the client (and, in his turn, the client

receives), containing the results of the computation, say

search by author response. Hence, each WSDL operation

roughly corresponds to an action in our framework.

Formally, the advantages brought by the Roman model

approach are quite important for the following reason: (a)

the developed framework, abstracts enough the

conversation human-machine, so that it can be considered

as conceptual model for several classes of scenarios, which

make this theoretical technique applicable to much more

context such as web services composition, multi-agent

system, etc. (b) It consider stateful services which impose

some constraints on the possible sequences of operations

(a.k.a., conversations) that a client can engage with the

service. Composing stateful services poses additional

challenges, as the composite service should be corrected

with respect to the possible conversations allowed by the

component ones. We have to say that services are just the

high-level descriptions of software artifacts, especially

when we deal with a behavioral model. In fact, services are

characterized by states and state transition triggered by

inputs, which represent requested operations. From the

interpretation, it is shown that service-runs are regarded as

computation fragments, which can generate more complex

services through combining.

In [5] it is advocated that service composer developed in

[25] based on the original approach, can synthesize an

orchestrator that realizes the target services, but brought

three major shortcoming:(a) only finite-state orchestrators

are returned; (b) the obtained solution is not flexible, that is

if a solution has been built which relies on an available

service and such a service becomes unavailable at runtime,

then the solution is no longer valid and the best one can do

using this approach is to re-compute a new solution; (c) on

the practical side, due to implemented DL reasoner

limitations, ESC is actually able to synthesize a model only

for some particular inputs, though it is complete with

respect to checking for the existence of a model. [30]

Point out that one of this approach’s problems is that it

doesn’t scale well (needs EXPTIME).

To overcome the problems cited above, recently novel

techniques have been developed that are more flexible and

more scalable, based on the formal notion of simulation [6,

23, 29] and the Linear Time Logic (LTL) synthesis [26],

based on model checking of game structures for the so

called safety games (see also ATL [2–3]). Both these two

technique are based on symbolic model checking

technologies, which an explication to their high level of

scalability.

Despite all the efforts which have been made in this field,

it still requires much more attention for solving the raised

problems which have not yet been completely fixed, and

can constitute an interesting research area. In [31], here are

presented the kind of angelic non-deterministic of the

target specification of the client, meaning that the client

specifies (a) the actions for which he is the initiator, and (b)

the possibility of having activities in which the client

himself is not involved, also called silent actions, in this

case the orchestrator could be unable to satisfy the client

request. Figure 5(a) represents the target service and the

Figure 5(b) the community service. It is supposed that both

services start in their initial state. If the service aS

execute a and move from 1S to 2S , while bS also will

execute a and move from 3S to 4S . From 4S the

service bS cannot execute b or c . From this, it is clearer

that the community services bS

Fig. 5 (a) Target Service aS ; (b) Community Service bS .

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 761

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

cannot simulate the target service aS . But one can

slightly plan its evolution for bS being able to perfectly

simulate aS . One can use the planning technique for

reachability, where the orchestrator aim at executing a plan

so to lead the community, from current state, to a desired

state which simulates current target’s one. When the goal

is reached, then one can, through the plan of the

orchestrator, compute the target service current state by

simulation. This will improve the community capability, by

increasing the set of target services actually realizable.

In the literature, some earlier work have point out the

necessity to enables the data-management ability for

services. In fact, services are more concern about sending

and receiving data from one to another to activate or

accomplish their task, according to their state. Interest of

transaction-based data management systems is highlighted

when web services are developed to access and filter data

[32]. A model based on Mealy machine is proposed in

which conversation is guarded (guided) according to a

predefined set of channels [33–34]. Methodology is

presented that show to synthesize web services as Mealy

machines whose conversations (across a given set of

channels) are compliant with a given specification. In [34]

an extension of the framework is developed where services

are specified as guarded automata, having local XML

variables in order to deal with data semantics. A transition

system method for modeling web services communicating

through messaging and model checking techniques is used

to compose the services in the presence of some limited

support of data [12]. The used of the technique in [12] for

finitely handling data ranging from infinite domain to their

framework, in order to provide an extension to it. The

difficulty comes from the presence of data which will

ultimately derive to infinite state system verification and

synthesis. It becomes a hard task for non-trivial properties

and also undecidable for general ones. Adding the

possibility of dealing with data in the services composition

framework will be a great improvement.

We observe that [28] tackles the composition problem by

relying on PDL-based approach. However, under the same

model one can recast the problem in terms of (data-aware)

simulation, which is defining a relation between two data-

aware services that interact with a common underlying data

structure, whose data content may come from an infinite

domain. This way, one would get the advantages brought

by a simulation-based approach, though the actual

resolution would be more complex due to state space

infiniteness, which calls for some abstraction procedure.

Finite state systems are capable of producing a strong

effect on behavioral model for service, which allow them

to enhance composition problems, at the same time giving

prove that there are complete solution approaches

available.

Acknowledgments

The work reported in this paper was supported by Grant

No: 61070182 and No: 61272508

The inclusion of images and examples from external

sources is only for non-commercial educational purposes,

and their use is hereby acknowledged.

References
[1] M. Aiello, M. P. Papazoglou, J. Yang, M. Carman, M.

Pistore, L. Serani, and P. Traverso, "A request language for

web-services based on planning and constraint satisfaction",

in Proc. of the Third Intl. Workshop on Technologies for E-

Services (TES '02), 2002, pp. 76–85.

[2] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin,

D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, T.

Payne, and K. Sycara, "DAML-S: Web service description

for the semantic web", in Proc. of the First Intl. Semantic

Web Conf. on The Semantic Web (ISWC '02), 2002, pp.

348–363.

[3] D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Mecella, and

F. Patrizi, "Automatic Service Composition and Synthesis:

the Roman Model", Bulletin of the IEEE Computer Society

Technical Committee on Data Engineering, Vol. 31, No. 3,

2008, pp. 18–22.

[4] S. McIlraith, and T. Son, "Adapting Golog for composition

of semantic web services", in Proc. of the 8th Intl. Conf. on

Principles of Knowledge Representation and Reasoning (KR

2002), 2002, pp. 482–493.

[5] F. Patrizi, "An Introduction to simulation-based Techniques

for Automated Service Composition", in Proceeding of

Fourth European Young Researchers Workshop on Service

Oriented Computing (YR-SOC 2009), 2009, pp.37–49.

[6] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and

M. Mecella, "Automatic Composition of e-Services that

Export their Behavior", in Proc. of 1st Intl. Conf. on Service

Oriented Computing (ICSOC), 2003, pp. 43–58.

[7] D. Calvanese, and G. De Giacomo, "Expressive description

logics", in Baader et al., chapter 5, pages 178–229.

[8] J. Yang, and M. Papazoglou, "Web components: A substrate

for web service reuse and composition", in Proc. of the 14th

Intl. Conf. on Advanced Information Systems Engineering

(CAiSE 2002), 2002, pp. 21–36.

[9] D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella.

Automatic Composition of Web Services with

Nondeterministic Behavior. Technical Report TR-05-2006,

Univ. Roma LA SAPIENZA, Dipartimento di Informatica e

Sistemistica, 2006. Extended abstracts/short papers in Proc.

ICSOC 2005 and in Proc. ICWS 2006.

[10] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F.

Patel-Schneider, The Description Logic Handbook: Theory,

Implementation and Applications, New York: Cambridge

University Press, 2003.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 762

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[11] C. E. Gerede, R. Hull, O. H. Ibarra, and J. Su, "Automated

composition of service: Lookaheads", in Proc. of the 2nd Intl.

Conf. on Service Oriented Computing (ICSOC '04), 2004, pp.

252–262.

[12] P. Traverso, and M. Pistore, "Automated Composition of

Semantic Web Services into Executable Processes", in Proc.

of Intl. Semantic Web Conference (ISWC 2004), 2004, pp.

380–394.

[13] F. Cheikh, G. De Giacomo, and M. Mecella, "Automatic web

services composition in trust-aware communities", in Proc. of

the 3rd ACM workshop on Secure Web Services (SWS),

2006, 43–52.

[14] M. Fattorosi-Barnaba, and F. De Caro, "Graded modalities.

I", Studia Logica, Vol. 44, No. 2, 1985, pp. 197–221.

[15] G. De Giacomo, M. de Leoni, M. Mecella, and F. Patrizi,

"Automatic workflows composition of mobile services", in

Proc. of IEEE Intl. Conf. on Web Services (ICWS 2007),

2007, pp.823–830.

[16] K. Fine, In so many possible worlds, “Notre Dame Journal of

Formal Logic”, 13(4):516–520, 3072

[17] V. Haarslev and R. Moller, “RACER system description”, in

Proc of (IJCAR 2001), volume 2083 of LNAI, pages 701–

705. Springer-Verlag, 2001.

[18] I. Horrocks, “The FaCT system”, in Proc. Of

(TABLEAUX’98), volume 1397 of LNAI, pages 307–312.

Springer-Verlag, 3098.

[19] R. Moller and V. Haarslev, “Description logic systems”, In

Baader et al. [6], chapter 8, pages 282–305.

[20] W. Van der Hoek, “On the semantics of graded modalities”

Journal of Applied Non-Classical Logics, 2(1):81–323, 3092.

[21] S. Sardina, F. Patrizi, and G. De Giacomo, “Automatic

synthesis of a global behavior from multiple distributed

behaviors”, in Proc. of AAAI 2007.

[22] D. Berardi, F Cheikh, D. De Giacomo, and F. Patrizi,

“Automatic service composition via simulation”, Intl. Journal

of Foundations of Computer Science 30, 2 (2008), 429–451.

[23] D. Harel, D. Kozen, and J. Tiuryn, “Dynamic Logic” The

MIT Press, 2000.

[24] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and

M. Mecella, “Automatic service composition based on

behavioural descriptions”, Intl. Journal of Cooperative

Information Systems 14, 4 (2005), 333–376.

[25] D. Berardi (2005): ”Automatic Service Composition: Models,

Techniques and Tools”. Ph.D. thesis, SAPIENZA Universita

degli Studi di Roma.

[26] Z. Dang, O. H. Ibarra, and J. Su, “On composition and look-

ahead delegation of service modeled by automata” Theor.

Comput. Sci., 341(1–3):344–363, 2005.

[27] G. De Giacomo and S. Sardina. “Automatic synthesis of new

behaviors from a library of available behaviors” in Proc. of

IJCAI 2007.

[28] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M.

Mecella. “Automatic composition of transition based

semantic web services with messaging”. in Proc. of VLDB

2005.

[29] M. Pistore, P. Traverso, and P. Bertoli. “Automated

composition of web services by planning in asynchronous

domains” in Proc. of ICAPS 2005.

[30] U. KÄuster, M. Stern, and B. KÄonig-Ries, "A classi c̄ation

of issures and approaches in service composition", In

Proceedings of the First International Workshop on

Engineering Service Compositions (WESC05), Amsterdam,

Netherlands, December 2005.

[31] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and

M. Mecella. Synthesis of underspecified composite service

based on automated reasoning. in Proc. of ICSOC 2004.

[32] P. Helland, “Data on the outside versus data on the inside” In

CIDR, pages 144–83, 2005.

[33] T. Bultan, X. Fu, R. Hull, and J. Su, “Conversation

Specification: A New Approach to Design and Analysis of E-

Service Composition” in Proc. of WWW 2003.

[34] X. Fu, T. Bultan, and J. Su. “Analysis of Interacting BPEL

Web Services” in Proc. of WWW 2004.

[35] N. Piterman, A. Pnueli, and Y. Sa’ar “Synthesis of reactive

designs” in Proc. of VMCAI 2006.

[36] R. Hull, "Web Services Composition: A Story of Models,

Automata, and Logics", In: 2005 IEEE International

Conference on Services (SCC 2005).

[37] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web

Services: Concepts, Architectures and Applications”

Springer, 2004

[38] R. Hull, M. Benedikt, V. Christophides, and J. Su, “E-

Services: A Look behind the Curtain”, in Proc. Of the PODS

2003 Conf..

[39] T. Pilioura and A. Tsalgatidou. “E-Services: Current

Technologies and Open Issues”, in Proc. of VLDB-TES

2001.

[40] M. Papazoglou and D. Georgakopoulos, “Service Oriented

Computing (Special Issue)” Communications of the ACM,

46(10), October 2003.

[41] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-

time temporal logic”, Journal of the ACM, 49(5):672–713,

2002.

[42] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K.

Rajamani, and S. Tasiran, “MOCHA: Modularity in model

checking”, in Proc. of CAV 1998.

[43] S. Sardina, F. Patrizi, and G. De Giacomo. “Behavior

composition in the presence of failure” in Proc. Of KR 2008.

[44] S. Ghandeharizadeh, C. A. Knoblock, C. Papadopoulos, C.

Shahabi, E. Alwagait, J. L. Ambite, M. Cai, C. Chen, P. Pol,

R. R. Schmidt, S. Song, S. Thakkar, and R. Zhou, “Proteus:

A System for Dynamically Composing and Intelligently

Executing Web Services”, in Proc. of ICWS 2003.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 763

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

