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Abstract 
The existence, uniqueness and global robust exponential stability 
is analyzed for the equilibrium point of a class of neutral-type 
neural networks with time-varying delays. By dividing the 
variation interval of the time delay into two subintervals with 
equal length, a more general type of Lyapunov functionals is 
defined. Following the idea of convex combination and free-
weighting matrices method, new delay-dependent stability 
criteria are presented in terms of linear matrix inequalities 
(LMIs). Three examples are also given to illustrate the 
effectiveness and less conservativeness of our proposed 
conditions than some previous ones. 
Keywords: Global robust exponential stability, neutral-type 
neural networks, Jensen integral inequality, linear matrix 
inequality(LMI),  free-weighting matrix 

1. Introduction 

Recurrent Neural Networks can be represented as 
differential equations that describe the evolution of the 
model as functions of time. These differential equations 
have received increasing interest due to their promising 
potential applications in areas such as classification, 
combinatorial optimization, parallel computing, signal 
processing and pattern recognition. Such applications 
heavily depend on the dynamic behavior of networks, 
therefore, the analysis of these dynamic behaviors is a 
necessary step for practical design of neural networks. Up 
to now, many important results on the stability have been 
reported in the literature, see e.g. [2,5–23] and references 
therein. 
 
In the design of neural networks, however, one is not only 
interested in global stability, but also in some other 
performances. Particularly, it is often desirable to have a 
neural network that converges fast enough in order to 
achieve fast response.  Considering this, many researchers 
have studied the exponential stability analysis problem for 
delayed neural networks and a great number of results on 
this topic have been reported in the literature [2,6,8,9,12, 
13,16–20]. 
 
On the other hand, due to the complicated dynamic pro-
perties of the neural cells in the real world, the existing 
neural networks model in many cases can't characterize 

the properties of a neural reaction process precisely, so the 
neural networks system will contain some information 
about the derivative of the past state to model the 
dynamics for such complex neural reactions  [2,8–
11,18,22]. For neutral-type neural networks with constant 
delays, by employing LMI techniques, Xu et al. [18] 
obtained a delay-dependent exponential stability condition 
with the assumption of the boundedness and monotonic 
non-decreasing of the activation functions; by adopting the 
parameter model transform method, using free weighting 
matrices  approach and LMI techniques, Park J.H. [10] 
established a delay-dependent stability condition also with 
the assumption of the boundedness and monotonic non-
decreasing of the activation functions; by using semi-free 
weighting matrices approach and LMI techniques, Mai et 
al. [9] derived two delay-dependent exponential stability 
criterion with the assumption of the  boundedness of the 
activation functions. For neutral-type neural networks with 
time-varying delays, using inequalities of vector and norm, 
employing Razumikhin's method, Cao  et al. [2] achieved 
two stability conditions; by using Jensen integral 
inequality, LMIs and Razumikhin-like approaches, Lien et 
al. [8] proposed several delay-dependent and delay-
independent stability criteria with multiple delays; by 
adopting free weighting matrices approach and LMI 
techniques, Park J.H. [10] established a delay-dependent 
stability condition with the assumption of the boundedness 
and monotonic non-decreasing of the activation functions; 
by employing LMI techniques, Zhu et al. [22] derived two 
delay-dependent robust stability criteria with the 
assumption of the boundedness of the activation functions. 
However, to the best of our knowledge, there are no 
results proving the existence of the equilibrium point of 
such neutral-type neural networks up to now, especially 
with unbounded activation functions. 
 
In this paper, we consider the existence, uniqueness and 
global robust exponential stability of the uncertain neutral-
type neural networks with time-varying delays in this 
paper. By dividing the variation interval of the time delay 
into two subintervals with equal length [21], we construct 
a new Lyapunov-Krasovskii functional and derive new 
sufficient conditions, which are delay-dependent and 
computa-tionally efficient. Following the idea of convex 
combi-nation [23], less conservative results are obtained 
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by using the free-weighting matrix approach [16] and 
Jensen integral inequality. Finally, three illustrative 
examples are also given to demonstrate the effectiveness 
of the proposed results. 

2. Problem description 

Considering the following neutral type neural networks 
with interval time-varying delays: 

( ) ( ) ( ( )) ( ( ( ))) ( ( )) ,x t Cx t Af x t Bg x t t Ex t t J          

(1) 
where 

1 2( ) ( ( ), ( ), ..., ( ))T n
nx t x t x t x t  �  is the neural state 

vector, 
1 1 2 2( ( )) ( ( ( )), ( ( )),x t t x t t x t t      ..., ( ( )))T

n nx t t , 

( ),C C C t  ( ),A A A t  ( ),B B B t    ( ).E E E t   

1 2diag{ , ,..., }nC c c c  is a positive diagonal matrix, 

( ) ,ij n nA a  ( ) ,ij n nB b  ( )ij n nE e   are known constant 

matrices, ( ), ( ), ( ), ( )C t A t B t E t    are parametric uncer-

tainties, 
0 00 ( ) 2 ( 1,..., ), 0 ( )ih t h h i n t d        are 

the time-varying delays, where 
0 , ,h h d  are non-negative 

constants. J is the constant external input vector, and 

1 1 2 2( ( )) ( ( )), ( ( )),..., ( ( )) ,( )T
n nf x t f x t f x t f x t    ( ( ( )))g x t t     

1 1 1( ( ( ))),(g x t t
2 2 2( ( ( ))),..., ( ( ( ))))T n

n n ng x t t g x t t     �  

denote the neural activation functions. It is assumed that 

( ), ( )j jf s g s   satisfy the following condition: 

 
Assumption 1 There exist constant scalars 

i jl  such that 

1 2 3 4,j j j jl l l l   and 

1 2
1 2

1 2

( ) ( )
,j j

j j

f s f s
l l

s s


 



 
                  (2) 

1 2
3 4

1 2

( ) ( )
,j j

j j

g s g s
l l

s s


 



                    (3) 

for any 
1 2 1 2, , , 1, 2,..., .s s s s j n  R  

Moreover, we assume that the initial condition of system 
(1) has the form 

( ) ( ), [ , 0]i ix t t t h    

where ( )( 1, 2,..., )i t i n   are continuous functions, 

0max{ 2 , }h h h d  . 

 
Throughout this paper, let || ||y  denotes the Euclidean 

norm of a vector 1, , , ( ), ( )n T
M my W W W W �    and 

|| || ( )T
MW W W  denote the transpose, the inverse, the 

largest  eigenvalue, the smallest eigenvalue, and the 
spectral norm of a square matrix W, respectively. Let 
W>0(<0) denote a positive (negative) definite symmetric 

matrix, I denote an identity matrix with compatible 
dimension. 

 
The definition of exponential stability is now given. 

 
Definition 1 ([18]) The system (1) is said to be globally 
exponentially stable if there exist constants 0r   and 
M>1 such that  

0
|| ( ) || sup {|| ( ),|| ( ) ||} ,( ) kt

h
x t M x x e


  

  
   

where k is called the exponential convergence rate. 
 

The time-varying uncertain matrices 
( ), ( ), ( ), ( )C t A t B t E t      are defined by: 

   0 0 0 1 2 3( ), ( ), ( ), ( ) ( ) , , , ,C t A t B t E t H E t G G G G       

(4) 
where 

0 0 1 2 3, , , ,H G G G G  are known real constant matrices 

with appropriate dimensions. 
0 ( )E t is an unknown time-

varying matrix satisfying  

0 0( ) ( ) .TE t E t I                             (5) 

 
In order to obtain the results, we need the following 
lemmas. 

 
Lemma 1 (see [1]) Let ,H K  and L  be real matrices of 

appropriate dimensions with 0.K  Then for any vectors x 
and y with appropriate dimensions, the following matrix 
inequality holds: 

12 .T T T T Tx y x x y y H L H K H L KL  

 
Lemma 2 (see [3]) Continuous map ( ) : n nT x � �  is 

homeomorphic if T(x) is injective and 
|| ||
lim || ( ) || .
x

T x


   

Lemma 3 (see [20]) Assuming that function ( )jg s  is 

defined such that 0 ( ) / ,j jg s s   where 0,j   then the 

following inequality holds 

( ( ) ( ))d ( )( ( ) ( )).j j j jg s g s g g



         

Lemma 4 (see [4]) For any positive symmetric constant 

matrix n nM � , scalars 1 2r r and vector function 

1 2:[ , ] nr r  �  such that the integrations concerned are 

well defined, then 

   2 2 2

1 1 1
2 1( )d ( )d ( ) ( ) ( )d .

Tr r r T

r r r
s s M s s r r s M s s        

 
From Lemma 1, it is easy to see that the following Lemma  
holds 

 
Lemma 5 (see [1]) Given matrices H,G with compatible 
dimensions, the following matrix inequality 
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1( ) ( )T T T T THF t G G F t H HQH G Q G    

holds for any definite positive symmetric matrix Q, where 
matrix F(t) satisfies ( ) ( ) .TF t F t I . 

 

3. Existence and uniqueness of neutral-type 
neural networks 

In order to study the existence and uniqueness of the 
equilibrium point, we define maps ( )xH  and *( )xH  

respectively as follows: 

( ) ( ) ( )x Cx Af x Bg x J     H  

and *( ) ( ) (0).x x H H H  

 
Firstly, we present a delay-dependent criterion for the 
existence and uniqueness of system (1) with time delays 

( ) ( )( 1,..., ),i t t i n    where 
0 00 ( ) 2 .h t h h     

 
Theorem 1. Under Assumptions 1, given constant scalars 

00, 0, 0, 0, 0 1, 1,r h h d         neural networks 

(1) has a unique equilibrium point for 
0 00 ( ) 2 ,h t h h     

0 ( ) , 0 ( ) 1, ( ) 1,t d t t             if there 

exist constant scalar 0,   positive definite symmetric 

matrices 
3 3 2 2 3 3 2 2[ ] , [ ] , [ ] , [ ] ,ij ij ij ij lP P Q Q R R U U S        

( 1, ..., 6),l   positive diagonal matrices ( 1, 2,3),mT m   

1 2diag{ , ,..., },k k k knD d d d real matrices 
0, ,k kX X Y  

( 1, 2,3, 4)k  with compatible dimensions  such that the 

following LMIs hold ( , 1, 2) :i j   

0

0
2 ( )

0

0 0,

0

(6)

T T T
i ij

r h ih
ij i

T

H

e S

H I





 

        
    
   

 

where 

1 2 13 1313 13 13 13
, , [ ] ,ij ij ij  

              
  

11 11 1 1 11 11 3 1 1 2 3 2 42 2 2TrP C C R U S L T L L T L        F F  
02 2

4 2 1 1 2 4 3 3 4 64 ( )( ) 4 ( )( ) ,rh rde S r L L D D r L L D D e S        
02

12 12 13 4 15 13(2 ) , , (2 ) ,rhrI C P e S rI C P         
2

16 12 17 13 18 6 19 1, , , ,rdP P e S E       F  

1,10 1 1 2 1 2 1( ) ( ) ,A C D D L L T     F  

1,11 12 2 3 4 2 1,12 1 1,13 0( ) , , ,TR C L L T B CX         F F  

02 ( 2 )
22 22 11 3 3 4 25 232 (1 ) 2 , 2 ,r h hrP e R L T L rP          

02 ( 2 )
26 22 13 27 23 29 12 2,10 12, , , ,r h h T TP e R P P E P A         

02 ( 2 )
2,12 12 12 3 4 3(1 ) ( ) ,r h hTP B e R L L T       

0 0 0 02 2 2 2
33 11 3 4 34 12, ,rh rh rh rhe Q e S e S e Q        

0 0 02 2 ( ) 2 ( )
44 22 11 45 12, ,rh r h h r h he Q e Q e Q         

0 02 ( ) 2 ( 2 )
55 33 22 11 56 232 , ,r h h r h h TrP e Q e U P        

02 ( 2 )
57 33 12 59 13 5,10 13 5,12 13, , , ,r h h T T TP e U P E P A P B         

0 0 02 ( 2 ) 2 ( 2 ) 2 ( 2 )
66 33 6,12 23 77 22, , ,r h h r h h r h hTe R e R e U             

2 2
88 6 99 5 9,10 1 2, (1 ) , ( ),rd rd Te S e S E D D          

9,11 2 9,13 0 10,10 1 2 1 2 1, , ( ) ( ) 2 ,T T T TE E X D D A A D D T         F

10,11 2 10,12 1 2 10,13 0 11,11 22 2, ( ) , , 2 ,T T TA D D B A X R T         F
02 ( 2 )

11,12 2 12,12 22 3 12,13 0, (1 ) 2 , ,r h h TB e R T B X           F
2 2 2

13,13 33 22 1 2 0 4 5 6 0 0( ) ,TR U h S S h S S d S X X         

22 1 1 3 3 23 1 2 24 3 4, , ,T T T TX X X X X X X X          
0 02 ( 2 ) 2 ( 2 )

33 2 2 44 4 4 2 45 2, , ,r h h r h hT TX X X X e S e S           
02 ( 2 )

55 2 22 1 1 3 3 24 1 2, , ,r h h T T Te S Y Y Y Y Y Y             

0 02 ( ) 2 ( )
25 3 4 33 1 34 1, , ,r h h r h hTY Y e S e S             

02 ( )
44 1 2 2 55 4 4, ,r h h T Te S Y Y Y Y            

 0 3 1 20 0 0 0 0 0 0 0 0 ,G G G G 

 11 1 20 0 0 0 0 0 0 0 0 0 0 ,X X 

 12 3 40 0 0 0 0 0 0 0 0 0 0 ,X X   

 21 1 20 0 0 0 0 0 0 0 0 0 0 ,Y Y   

 22 3 40 0 0 0 0 0 0 0 0 0 0 ,Y Y   

1 12 13 1 2 2[ 0 0 0 0 0 0 0 0 ],T TP P D D F F  

1 11 13 12 1 1 2 2 3 3 4 4 ,P R U D L D L D L D L      F  

2 23 3 4 1 2, diag{ , ,..., }, 1,2,3,4,i i i inR D D L l l l i    F  

and other parameters , , ( )ij ij ij i j     are all equal to 

zero's, then system (1) has a unique equilibrium point. 
 

Proof.  By Schwarz inequality, Lemmas 1, 2 and 
Assumption 1 we can complete the proof, here is omitted. 

 
Similar to Theorem 1, we obtain the following delay-
dependent criterion for the existence and uniqueness of 
system (1) with different time delays ( )( 1,..., )i t i n   

satisfying 0 00 ( ) 2 .ih t h h     

 
Theorem 2. Under Assumption 1, given constant scalars 

00, 0, 0, 0, 0 1, 1,r h h d         neural net-

works (1) has a unique equilibrium point for 
00 h  

0( ) 2 , 0 ( ) , 0 ( )( ) 1, ( ) 1,i it h h t d t t t               

 if there exist constant scalar 0,   positive definite 

symmetric matrices 
3 3 2 2 2 2[ ] , [ ] , [ ] ,ij ij ijP P Q Q U U      

( 1, ..., 6),lS l   positive diagonal matrices 
1diag{ ,m mR r   

2 ,..., }, ( 1, 2,3), ,m mn m kr r T m D real matrices 
0 , ,k kX X Y   
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( 1, 2, 3, 4)k  with compatible dimensions  such that the 

following LMIs hold (i,j=1,2): 

0

0
2 ( )

0

 

0 0,

0

T T T
i ij

r h ih
ij i

T

H

e S

H I





 

        
    
   

 



 

 where 

13 13 ,[ ]ij    

11 11 3 3 1 11 3 1 1 2 3 2 42 2 2TrP C C R U S LT L L T L         F F
02 2

4 2 1 1 2 4 3 3 4 64 ( )( ) 4 ( )( ) ,rh rde S r L L D D r L L D D e S          

19 3 1,10 3 1 2 1 2 1, ( ) ( ) ,E A C D D L L T        F F

1,11 3 4 3 4 2 1,12 3( ) ( ) , ,C D D L L T B         F
02 ( 2 )

22 22 1 3 3 4 26 222 (1 ) 2 , ,r h hrP e R L T L P         

02 ( 2 )
2,12 12 3 4 3 66 3 9,11 3 4( ) , , ( ),r h hT TP B L L T e R E D D             

10,11 3 4 11,11 2 2 11,12 3 4( ), 2 , ( ) ,TA D D R T D D B            

02 ( 2 )
12,12 2 3(1 ) 2 ,r h he R T        

2 2 2
13,13 3 22 1 2 0 4 5 6 0 0( ) ,TR U h S S h S S d S X X         

3 11 12 1 1 2 2 3 3 4 4 ,P U D L D L D L D L     F  

3 12 13 1 2 3 4[ 0 0 0 0 0 0 0 0 ],T P P D D D D    F  

other 
ij  are defined as 

ij ij   and other parameters are 

all defined in Theorem 1. 

4. Robust exponential stability results of 
uncertain delayed neural network 

In order to prove the robust stability of the equilibrium 
point *x  of system (1), we will first simplify system (1) as 
follows. Let *( ) ( ) ,u t x t x   then we have 

( ) ( ) ( ( )) ( ( ( ))) ( ( )),u t Cu t Af u t Bg u t t Ex t t          

 (9) 
where * *

1( ) ( ( ),..., ( )) , ( ( )) ( ( ) ) ( ),T
n j j j j j j ju t u t u t f u t f u t x f x    

* *( ( )) ( ( ) ) ( )j j j j j j jg u t g u t x g x     with (0) (0) 0,j jf g   

1, 2,..., .j n By inequalities (2) and (3), we can see that 

1 2 3 4

( ) ( )
, .j j

j j j j

f s g s
l l l l

s s
                 (10) 

Clearly, the equilibrium point of system (1) is robust 
stable if and only if the zero solution of system (9) is 
robust stable. 
 
Now, we present a delay-dependent criterion for the 
stability of system (1) with time delays ( ) ( )i t t    

( 1, ..., ),i n  where 0 ( ) .t    

 

Theorem 3. The unique equilibrium point of neural 
network (1) is robust exponentially stable if the conditions 
of  Theorem 1 are satisfied. 
 
Proof. Consider the following Lyapunov-Krasovskii 
functional: 
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For convenience, we denote ( ( )).u u t t     The time 

derivative of functional (11) along the trajectories of 
system (9) is obtained as follows: 
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From inequalities (10) and Lemma 3, we have 
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On the other hand, one can infer from inequalities (10) 
that the following matrix inequalities hold for any positive 
diagonal matrices ( 1,2,3)iT i   with compatible dimensions 
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Moreover, by using the Jensen integral inequality (Lemma 
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To get less conservative criterion, we introduce the 
following equality for any real matrix 

0X  with compatible 

dimension 
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（28） 
Next, we will discuss the variation of derivatives of 

( , )tV t u  for two cases, i.e., 
0 0( )h t h h   and 

0 0( ) 2 ,h h t h h    respectively. 

 
Case I: 

0 0( ) .h t h h    

 
Again from Lemma 4 we have the following matrix 
inequalities: 
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Based on Leibniz-Newton formula, for any real matrix 
( 1,...,4)iX i   with compatible dimensions, we get 
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From (12)-(33) and by applying S-procedure [1] we obtain   
Based on Lemma 5, from conditions (4) and (5) the 
following matrix inequality holds 
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Note that 
0 0( ) ,h t h h    so above matrix inequality 

holds if and only if 
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(35) 
are true. From the well known Schur complement, 
inequalities (34),(35) are equivalent to (6) with i=1,j=1 
and 
j=2 respectively, thus ( , ) 0tV t u   holds if (6) (i=1,j=1,2) 

are true. 
 
Case II: 

0 0( ) 2 .h h t h h     

 
Again from Lemma 4 we have the following matrix 
inequalities: 
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02 ( 2 )1 1
2 0 0 22 2 22 0r h hT T T TH H e S                

(42) 
are true. From the well known Schur complement, 
inequalities  (41),(42) are equivalent to (6) with i=2,j=1 
and j=2  respectively, thus ( , ) 0tV t u   holds if (6) 

(i=2,j=1,2) are true. 
 
Furthermore, following the similar line in [6], from 
Lemma 1 we have 

* 2 2
0 1 2

0
( , ) | || ( ) || sup || ( ) || ,t t

h
V t u M t x M u


 

  
     

where 
2

1

1 2 2 1 3 4 4 3 0 3

2 1 2

2 2
0 4 5 6

9 ( ) 4 ( ) 3 ( ) 1 2 ( )

2 ( ) ( ) 2 ( ) ( ) ( ),

3 ( ) 2 ( ) ( ) ( )

1 1
( ) ( ) ( ),

2 2

( )

( )

M M M M M

M M M M M

T
M M M M

M M M

M P h Q h R h U

D D L L D D L L h S

M h R h U h h S S

h S d S d S

    
    

   

  

    
      

   

  

 

and 
1 3 4max {| |, | |}.M i n i il l    

 
Meanwhile 2 * 2

11( , ) || ( ) || ( ),rt
t mV t u e t x P    by Lyapunov 

stability theory, the proof of Theorem 1 is completed. 
 
Remark 1. In Theorems 1 and 3,  by setting 

2 2 0( 1,2,3), 0,i iP P i R     we can employ this 

criterion to analyze the existence, uniqueness and stability 
of neural network (1) when ( ) 1t   or ( )t  is unknown. 

 
Remark 2.  It is easy to see that the derivatives of 

( ) ( )T t P t   and 
( )

( ) ( )d
t T

t t
s R s s


 

 
 have some terms 

containing 1 ( ).t   In order to absorb some 1 ( ),t   we 

introduce (1 ( )) ( ( ))Tt u t t      in ( )t  but not 

( ( )),Tu t t   so   contains fewer 1 ( ),t   which leads to 

a more effective result [14]. 
 

Remark 3. If 0h  is zero, by choosing the Lyapunov 

functional candidate as defined in (11) with 

3 4 00, 0,S S h    using the similar method shown in 

the proof of Theorems 1,3 and Remark 1, we can obtain a 
criterion to verify the existence, uniqueness and global 
stability of system (1). 
 

Remark 4. If ( ) ( ),f s g s   by choosing functional (11) 

with 
1 2 1 0,D D T    similar to Theorems 1,3 and 

Remark 1, we can obtain a criterion to verify the existence, 
uniqueness and global stability of system (1). 
 
Remark 5. If 

0( ) ( ), 0,j jf s g s h   by choosing 

functional (11) with 
1 2 1 3 4 00, 0,D D T S S h       

similar to Theorems 1,3 and Remark 1, we can obtain a 
criterion to verify the existence, uniqueness and global 
stability of system (1). 
 
Next, we consider the stability of system (1) with different 
time delays ( )( 1,..., )i t i n   satisfying 

0 00 ( ) 2 .ih t h h     
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Theorem 4. The unique equilibrium point of neural 
network (1) is robust exponentially stable if the conditions 
of Theorem 2 are satisfied. 
 
Proof. Consider the following Lyapunov-Krasovskii 
functional: 

8

2

( , ) ( , )t i t
i

V t u V t u


  

with

2 2 2 2
8 1 2 3( )

1

( , ) ( ) ( ) ( ) ( ( )) ( ) d ,( )
i

n trt T
t i i i i i i it t

i

V t u e t P t r u s r f u s r u s s


 




    

where 0( ) [ ( ), ( ( )), ( 2 )].T T T Tt u t u t t u t h h      The 

time derivatives of 
8 ( , )tV t u  along the trajectories of 

system (9) 
satisfy: 

2
8 1 2

2 2 2
3 1 2 3

1

( , ) 2 ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ( )) ( ( ))

( ) ( ) (1 ( )) ( ( )) ( ( ( ))) ( ( )) .

{

( )}

rt T T T T T
t

n
T

i i i i i i i i i i
i

V t u e r t P t t P t u t Ru t f u t R f u t

u t Ru t t r u t t r f u t t r u t t

   

   


   

       



   

Set 

0 0

0 0

1 1 1

( ) [ ( ), ( ( )), ( ), ( ),

( 2 ), ( ( )), ( 2 ), ( ),

( ( )), ( ( )), ( ( )), ( ( ( ))), ( ) ],

( ( )) [ (1 ( )) ( ( )), ... , (1 ( )) (

T T T T T

T T T T

T T T T T

T T T
n n

t u t u t t u t h u t h h

u t h h u t t u t h h u t d

u t t f u t g u t g u t t u t

u t t t u t t t u t

 


 
   

    
     
 

    


 

 


     ( )) ],n t
we can complete this proof in the similar way as the proof 
of Theorem 3. 
 
 Remark 6. In Theorems 2 and 4, if we set 

2 2 0,i iP P   

0( 1, 2,3),iR i   by deleting ( ( ))Tu t t   from ( ),T t  

we can employ this criterion to analyze the existence, 
uniqueness and stability of neural network (1) when some 

( ) 1i t   or some ( )i t  is unknown, i=1,...,n. 

 

 Remark 7. If 
0 0h   or ( ) ( )f x g x   in neural network 

(1) with different time delays  ( )( 1,..., )i t i n  , similar to 

Remarks 4-6, we can derive criteria to analyze the 
existence, uniqueness and stability of neural networks (1). 

5. Comparison and Illustrative Examples 

Now, we provide three numerical examples to demonstrate 
the effectiveness and less conservativeness of our delay-
dependent stability criteria over some recent results in the 
literature. 

 
Example 1. Consider system (9) with ( ) ( )i t t    

( 1, ..., 4)i   and 

diag{1.2769, 0.6231, 0.9230, 0.4480},C   

0.0373 0.4852 0.3351 0.2336

1.6033 0.5988 0.3224 1.2352
,

0.3394 0.0860 0.3824 0.5785

0.1311 0.3253 0.9534 0.5015

A

  
   
   
    

 

0.8674 1.2405 0.5325 0.0220

0.0474 0.9164 0.0360 0.9816
,

1.8495 2.6117 0.3788 0.8428

2.0413 0.5179 1.1734 0.2775

B

  
  
 
   

 

( ) ( ) ( ) 0,C t A t B t E        

1 2( ) ( ), 0, diag{0.1137,0.1279,0.7994,0.2368}.f x g x L L     

This model was studied in [5,7,23]. Obviously, 
1.1825 0.2207 0.6936 0.0605

0.1877 0.4293 0.2865 0.5249
( | |)

0.2489 0.3450 0.9259 0.3366

0.2470 0.1078 1.7002 0.5010

C A B

   
       
   
    

D
 

is not an M-matrix, where [ ] , | | [| |] ,ij n n ij n nA a B b     and 

,

| | .
ii

ij
ij

a i j
a

a i j


  

  

Therefore the stability of this model can't be ascertained 
by using Theorem 1 in [12]. 
Further, it is verified that all of the conditions given in  
[13,15,17,19]  admit no feasible solutions for any positive 
time delay or given .  That is, none of the criteria given 

in [13,15,17,19] can conclude whether this model is stable 
or not. 

 
Moreover, if we set exponential convergence rate r be 

fixed as 0.24, all of the results given in [6,16] fail to  
ascertain the stability of this system. However, by Remark 
5, we can obtain that, for constant time delay and r=0.24, 
the origin of this system is the unique equilibrium point 
which is exponential stable for any time delay with 

( ) 0.7845.t   

 
In addition, if we set time delay ( )t  be fixed as 1, the 

maximal exponential convergence rates of k in [6, 16] are 
all 0.1705. However, from Remark 5 we can confirm that 
the equilibrium point of this system is unique and 
exponential stable with convergence rate of r=0.2237. 
Furthermore, it is assumed that the exponential 
convergence rate k is fixed as zero (i.e. asymptotical 
stability), the maximal upper bounds of time delay ( )t  

for various  's from Remarks 5 and 6 in this paper and 

those in [5–7,16,23] are listed in Table I, where  
``unknown  " means that   can be arbitrary value or 

( )t  can be not differentiable. It is clear that the results in 

this paper are markedly better than those in [5–7,16,23]. 
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Table I Calculated maximal upper bounds of time delays ( )t  for 

various   of Example 1 with r=0 

0h  methods 0   0.5   0.9  unknown 
  

0 [5,16] 3.584
1 

2.5376 2.0853 2.0389 

0 [23] 3.732
7 

2.5943 2.1306 2.0770 

0 [7] 4.094
5 

2.7353 2.2760 2.1326 

0 Remark 5 4.583
8 

4.0245 3.2947 2.3746 

1 [5] 3.584
1 

2.5802 2.2736 2.2393 

1 Remark 4 4.654
5 

4.0519 3.4141 2.4978 

2 [5] 3.584
1 

2.7500 2.6468 2.6298 

2 Remark 4 4.662
0 

4.0519 3.5042 2.7780 

 
Example 2. Consider system (1) with constant time delay 

( ) ( ) ( 1, 2,3)i t t d i     and 

diag{2.7644,1.0185,10.2716},

0.2651 3.1608 2.0491

3.1859 0.1573 2.4687 ,

2.0368 1.3633 0.5776

0.7727 0.8370 3.8019

0.1004 0.6677 2.4431 ,

0.6622 1.3109 1.8407

0.2076 0.0631 0.3915

0.078

C

A

B

E



  
    
  
  
   
   

 

1 2

0 0.3106 0.1009 ,

0.2763 0.1416 0.3729

( ) ( ) ( ) ( ) 0,

( ) ( ), 0, diag{0.1019,0.3419,0.0633}.

C t A t B t E t

f x g x L L

 
 
 
  

       

   

 

This model was studied in [9, 18]. Ref. [18] illustrated that 
the maximum bound of delays is 1.0344. Let m=3 in [9], 
the authors obtained the upper bound of delay is 82. 
However by using our Remark 5 to this example, we can 
obtain the system is feasible for any d>0. It means that the 
system is delay-independent stable, which shows that our 
criteria  are less conservative than [9,18]. 
Example 3. Consider system (9) with 

0 0 0

1 2 3

1

0.5 0.75 0.4 0.5 0.4 0.1
1.5 , , , ,

0 0.5 0 0.5 0.2 0.45

cos(2 ) 0 0.2 0.5
0.5 , ( ) , ,

0 cos(3 ) 0.3 0.5

0.3 0.5 0.3 0.5 0.5 0
, , ,

0.5 0 0.5 0.3 0.5 0.5

(

C I A B E

t
H I E t G

t

G G G

f

     
              

   
     

   
      

            


2 1 2

1 1
) ( ) (| 1| | 1|), ( ) ( ) (| 1| | 1|).

2 4
s f s s s g s g s s s           

Thus the neural activation functions satisfy the inequalities 
(2) and (3) with 

1 3 2 40, , 0.5 .L L L I L I    For the case 

with ( ) ( )( 1,2),i t t i    if we set 0, 0.9,r    

( ) 1,t  from Remark 3 we can obtain that the system has 

a unique equilibrium point which is robust stable for any 
time delay with 0 ( ) 2.6653.t   

For the case with different time delays
1 2( ) ( ),t t   if we 

set 0, ( ) 1,r t   from Remark 7 we can obtain that the 

system has a unique equilibrium point which is robust 
stable for any time delay with 0 ( ) 2.0768i t   even if 

any ( ) 1i t   or any ( )( 1, 2)i t i   are unknown. 

Therefore, we can say that for these three systems the 
results in this paper are much effective and less 
conservative than those in [5–7,9,12,13,15–19,23].  

6. Conclusions 

In this paper we have investigated the uniqueness and 
global robust stability problem of uncertain neural 
networks of neutral-type. By employing new Lyapunov 
Krasovskii functional, we proposed several novel stability 
criteria for the considered systems. The obtained results 
are all in the form of LMIs, which can be easily optimized. 
Finally, three examples are given to show the superiority 
of our proposed stability conditions to some existing ones. 
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