Detection of Reliable Pareto Software Using SPRT

Sridevi Gutta¹, Satya Prasad Ravi²

¹Department of CSE, Nimra Women’s College of Engineering, Vijayawada, Andhra Pradesh, India.
²Department of CSE, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

Abstract

Rapid growth of software usage enforces us to access the software reliability, a critical task in the development of a software system. Various models are adopted to assess the software reliability. In this paper a well known test procedure of statistical science called as Sequential Probability Ratio Test (SPRT) is adopted for Pareto Type IV model in assessing the reliability of developed software. It requires considerably less number of observations when compared with the other existing testing procedures. In Classical Hypothesis first of all testing volumes of data is to be collected and later the conclusions are to be drawn which may take more time. Hence Sequential Analysis of Statistical Science could be adopted to decide upon the reliable / unreliable of the developed software very quickly. Besides the present paper proposes the performance of SPRT on Interval domain data using Pareto type IV model and analyzed the results by applying on 6 data sets. The Maximum Likelihood Estimation is used for estimation of parameters.

Keywords: Pareto Type IV model, Sequential Probability Ratio Test, Maximum Likelihood Estimation, Software Reliability, Interval domain data, NHPP.

1. Introduction

The SPRT was initially developed by Wald (1947) for quality control problems during World War II. It has many extensions and applications: such as in clinical trial and in quality control. The original development of the SPRT is used as a statistical device to decide which of two simple hypotheses is more correct. Wald’s SPRT is currently the only Bayesian Statistical procedure in SISA. What is required in Bayesian statistics is quite a detailed description of the expectations of the outcome under the model prior to executing the data collection. In Wald’s SPRT, if certain conditions are met during the data collection decisions are taken with regard to continuing the data collection and the interpretation of the gathered data. Wald's procedure is particularly relevant if the data is collected sequentially. Sequential Analysis is different from Classical Hypothesis Testing were the number of cases tested or collected is fixed at the beginning of the experiment. In Classical Hypothesis Testing the data collection is executed without analysis and Consideration of the data. After all data is collected the analysis is done and conclusions are drawn. However, in Sequential Analysis every case is analyzed directly after being collected, the data collected up to that moment is then compared with certain threshold values, incorporating the new information obtained from the freshly collected case. This approach allows one to draw conclusions during the data collection, and a final conclusion can possibly be reached at a much earlier stage as is the case in Classical Hypothesis Testing. The advantages of Sequential Analysis are easy to see. As data collection can be terminated after fewer cases and decisions taken earlier, the savings in terms of human life and misery, and financial savings, might be considerable.

In the analysis of software failure data we often deal with either Time between Failures or failure count in a given time interval. If it is further assumed that the average number of recorded failures in a given time interval is directly proportional to the length of the interval and the random number of failure occurrences in the interval is explained by a Poisson process then we know that the probability equation of the stochastic process representing the failure occurrences is given by a homogeneous Poisson process with the expression

\[P[N(t) = n] = \frac{e^{-\lambda t}(\lambda t)^n}{n!} \]

(1.1)
(Stieber 1997) observes that if classical testing strategies are used, the application of software reliability growth models may be difficult and reliability predictions can be misleading. However, he observes that statistical methods can be successfully applied to the failure data. He demonstrated his observation by applying the well-known sequential probability ratio test of (Wald 1947) for a software failure data to detect unreliable software components and compare the reliability of different software versions. In this paper we consider popular SRGM Pareto Type IV model and adopt the principle of Stieber in detecting unreliable software components in order to accept or reject the developed software. The theory proposed by Stieber is presented in Section 2 for a ready reference. Extension of this theory to the SRGM – Pareto Type IV is presented in Section 3. Maximum Likelihood parameter estimation method is presented in Section 4. Application of the decision rule to detect unreliable software components with respect to the proposed SRGM is given in Section 5.

2. Wald’s Sequential Test for a Poisson Process

The sequential probability ratio test was developed by A. Wald at Columbia University in 1943. Due to its usefulness in development work on military and naval equipment it was classified as ‘restricted’ by the Espionage Act (Wald 1947). A big advantage of sequential tests is that they require fewer observations (time) on the average than fixed sample size tests. SPRTs are widely used for statistical quality control in manufacturing processes. An SPRT for homogeneous Poisson processes is described below. Let \(\{N(t), t \geq 0\} \) be a homogeneous Poisson process with rate \(\lambda \). In our case, \(N(t) = \) number of failures up to time \(t \) and \(\lambda \) is the failure rate (failures per unit time). Suppose that we put a system on test (for example a software system, where testing is done according to a usage profile and no faults are corrected) and that we want to estimate its failure rate \(\lambda \). We cannot expect to estimate \(\lambda \) precisely. But we want to reject the system with a high probability if our data suggest that the failure rate is larger than \(\lambda \) and accept it with a high probability, if it’s smaller than \(\lambda_0 \). As always with statistical tests, there is some risk to get the wrong answers. So we have to specify two (small) numbers ‘\(\alpha \)’ and ‘\(\beta \)’, where ‘\(\alpha \)’ is the probability of falsely rejecting the system. That is rejecting the system even if \(\lambda \leq \lambda_0 \). This is the “producer’s” risk. \(\beta \) is the probability of falsely accepting the system. That is accepting the system even if \(\lambda \geq \lambda_1 \). This is the “consumer’s” risk. With specified choices of \(\lambda_0 \) and \(\lambda_1 \) such that \(0 < \lambda_0 < \lambda_1 \), the probability of finding \(N(t) \) failures in the time span \((0, t]\) with \(\lambda_1, \lambda_0 \) as the failure rates are respectively given by

\[
P_1 = \frac{e^{-\lambda_1 t}[\lambda_1 t]^{N(t)}}{N(t)!} \quad (2.1)
\]

\[
P_0 = \frac{e^{-\lambda_0 t}[\lambda_0 t]^{N(t)}}{N(t)!} \quad (2.2)
\]

The ratio \(\frac{P_1}{P_0} \) at any time ‘\(t \)’ is considered as a measure of deciding the truth towards \(\lambda_0 \) or \(\lambda_1 \), given a sequence of time instants say \(t_1 < t_2 < \cdots < t_k \) and the corresponding realizations \(N(t_1), N(t_2) \ldots N(t_k) \) of \(N(t) \). Simplification of \(\frac{P_1}{P_0} \) gives

\[
\frac{P_1}{P_0} = \exp(\lambda_0 - \lambda_1) t + \frac{\lambda_1}{\lambda_0}^{N(t)}
\]

The decision rule of SPRT is to decide in favour of \(\lambda_1 \), in favor of \(\lambda_0 \) or to continue by observing the number of failures at a later time than ‘\(t \)’ according as \(\frac{P_1}{P_0} \) is greater than or equal to a constant say \(A \), less than or equal to a constant say \(B \) or in between the constants \(A \) and \(B \). That is, we decide the given software product as unreliable, reliable or continue [5] [7] the test process with one more observation in failure data, according as

\[
\frac{P_1}{P_0} \geq A \quad (2.3)
\]

\[
\frac{P_1}{P_0} \leq B \quad (2.4)
\]

\[
B < \frac{P_1}{P_0} < A \quad (2.5)
\]

The approximate values of the constants \(A \) and \(B \) are taken as \(A \equiv \frac{1-\beta}{\alpha} \), \(B \equiv \frac{\beta}{1-\alpha} \)

Where ‘\(\alpha \)’ and ‘\(\beta \)’ are the risk probabilities as defined earlier. A simplified version of the above decision processes is to reject the system as unreliable if \(N(t) \) falls for the first time above the line

\[
N_U(t) = a.t + b2 \quad (2.6)
\]

To accept the system to be reliable if \(N(t) \) falls for the first time below the line

\[
N_L(t) = a.t - b_1 \quad (2.7)
\]
3. Sequential Test for Pareto Type IV Model

In Section 2, for the Poisson process we know that the expected number of failures \(N(t) = \lambda(t) \) called the average number of failures experienced in time \(t \). This is also called the mean value function of the Poisson process. On the other hand if we consider a Poisson process with a general function (not necessarily linear) \(m(t) \) as its mean value function the probability equation of a such a process is

\[
P[N(t) = Y] = \frac{(m(t))^Y}{Y!} e^{-m(t)}, \quad Y = 0, 1, 2, \ldots
\]

Depending on the forms of \(m(t) \) we get various Poisson processes called NHPP, for our Pareto type IV model. The mean value function is given as

\[
m(t) = a \left[1 - \left(1 + \left(\frac{t}{c} \right) \right)^{-b} \right]
\]

We may write

\[
P_1 = \frac{e^{-m_1(t)} [m_1(t)]^{N(t)}}{N(t)!}
\]

\[
P_0 = \frac{e^{-m_0(t)} [m_0(t)]^{N(t)}}{N(t)!}
\]

Where \(m_1(t), m_0(t) \) are values of the mean value function at specified sets of its parameters indicating reliable software and unreliable software respectively. The mean value function \(m(t) \) contains the parameters ‘a’, ‘b’ and ‘c’. Let \(P_0, P_1 \) be values of the NHPP at two specifications of \(b \) say \(b_0, b_1 \) where \(b_0 < b_1 \) and two specifications of \(c \) say \(c_0, c_1 \) where \(c_0 < c_2 \). It can be shown that for our model \(m(t) \) at \(b_1 \) is greater than that at \(b_0 \) and \(m(t) \) at \(c_1 \) is greater than that at \(c_0 \). Symbolically \(m_0(t) < m_1(t) \). Then the SPRT procedure is as follows:

Accept the system to be Reliable if

\[
\frac{P_1}{P_0} \leq B
\]

i.e.,

\[
\frac{e^{-m_1(t)} [m_1(t)]^{N(t)}}{e^{-m_0(t)} [m_0(t)]^{N(t)}} \leq B
\]

i.e., \(N(t) \leq \frac{\log (\frac{P_1}{P_0}) + m_1(t) - m_0(t)}{\log m_1(t) - \log m_0(t)} \) \((3.1) \)

Decide the system to be unreliable and Reject if

\[
\frac{P_1}{P_0} \geq A
\]

i.e.,

\[
\frac{e^{-m_1(t)} [m_1(t)]^{N(t)}}{e^{-m_0(t)} [m_0(t)]^{N(t)}} \geq A
\]

i.e., \(N(t) \geq \frac{\log (\frac{P_1}{P_0}) + m_1(t) - m_0(t)}{\log m_1(t) - \log m_0(t)} \) \((3.2) \)

Continue the test procedure as long as

\[
\frac{\log (\frac{P_1}{P_0}) + m_1(t) - m_0(t)}{\log m_1(t) - \log m_0(t)} < N(t) < \frac{\log (\frac{P_1}{P_0}) + m_1(t) - m_0(t)}{\log m_1(t) - \log m_0(t)}
\]

(3.3)

Substituting the appropriate expressions of the respective mean value function \(m(t) \), we get the respective decision rules and are given in followings lines.
Acceptance Region:

\[N(t) \leq \frac{\log(\frac{b}{\alpha-a}) + a \left[1 + (\frac{t}{\alpha})^{-b} - 1 + (\frac{t}{\beta})^{-b_1} \right]}{\log a \left[\frac{1 + (\frac{t}{\alpha})^{-b}}{1 + (\frac{t}{\beta})^{-b_1}} \right]} \]

(3.4)

Rejection Region:

\[N(t) \geq \frac{\log(\frac{b}{\alpha-a}) + a \left[1 + (\frac{t}{\alpha})^{-b} - 1 + (\frac{t}{\beta})^{-b_1} \right]}{\log a \left[\frac{1 + (\frac{t}{\alpha})^{-b}}{1 + (\frac{t}{\beta})^{-b_1}} \right]} \]

(3.5)

Continuation Region:

\[\frac{\log(\frac{b}{\alpha-a}) + a \left[1 + (\frac{t}{\alpha})^{-b} - 1 + (\frac{t}{\beta})^{-b_1} \right]}{\log a \left[\frac{1 + (\frac{t}{\alpha})^{-b}}{1 + (\frac{t}{\beta})^{-b_1}} \right]} < N(t) < \frac{\log(\frac{b}{\alpha-a}) + a \left[1 + (\frac{t}{\alpha})^{-b} - 1 + (\frac{t}{\beta})^{-b_1} \right]}{\log a \left[\frac{1 + (\frac{t}{\alpha})^{-b}}{1 + (\frac{t}{\beta})^{-b_1}} \right]} \]

(3.6)

It may be noted that in the above model the decision rules are exclusively based on the strength of the sequential procedure \((a, \beta)\) and the values of the respective mean value functions namely, \(m_0(t)\), \(m_1(t)\). If the mean value function is linear in \(\beta\) passing through origin, that is, \(m(t) = \lambda t\) the decision rules become decision lines as described by (Stieber 1997). In that sense Eq. (3.1), (3.2), (3.3) can be regarded as generalizations to the decision procedure of Stieber. The applications of these results for live software failure data are presented with analysis in Section 5.

4. Parameter Estimation Based On Interval Domain Data

Parameter estimation is of primary importance in software reliability prediction. Once the analytical solution for \(m(t)\) is known for a given model, parameter estimation is achieved by applying a technique called Maximum Likelihood Estimate (MLE). Depending on the format in which test data are available, two different approaches are frequently used. A set of failure data is usually collected in one of two common ways, time domain data and interval domain data.

The idea behind maximum likelihood parameter estimation is to determine the parameters that maximize the probability (likelihood) of the sample data. The method of maximum likelihood is considered to be more robust (with some exceptions) and yields estimators with good statistical properties. In other words, MLE methods are versatile and apply to many models and to different types of data. Although the methodology for maximum likelihood estimation is simple, the implementation is mathematically intense.

The mean value function of Pareto type IV model is given by

\[m(t) = a \left[1 - 1 + (\frac{t}{c})^{-b} \right] \]

The values of \(a\), \(b\) and \(c\) that would maximize \(L\) are called maximum likelihood estimators (MLEs) and the method is called maximum likelihood (ML) method of estimation. A set of failure data is usually collected in one of two common ways, time domain data and interval domain data. In the proposed model parameters are estimated from the interval domain data.

Assuming the given failure data set for the cumulative number of detected errors \(n_i\) in a given time interval \((0, t_i)\) where \(i = 1, 2, \ldots, n\) and \(0 < t_1 < t_2 < \ldots t_n\), then the logarithmic likelihood function (LLF) for interval domain data [4] is given by

\[\log L = \sum_{i=1}^{k} (n_i - n_{i-1}) \log [m(t_i) - m(t_{i-1})] \]

\[- m(t_k) \]

\[\log L = \sum_{i=1}^{k} (n_i - n_{i-1}) \left[\log a \left[1 - 1 + (\frac{t_{i-1}}{c})^{-b} \right] \right] \]

\[- \left[a \left[1 - 1 + (\frac{t_{i-1}}{c})^{-b} \right] \right] \]

\[- \left[a \left[1 - 1 + (\frac{t_k}{c})^{-b} \right] \right] \]
\[
\log L = \sum_{i=1}^{k} (n_i - n_{i-1}) \log \left(\frac{at_{i-1}}{c} \right)^b - \left(\frac{at_{i-1}}{c} \right)^b - \left(\frac{at_k}{c} \right)^b
\]

Accordingly parameters ‘a’, ‘b’ and ‘c’ would be solutions of the equations. Differentiating \(\log L \) with respect to ‘a’ we have

\[
\frac{\partial \log L}{\partial a} = 0
\]

\[
\sum_{i=1}^{k} (n_i - n_{i-1}) \left[\frac{-bt_i}{ac} + \frac{bt_{i-1}}{ac} \right] - \left(\frac{t_k}{c} \right)^b = 0
\]

\[
a = \sum_{i=1}^{k} (n_i - n_{i-1}) + \left(\frac{b(t_{i-1} - t_i)}{c} \right) \left(\frac{c}{t_k} \right)^b
\]

The parameter ‘b’ is estimated by Newton Raphson Iterative Method using the formula

\[
b_{n+1} = b_n - \frac{g(b)}{g'(b)},
\]

where \(g(b) \) and \(g'(b) \) are obtained as follows.

\[
g(b) = \frac{\partial \log L}{\partial b} = \sum_{i=1}^{k} (n_i - n_{i-1}) \left[\log (t_{i-1} + 1) - \log (t_i + 1) \right]
\]

\[
= \sum_{i=1}^{k} (n_i - n_{i-1}) \left[\log (t_i + 1) - (t_{i-1} + 1)^b \log (t_i + 1) + (t_{i-1} + 1)^b \log (t_{i-1} + 1) \right]
\]

\[
+ \sum_{i=1}^{k} (n_i - n_{i-1}) + b(t_{i-1} - t_i) \log \left(\frac{1}{t_k + 1} \right) = 0
\]

\[
g'(b) = \frac{\partial^2 \log L}{\partial b^2} = 0
\]

\[
g(b) = \sum_{i=1}^{k} (n_i - n_{i-1}) \left[\frac{2(t_{i-1} + 1)^b (t_i + 1)^b \log(t_i + 1) \log(t_{i-1} + 1)}{((t_i + 1)^b - (t_{i-1} + 1)^b)^2} \right]
\]

+ \sum_{i=1}^{k} (n_i - n_{i-1}) + b(t_{i-1} - t_i) \log \left(\frac{1}{t_k + 1} \right)

Similarly the parameter ‘c’ is estimated by using the formula

\[
c_{n+1} = c_n - \frac{g(c)}{g'(c)}
\]

Where \(g(c) \) and \(g'(c) \) are obtained as follows.

\[
g(c) = \frac{\partial \log L}{\partial c} = 0
\]

\[
g(c) = \sum_{i=1}^{k} (n_i - n_{i-1}) \left[\frac{1}{c} \left(\frac{1}{t_{i-1} + c} \right) - \frac{1}{(t_i + c)} \right]
\]

\[
+ \left(\frac{t_{i-1} - t_i}{c} \right) \left(\frac{t_k (t_{i-1} + c)}{t_{i-1} + c + 1} \right) = 0
\]

\[
g'(c) = \frac{\partial^2 \log L}{\partial c^2} = 0
\]

\[
g'(c) = \sum_{i=1}^{k} (n_i - n_{i-1}) \left[\frac{1}{c^2} + \frac{1}{(t_{i-1} + c)^2} + \frac{1}{(t_i + c)^2} \right]
\]

+ \sum_{i=1}^{k} (n_i - n_{i-1}) \left[\frac{t_{i-1} - t_i}{c^2} \left(\frac{1}{t_k} \right) \left(\frac{t_k (t_{i-1} + c)}{t_{i-1} + c + 1} \right) \right]

Solving the above equations simultaneously yields the point estimate of the parameters b and c. These equations are to be solved iteratively and their solutions in turn when substituted gives the value of ‘a’. For the present model of Pareto type IV, the parameters are estimated from [11].

5. SPRT Analysis of Live Datasets

We see that the developed SPRT methodology is for a software failure data which is of the form \([t, N(t)]\) where \(N(t)\) is the failure number of software system or its sub system in ‘t’ units of time. In this section we evaluate the decision rules based on the considered mean value function for Six different data sets of the above form, borrowed from (Pham 2005),
Based on the estimates of the parameter ‘b’ in each mean value function, we have chosen the specifications of $b_0 = b - \delta$, $b_1 = b + \delta$ equidistant on either side of estimate of b obtained through a data set to apply SPRT such that $b_0 < b < b_1$. Assuming the value of $\delta = 0.8$ and 0.1, the estimates are given in the following table.

Table 1: Estimates of a, b, c & specifications of b_0, b_1, c_0, c_1

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Estimate of 'a'</th>
<th>Estimate of 'b'</th>
<th>b_0</th>
<th>b_1</th>
<th>Estimate of 'c'</th>
<th>c_0</th>
<th>c_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pham (2005) Phase 1 Data</td>
<td>25.94999</td>
<td>0.987758</td>
<td>0.187758</td>
<td>1.787758</td>
<td>9.426542</td>
<td>9.326542</td>
<td>9.526542</td>
</tr>
<tr>
<td>Pham (2005) Phase 2 Data</td>
<td>40.85459</td>
<td>0.985385</td>
<td>0.185385</td>
<td>1.785385</td>
<td>9.40501</td>
<td>9.30501</td>
<td>9.50501</td>
</tr>
<tr>
<td>Wood (1996) Release 1 Data</td>
<td>84.19923</td>
<td>0.980175</td>
<td>0.180175</td>
<td>1.780175</td>
<td>8.857316</td>
<td>8.757316</td>
<td>8.957316</td>
</tr>
<tr>
<td>Wood (1996) Release 2 Data</td>
<td>107.3145</td>
<td>0.979778</td>
<td>0.179778</td>
<td>1.779778</td>
<td>8.483201</td>
<td>8.383201</td>
<td>8.583201</td>
</tr>
<tr>
<td>Wood (1996) Release 3 Data</td>
<td>55.49688</td>
<td>0.976831</td>
<td>0.176831</td>
<td>1.776831</td>
<td>5.718852</td>
<td>5.618852</td>
<td>5.818852</td>
</tr>
<tr>
<td>Wood (1996) Release 4 Data</td>
<td>41.94414</td>
<td>0.984384</td>
<td>0.184384</td>
<td>1.784384</td>
<td>8.627607</td>
<td>8.527607</td>
<td>8.727607</td>
</tr>
</tbody>
</table>

Using the selected b_0, b_1 and c_0, c_1 and subsequently the $m_0(t)$ and $m_1(t)$ for each model we calculated the decision rules given by Eq. (3.4), (3.5) sequentially at each ‘t’ of the data set taking the strength (α, β) as (0.05, 0.05).

Table 2: SPRT Analysis for 6 Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>T</th>
<th>N(t)</th>
<th>$R.H.S.$ of Equation 3.4 Acceptance Region ($<=$)</th>
<th>$R.H.S.$ of Equation 3.5 Rejection Region ($=>$)</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pham (2005) Phase 1 Data</td>
<td>1</td>
<td>1</td>
<td>0.23573177</td>
<td>1.959895</td>
<td>Accept</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2.01628724</td>
<td>2.670287</td>
<td></td>
</tr>
<tr>
<td>Pham (2005) Phase 2 Data</td>
<td>1</td>
<td>3</td>
<td>0.76796842</td>
<td>2.289763</td>
<td>Reject</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>1.84569167</td>
<td>3.312459</td>
<td></td>
</tr>
<tr>
<td>Wood (1996) Release 1 Data</td>
<td>1</td>
<td>16</td>
<td>2.14902602</td>
<td>3.428629</td>
<td>Reject</td>
</tr>
<tr>
<td>Wood (1996) Release 2 Data</td>
<td>1</td>
<td>13</td>
<td>2.8889844</td>
<td>4.102775</td>
<td>Reject</td>
</tr>
<tr>
<td>Wood (1996) Release 4 Data</td>
<td>1</td>
<td>1</td>
<td>0.9178152</td>
<td>2.424131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>2.06022668</td>
<td>3.50867</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8</td>
<td>2.84565194</td>
<td>4.245112</td>
<td></td>
</tr>
</tbody>
</table>
From the above table we see that a decision either to accept or reject the system is reached much in advance of the last time instant of the data.

6. Conclusion

In this paper, SPRT procedure is applied on the proposed model to detect reliable/unreliable software products. The table 2 shows that Pareto type IV SRGM as exemplified for 6 Data Sets indicates that the model is performing well in arriving at a decision. This model has given a decision of Acceptance for 1 data set, Rejection for 5 data sets. The result of the present study indicates that the model is performing well in arriving at a decision. Therefore, we may conclude that the model Pareto type IV is most appropriate model to decide upon reliability / unreliability of software.

Acknowledgements

Our thanks to Department of Computer Science and Engineering; Department of Statistics, Acharya Nagarjuna University; Department of Computer Science, Nimra Women’s College of Engineering, Vijayawada for providing necessary facilities to carry out the research work.

References

Author’s biography

Mrs. G. Sridevi received M.Sc. and M.Tech degree from Acharya Nagarjuna University. She is currently pursuing Ph.D at Department of Computer Science and Engineering, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India. She is currently working as a Vice-Principal and Associate professor in the Department of Computer Science, Nimra Women’s College of Engineering, Jupudi, Ibrahimpatnam, Vijayawada, Andhra Pradesh. Her research interests lies in Data Mining and Software Engineering.

Dr. R. Satya Prasad received Ph.D.degree in computer science in the faculty of Engineering in 2007 from Acharya Nagarjuna University, Andhra Pradesh. He received gold medal from Acharya Nagarjuna University for his outstanding performance in master’s degree. He is currently working as Associate Professor in the department of Computer Science &Engg., Acharya Nagarjuna University. His current research is focused on Software engineering. He has published several papers in National & International Journals.