
ADecentralized Fault Tolerant model for Grid Computing
Mohammed REBBAH1, Yahya SLIMANI2, Abdelkader BENYETTOU1

1 Université des Sciences et Technologie d’Oran – Mohammed BOUDIAF, ALGERIE

2 Computer Science Department, University of El Manar, Tunis, Tunisia

Abstract
A current trend in high-performance computing is the use
of large-scale computing grids. These platforms consist of
geographically distributed cluster federations gathering
thousands of nodes. At this scale, node and network
failures are no more exceptions, but belong to the normal
system behavior. Thus, grid applications must tolerate
failures and their evaluation should take reaction to failures
into account. The failures of distributed computing system
can be divided into three categories: node crash, network
failure and process fault. The fault tolerance is a significant
and complex issue in grid computing systems. Various
techniques have been investigated to detect and tolerate
faults in distributed computing systems. We propose, in this
paper, a decentralized model of fault tolerance based on
dynamic colored graphs. From this model, we show
through some experiments, the benefits of colored graphs
to manage failures in grids.
Keywords: Large scale systems, Grid computing, Fault
tolerance, Dynamic colored graph.

1. Introduction

A current trend in high-performance computing is the use
of large-scale computing grids. These platforms consist of
geographically distributed cluster federations gathering
thousands of nodes on the Internet [1]. At this scale, node
and network failures are no more exceptions, but belong to
the normal system behavior. Thus, grid applications must
be able to tolerate failures to ensure some quality of service
in grids. The failures of distributed computing system can
be divided into three categories [2]: node crash, network
failure and process fault. The fault tolerance is a significant
and complex issue in grid computing systems. Various
techniques have been investigated to detect and correct
faults in distributed computing systems [2]. In this paper,
we address the problem of fault tolerance in grids by
proposing two complementary models: the first model is
used to represent a grid as a dynamic colored graph.
Starting from this representation, the second model defines
a fault tolerance technique. The main contribution of the

proposed fault tolerance model is to define for each node in
a grid, a set of neighbors collaborators able to replace it in
case of failure. The number of neighbors collaborators of a
node is limited by a threshold α defined by the user. In a
first phase, we identify collaborators from neighboring
nodes (nodes having a direct connection with the failed
one). These nodes are then classified into three categories
depending on the value of the threshold α as follow: stable,
unstable and hyperstable nodes. In a second phase, called
stabilization phase, each unstable node attempts to auto
stabilize through hyperstable nodes across the graph.
The reminder of the paper is organized as follows: Section
2 gives an overview on different works on fault tolerance in
grid computing. Related work is discussed in section 3.
Section 4 describes our proposition for modeling a grid
with a dynamic colored graph; it also discusses issues
vertex coloring, the computation of the tolerance threshold,
the graph stabilization and the different types of
dynamicity. Section 5 presents a mathematical formulation
of the proposed model. Section 6 discusses some
experimental results of our model. Finally, Section 7
concludes the paper and gives some directions for future
research.

2. Fault tolerance in grid computing

Failure in large-scale Grid systems is and will be a fact of
life. Hosts, networks, disks and applications frequently fail,
restart, disappear and behave unexpectedly. Support for the
development of fault tolerant applications has been
identified as one of the major technical challenges to
address for the successful deployment of computational
grids [3, 4, 5]. Three techniques for fault tolerance in grid
computing have been of particular importance: (i)
checkpointing, or periodical saving of the state of a process
running on a computational resource so that, in the event of
failure, it can be migrated to an operational resource [6,7],
(ii) replication, i.e. maintaining a sufficient number of
replicas, or copies, of a process executing in parallel with
identical state but on different resources, that at least one
replica is almost guaranteed to finish the process correctly
[8,9,10] and (iii) in the event of failure, rescheduling, or

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 123

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

finding different resources to that can accept and run failed
tasks [11,12,13]. Several approaches for the
implementation of fault tolerance in message-passing
applications exist. MPICHGF [14] is a checkpointing
system based on MPICH-G2 [15], a Grid-enabled version
of MPICH. It handles checkpointing, error detection, and
process restart in a manner transparent to the user [16].
Pawel Garbacki et al. address the problem of making java-
RMI parallel applications fault tolerant in a way transparent
to the programmer [17]. Azzedin and Maheswaran [18]
suggest to integrate the concept of trust into grid resource
management. Abawajy [19] present a Distributed Fault-
Tolerant Scheduling System (DFTS) to provide fault
tolerance for jobs execution in a grid environment. Song
[20] developed a security-binding scheme through site
reputation assessment and trust integration across grid sites.
A Fuzzy-logic based Self-Adaptive job Replication
Scheduling (FSARS) algorithm is proposed to handle the
fuzziness or uncertainties of job replication number which
is highly related to trust factors behind grid sites or user
jobs was presented by Congfeng Jiang et al [21].

3. Related work

A Grid system architecture describes the structure of a grid
system, which consists of nodes and their interconnections.
Nodes, or sites, contain grid resources and related software
components. A Grid architecture can be viewed as the high-
level design of a grid system. It is very important with
regards to scalability, autonomy, and performance of the
system. It can be divided into three categories: centralized,
hierarchical, and decentralized. In contrast, decentralized
organization negates the limitations of centralized or
hierarchical organization with respect to fault-tolerance,
scalability, and autonomy (facilitating domain specific
resource allocation policies). This approach scales well.
However, this approach raises some challenges related to
distributed information management, system-wide
coordination, security, and resource provider's policy
heterogeneity. For instance, the complexity of a
decentralized Grid system is much higher than a centralized
Grid system because of the interaction and coordination of
a large number of decentralized components.
A number of researchers investigated how decentralizing
data replication management services can be used to
improve fault tolerance in data grids. In [22], Chervenak et
al. described a decentralized replica location service for the
Globus toolkit [23] that was designed to be scalable and
fault tolerant. Here, distributed, redundant indexes
maintaine information on data replicas in a consistent
manner. Zhang et al. [24] proposed an algorithm for
dynamically locating data replica servers within a grid to
optimize performance and improve fault tolerance, though
scalability issues were not examined. In [25], Abbes et al.
proposed to eliminate the need for a centralized server,
therefore to remove the single point of failure and
bottleneck of existing Desktop Grids. Instead, each node

can play alternatively the role of client or server. They
designed the PastryGrid protocol (based on Pastry) for
Desktop Grid in order to support a wider class of
applications, especially for distributed applications with
precedence between tasks. In [26], Aliaa et al. describes an
agent based resource management system, ARMS, that
includes an adaptable decentralized service advertisement
strategy to reduce the cost of the advertisement process
within ARMS system. A Performance Monitoring and
Advisory component is implemented to compare the
developed strategy with those previously defined in the
literature. This strategy is more adaptable to continuous
changes in both workload and structure.
All these works did not include the identification of nodes
that can replace each failed node in the grid. In this paper,
each node identifies a set of neighbors collaborators able to
replace it in case of failure. The number of neighbors
collaborators of a node is limited by a threshold α. The
nodes are then classified into three categories depending on
the value of the threshold α as follow: stable, unstable and
hyperstable nodes.
Much of the works that model the grid as a graph [27, 28,
29], where the vertices represent the nodes of the grid and
connections between nodes by edges, but they do not model
the dynamic nature of grid resources, that can
unpredictably appear and disappear. In this paper, we
propose a decentralized fault tolerance model; we take into
account all its aspects by modeling the grid as a dynamic
colored graph.

4. Model graph

In this paper, we model a grid computing as an undirected
graph G=(V, E), where the vertices V={v1,v2,...,vn}
represent all the resources (nodes) of the grid; the set
E={e1,e2,…, em} represents the edges (connections) between
the resources. Also, each edge eiE has an arbitrary, non-
negative weight. The distance between two vertices vi and
vj, d(vi,vj), is the sum of the weights of edges along a
shortest path between vi and vj. To take into account the
dynamic nature of grid resources, the graph G will be
dynamic: at any time t, the graph may be subject to
additions and/or deletions of vertices or edges. For this, we
define as Gt=(V,E), the graph G at time t. The function
Neighbort(vi) denotes all neighboring vertices of vertex vi at
time t. To take into account the heterogeneity of resources,
we associate with each vertex a color indicating the type of
the resource, such that all the colors represent the types of
resources in the grid (see Definition 1). By combining all
these properties, we can model a grid as a dynamic colored
graph (see Definition 2).
Definition 1: (COLORED GRAPH)
A colored graph G =(V, E, C, A) is a 4-uplet defined as
follows:

V: non-empty finite set representing the vertices
E: V V ; set of edges
C: non-empty set of colors

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 124

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

A: V C ; set of colors assigned to each vertex.
Definition 2: (DYNAMIC COLORED GRAPH)
A dynamic graph colored is the triple (G0, T, P) defined

as follows:
G0=(V, E, C, A) is the initial colored graph (at time 0)
T is a continuous or discrete time basis
P is an evolutionary process.

4.1. Coloring rule

Each vertex vi of the graph consults its neighbors
Neighbort(vi) for mutual cooperation in case of failure;
these vertices are considered as neighbors collaborators
(NeighbColt(vi)). We define, for a graph, a threshold α that
determines the sufficient number of neighbors to
adequately tolerate the faults of any vertex vi; this threshold
represents the degree of tolerance in our model. Ct(vi)
defines the color of the vertex vi at time t. For each vertex
vi, if |NeighbColt(vi)|=α, it will be colored in Green color
(Ct(vi)= G) and it will be considered as a stable vertex; if
|NeighbColt(vi)|<α, it will be colored in Red color (Ct(vi)=
R) and it will be considered as unstable vertex; finally if
|NeighbColt(vi)|>α, it will be colored in Blue color (Ct(vi)=
B) and it will be considered as hyperstable vertex (see
Figure 1).

Fig. 1: Dynamic colored graph (25 vertices, 45 edges and α =3).

4.2. Stabilization protocol

Once the vertices are colored, the unstable vertices (with
Red color) attempt to auto stabilize through hyperstable
vertices. A vertex vi with color Ct(vi)=R explores
Neighbort(vi) while looking for hyperstable vertices, e.g.
Hypt(vi)={y| Ct(y)=B and y Neighbort(vi)}. The vertex vi

sends requests to vertices y∈Hypt(vi) to provide it, among
their Neighbors Collaborators {z| zNeighbColt(y), z
Neighbort(vi) and z Hypt(y)}, e.g., the vertices that accept
to collaborate with vi. This will reduce the number of
NeighbColt(y) of the vertex y until α (e.g., y becomes
stable). For the vertex vi, the process stops when it
becomes stable. Otherwise, the vertex vi looks in the graph
for the closest hyperstable vertex to stabilize. The

stabilization process stops when it’s impossible to change
anymore the vertices color in the graph (see Figure 2).

(a): Graph G after coloration

(b): Graph G after stabilization
Fig. 2: Graph G (15 vertices, 27 edges and α=4) after coloration

and stabilization

4.3. Graph dynamicity

The dynamicity of the graph is characterized by the
addition and the deletion of edges and vertices. Foremost,
we must ensure the presence of vertices. To do so, we
define a delay tmax where each vertex must send its
heartbeat message to all its neighbors; after this delay, it
will be considered absent from the graph and its neighbors
are responsible for transmitting its failure to all other
vertices of the graph. When a new vertex is added to the
graph, it will be colored according to the number of its
neighbors and then it will undergo a possible stabilization
phase. When the graph reaches a high level of dynamicity,
we reactivate the coloration and the stabilization in the
whole graph.

5. Mathematical formulation

In this section, we propose a mathematical formalization of
our proposed model.

5.1. Vertices state

The vertices are colored during the phase of coloration by
the three basic colors (Red, Green and Blue). During the
stabilization phase, the vertices may eventually change
color following the lemmas 1 and 2, where each red vertex
tent to stabilize while consuming the surplus of the
neighboring collaborators of the blue vertices.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 125

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Lemma 1:
Let vi be a vertex such that Ct(vi)=Red and
|NeighbColt(vi)|=β (β< α). Vertex vi can change its color to
Green if and only if ∃ a set A= { y| Ct(y)=Blue and∑ | ℎ ()|= α-β}.
Proof: Consider a vertex vi with a set of neighbors
collaborators less than α. The change of its color is required
by the existence of one or more vertices having neighbor
collaborators above the threshold α and which can
complete the neighbor’s collaborators of vi until it reaches
α. In this case, its color will become Green otherwise it
remains Red (see Figure 3).
Lemma 2:
Let vi be a vertex such that Ct(vi)=Blue and
|NeighbColt(vi)|=β (β> α) . Vertex vi can change its color to
Green if and only if ∃ a set A= {y/ Ct(y)=Red
and∑ | ℎ ()|= β- α }.
Proof: Consider a vertex vi with a set of neighbors
collaborators above the threshold α. The change of its color
is determined by the existence of one or more vertices
having neighbors collaborators less than α and which can
consume the neighbors collaborators of vi until it reaches α
and it color will become Green, otherwise it remains Blue
(see Figure 3).

Fig.3: Different states of the graph vertices
The Figure 3 shows the different situations when vertices
change its colors:
a) In Figure 3(a), the unstable vertex (Red color) stabilizes
(becomes Green) throught the hyperstable vertex, which
remains hyperstable.
b) In Figure 3(b), the unstable vertex fails to stabilize
although it took all neighboring collaborators of the
hyperstable vertex, which become stable.
c) In Figure 3(c), the unstable vertex stabilizes with all
neighboring collaborators of the hyperstable vertex and
they become all stables.

5.2. Graph state

The phases of coloration and stabilization generate various
kinds of colored graphs. Also, we will focus on all the
colors that might exist in the graph at time t.

Definition 3:
The state of the graph G, defined as (Statet (G)), is a set of
the current colors in the graph at time t.

Statet (G) = {GB} means that all the colors present in G are
Green and Blue (see Figure 4).

Fig. 4: Dynamic colored graph (8 vertices, 18 edges and
α = 2); Statet (G) = {GB}.

From the three basic colors (RGB), all possible states of the
graph are: Statet (G) = {G, R, B, GR, GB, RB, RGB}. The
Table 1 shows each state and its phase of appearance.

State Coloration Stabilization
R Yes Yes
B Yes Yes
G Yes Yes
GB Yes Yes
GR Yes Yes
RB Yes No
RGB Yes No

Table 1: Different states of the dynamic colored graph and
their corresponding phases.

Three cases are possible:
1. Statet (G) = {R} or {B}: these two states can be generated
only from the coloration phase and are stable directly; we
will call them isolated states.
2. Statet (G) = {G} or {GB} or {GR}: these three states can
be obtained from the coloration phase, or from the states of
the 3rd case, and they are also stable; we will call them
terminal states.
3. Statet (G) = {RB} or {RGB}: these two states are only
obtained from the coloration phase and they represent the
intermediate states that always converge toward a
terminal state; the state {RB} converges toward the states
{G} or {GB} and the state {RGB} converges toward all the
terminal states {G} or {GB} or {GR} (see Figure 5).

Fig. 5: Different graph states
Theorem: The graph always converges to a stable state {G,
R, B, GR, GB}.
Proof: For each graph G, we have Statet (G) ={G, R, B,
GR, GB, RB, RGB}; according to Lemmas 1 and 2, only the
Blue and Red vertices can change their colors. The vertices
continue to change their colors if there is no simultaneous

a b c

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 126

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Red and Blue vertex; therefore, G always converges to the
isolated and terminal states.

6. Evaluation and performance

In this section, we evaluate the performance of our model
through a simulation based on discrete events, using
Graphstream [33]. We measure in particular, its transient
behavior (the number of different colors of the vertices
according to α, the stabilization time, the influence of
computation of the tolerance degree α on the coloration and
stabilization of vertices, the scalability of the model and the
impact of the rate of dynamicity on the structure of the
graph). Each simulation is performed on an undirected
graph, randomly generated as follows: given a set of
vertices and a number of edges added between vertices
pairs, the weights of the edges are selected randomly.

6.1. Computation of the tolerance degree

In our model, the value of the tolerance degree α is crucial
for the vertices coloring. We propose four methods to
compute the threshold α:

1. Average neighbors: In this method, the threshold
is calculated using the equation 1.

= ∑ ()∈ | | (1)

2. Modulo: With this method, we select the most
repeated number of neighbors for all the vertices
of the graph.

3. Iterative: In this method, the threshold is
calculated iteratively. First, it takes the greatest
number of neighbors in the graph, (α
=Max(Neighbor(vi)), viV); then, it is reduced
until the number of stable vertices becomes
greater than the unstable vertices number.

4. User: In this last method, the user defines its own
value of α.

6.2. Influence of the tolerance degree on the vertices
colors

6.2.1. Coloration phase

In this experimentation, we vary the number of vertices
from 100 to 1000, we fix the number of edges at 3000, we
create a graph for each case and we calculate the colors of
vertices using each of the previous methods of the tolerance
degree computation (see Table 2).

#
Vertices

M1: Average
neighbors

M2: Modulo M3 : Iterative

α R G B α R G B α R G B
100 60 45 5 50 58 28 10 62 47 0 1 99
200 30 96 16 88 29 79 17 104 22 5 8 187
300 20 140 29 131 20 140 29 131 10 0 3 297
400 15 188 47 165 14 141 47 212 8 4 10 386
500 12 225 66 209 12 225 66 209 6 11 12 477
600 10 277 76 247 8 112 88 400 5 16 23 561
700 8 262 89 349 9 351 99 250 4 26 24 650
800 7 301 114 385 6 178 123 499 4 47 56 697
900 6 316 139 445 6 316 139 445 4 87 95 718

1000 6 464 142 394 5 294 170 536 3 54 95 851
Table 2: Vertex coloring by the three methods of the tolerance degree computation

The iterative method always gives a lower degree of
tolerance compared to other methods; colors Red and
Green are very close with an average value of 3.30% for
Red, 4.52% for Green and 92.18% for Blue. The degrees of
tolerance of method M1 are always greater or equal to
those of method M2 with a maximum difference equal to 2.
Both methods give very small green vertices compared to
other colors. The distribution of the Red and Blue colors is
not regular.

6.2.2. Stabilization phase
After the stabilization phase of previously colored graphs,
all vertices colored by the method M1 converge to the
Statet (G)={G}; in the contrary, those colored by methods
M2 and M3 converge to the Statet (G)={GB}, and the Blue
vertices reach up to 96.12% in the method M3. The method

M1 always gives the best value of the tolerance degree
because all vertices converge to a stable state (see Table 3).

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 127

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

#
Vertices

M1: Average neighbors M2: Modulo M3 : Iterative
α R G B α R G B Α R G B

100 60 0 100 0 58 0 53 47 47 0 1 99
200 30 0 200 0 29 0 151 49 22 0 13 187
300 20 0 300 0 20 0 300 0 10 0 3 297
400 15 0 400 0 14 0 274 126 8 0 14 386
500 12 0 500 0 12 0 500 0 6 0 23 477
600 10 0 600 0 8 0 242 358 5 0 40 560
700 8 0 700 0 9 107 593 0 4 0 51 649
800 7 0 800 0 6 0 383 417 4 0 111 689
900 6 0 900 0 6 0 656 244 4 0 201 699

1000 6 0 1000 0 5 0 604 396 3 0 160 840
Table 3: Stabilization phase by different methods of the tolerance degree computation

6.3. Path length stabilization

The stabilization of a vertex vi tries to find the maximum of
neighbors collaborators in the whole graph. We study the
path length from the vertex vi to its neighbors collaborators;
we consider the length of a path as the number of edges that
the path uses. We vary the number of vertices from 100 to
1000, we fix the number of edges at 3000 and we use the
average neighbors method to compute α (M1 method).
Table 4 shows the unstable vertices from the coloration
phase and the stabilized vertices for each path length. The
results show that the maximum length reached is equal to 4,
with an average of 87.72% for paths of length 2, 11.35%
for paths of length 3 and 0.93% for paths of length 4.
6.4. Stabilization time

In this section, we focus on stabilization time; we varied
the number of vertices from 100 to 900 with 3000 edges.
The coloring phase offers a varied number of unstable and
hyperstable vertices (see Table 2). The stabilization time
does not depend on the number of edges in the graph but on
the number of unstable vertices that seeks to stabilize and
on the number of hyperstable vertices available in the
graph.
1. Method M3 provides a very small number of unstable
vertices (3.30% of unstable vertices) with a very high
number of hyperstable vertices (92.18%), which ensures
stability in record time.
2. Methods M1 and M2 provide a very close rate of
hyperstable and unstable vertices (43.44% of unstable
vertices and 44.87% of hyperstable vertices for M1, and
35.00% of unstable vertices and 52.03% of hyperstable
vertices for M2). Their stabilization time is almost the same
(see Figure 6).
The stabilization time is the order of milliseconds (5.19 ms
for 100 vertices and 14.55 ms for 900 vertices), because of
its decentralization, which shows its speed, and the
difference of the stabilization time between a graph of 100
vertices and a graph of 900 vertices is 9.35 ms, which
shows the scalability of our model (see Figure 6).

7. Conclusion

In this paper, we defined a model transforming a grid
computing to a dynamic colored graph. Starting from this
graph, we proposed a mechanism of fault tolerance. For the
coloration of vertices (nodes of a grid), we defined a degree
of tolerance, noted , allowing us to obtain unstable, stable
and hyperstable vertices. This characteristic of the vertices
depends, for a given vertex, on the number of its neighbors
collaborators (vertices that can replace it in case of failure).
Regarding the unstable vertices, we defined a stabilization
process that allows the unstable vertices to stabilize through
the hyperstable ones. In the proposed model, the graph
always converges to a stable state. The simulation results
show the influence of the tolerance degree computation
method in the convergence of the graph. We noted from
our experimentations that the method based on the average
neighbors (method M1) yielded better results in terms of
stabilization of vertices. In this method, the graph
converges rapidly with little effect of the number of
vertices of the graph, which makes it very effective in
scalability. Based on these preliminary results, it seems that
the proposed model can be used for other environments like
grids, where we can found dynamicity, heterogeneity and
scalability. Among these environments, we think that P2P
systems and wireless networks provide good platforms for
testing the adaptability of our model to this type of
infrastructure. We also believe that the proposed model can
be adapted to address other issues of large-scale systems,
such as load balancing and data replication.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 128

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

#
Vertices

Unstable
vertices

Stable vertices

Path length= 2 Path length= 3 Path length= 4
100 45 44 1 0
200 96 89 7 0

300 140 126 13 1
400 188 173 14 1
500 255 185 66 4
600 277 227 44 6

700 262 228 30 4
800 301 253 41 7
900 316 270 33 13

1000 464 395 50 19
Table 4: Stable vertices by path length

Fig. 6: Stabilization time

References

[1] Foster, I., Kesselman, C.: The Grid: Blueprint for a New
Computing Infrastructure. eds. San Francisco, Calif.: Morgan
Kaufmann Publishers, 1999, 677 P.

[2] Jin, H., Zou, D., Chen, H., Sun, J., Wu, S., : Fault-Tolerant
Grid Architecture and Practice. Journal of Computer Science
and Technology 18(4): 423-433 (2003).

[3] Garg, R., Singh, A. K.: Fault tolerance grid computing: state
of the art and open issues. International Journal of Computer
Science & Engineering Survey (IJCSES) Vol.2, No.1: 88-97,
Feb 2011.

[4] Siva Sathya, S., Syam Babu, K.: Survey of fault tolerant
techniques for grid, Computer Science Review, Vol.4, No. 2:
101-120, 2010.

[5] Anju Bala, Inderveer Chana Fault Tolerance- Challenges,
Techniques and Implementation in Cloud Computing,
International Journal of Computer Science Issues, Vol. 9-1,
pp. 288-293, 2012

[6] Jin, H., Shi, X., Qiang W. and Zou., D. : DRIC: Dependable
Grid Computing Framework,, IEICE - Transactions on
Information and Systems, Vol.E89-D, No.2:612-623,
February 2006 [doi>10.1093/ietisy/e89-d.2.612].

[7] Jafar, S., Krings, A., and Gautier, T.: Flexible Rollback
Recovery in Dynamic Heterogeneous Grid Computing, IEEE

Transactions on Dependable and Secure Computing, Vol. 6,
No. 1:32-44, JANUARY-MARCH 2009

[8] Lac C, Ramanathan S. A Resilient Telco Grid Middleware.
Proceeding of 11th IEEE Symposium on Computers and
Communications (ISCC'06), June 2006. IEEE Computer
Society Press: Los Alamitos, CA, pp. 306-311, 2006.

[9] Jiang. C., Xu. X., Wan, J.: Replication Based Job Scheduling
in Grids with Security Assurance, Proceedings of the Third
International Symposium on Electronic Commerce and
Security Workshops (ISECS ’10) Guangzhou, P. R. China,
29-31, pp. 156-159, July 2010.

[10] Sangho, Y.,, Derrick, K., Bongjae, K., Geunyoung, P.,
Yookun, C.: Using Replication and Checkpointing for
Reliable Task Management in Computational Grids,
International Conference on High Performance Computing
and Simulation (HPCS), pp 125 - 131 , France 2010

[11] Radha, V.Sumathy A Detailed Study of Resource
scheduling and Fault Tolerance in Grid, International
Journal of Computer Science Issues, Vol. 8-6,pp. 357-361,
2011

[12] OLTEANU, A., POP, F., DOBRE, C., CRISTEA, C.: Re-
scheduling and error recovering algorithm for distributed
environments, U.P.B. Scientific Bulletin, Series C, Vol. 73,
Iss. 1: 27-38, 2011.

[13] Leyli, M. K., Maryam E. F., Ali G., Reliable Job Scheduler
using RFOH in Grid Computing, Journal of Emerging Trends
in Computing and Information Sciences Vol. 1, No. 1:43-48,
July 2010

[14] Woo, N., Jung, H., Yeom, H. Y., Park, T. and Park., H.:
MPICHGF: Transparent Checkpointing and Rollback-
Recovery for Grid-Enabled MPI Processes. IEICE
Transactions on Information and Systems, 87(7):1820–1828,
2004.

[15] Nicholas, I. F., Karonis, T., Toonen, B: MPICH-G2: A Grid-
enabled implementation of the Message Passing Interface.
Journal of Parallel and Distributed Computing, 63(5):551–
563, May 2003.

[16] Díaz, D., Pardo, X. C., Martín, M. J., González, P.:
Application-Level Fault-Tolerance Solutions for Grid
Computing; Eighth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID’08), IEEE
Computer Society, Washington, USA, pp. 554-559, 2008.

0
2
4
6
8
10
12
14
16

100 200 300 400 500 600 700 800 900

Ti
m

e
(m

s)

Vertices

M1

M2

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 129

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

[17] Pawel, G., Bartosz, B., Henri, E. B.: Transparent Fault
Tolerance for Grid Applications. Proceedings of the
European Grid Conference (EGC 2005), Amsterdam, The
Netherlands, pp. 671-680, 2005.

[18] Azzedin, F., Maheswaran, M.: Integrating trust into grid
resource management systems; In: Proceedings of the
International Conference on Parallel Processing (ICPP’02),
IEEE Computer Society Press, Los Alamitos, pp. 47–54,
2002.

[19] Abawajy, J.: Fault-Tolerant Scheduling Policy for Grid
Computing Systems; In Proceedings of the 18th International
Parallel and Distributed Processing Symposium, IPDPS’04,
Santa Fe, New Mexico, pp. 238–244, 2004.

[20] Song, S., Hwang, K., Kwok, Y.: Trusted grid computing
with security binding and trust integration; Journal of Grid
Computing , pp. 53–73, 2005.

[21] Jiang, C., Wang, C., Liu, X., Zhao, Y.: A Fuzzy Logic
Approach for Secure and Fault Tolerant Grid Job Scheduling;
Autonomic and Trusted Computing, 4th International
Conference, ATC 2007, Hong Kong, China, Volume 4610,
pp. 549-558 of Lecture Notes in Computer Science, Springer,
July 11-13, 2007.

[22] Chervenak, A., Palavalli, N., Bharathi, S., Kesselman, C?,
Schwartzkopf, R.: Performance and scalability of a replica
location service. Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing,
June 2004. IEEE Computer Society Press: Los Alamitos, CA,
182–191, 2004.

[23] The Globus Toolkit. http://www.globus.org/toolkit/ [May,
20, 2011].

[24] Zhang, Q., Yang, J., Gu, N., Zong, Y., Ding, Z., Zhang, S.:
Dynamic replica location service supporting data Grid
systems. Proceedings of the Sixth IEEE International
Conference on Computer and Information Technology, IEEE
Computer Society Press: Los Alamitos, CA, September 2006.

[25] Abbes, H., Crin, C.: A decentralized and fault-tolerant
desktop grid system for distributed applications, Concurrency
and Computation: Practice and Experience; 22(3):261–277,
2010.

[26] Aliaa, A. A. Y., Atef, Z. G., Mohammed, E. E. D.: An
Efficient Decentralized Grid Service Advertisement
Approach Using Multi-Agent System. Computer and
Information Science, Vol. 3, No.:2: 220-228, 2010.

[27] Kumar, S., Das ,S. K., Biswas, R.: Graph Partitioning for
Parallel Applications in Heterogeneous Grid Environments,
Proceedings of the 16th International Parallel and
Distributed Processing Symposium, p.167, April 15-19, 2002

[28] Pallis, G., Katsifodimos, A., Dikaiakos, M.D.: Searching for
Software on the EGEE Infrastructure. Journal of Grid
Computing, Vol. 8, No.2: 281-304, 2010.

[29] Bissias, G.D., Levine, B.N., Sitaraman, R.K.: Assessing the
vulnerability of replicated network services. 7th International
Conference on emerging Networking EXperiments and
Technologies (CoNEXT), November, 2010.

[33] Dutot, A., Guinand, F., Olivier, D., Pigné, Y.: Graphstream:
A tool for bridging the gap between complex systems and
dynamic graphs; Emergent Properties in Natural and
Artificial Complex Systems. Satellite Conference within the
4th European Conference on Complex Systems, ECCS’2007,
Dresden, 2007.

Mohammed Rebbah obtained his Engineering diploma in
computer science 1993 from University of Sciences and
Technology of Oran (USTO) Algeria, and MSC in
Computer Science option Pattern Recognition and
Artificial Intelligence in 2002. He joined the Computer
Sciences at the university of Mascara, Algeria. Currently,
he is in final phase of preparing the PhD in computer
science. His research interest Grid computing, cloud
computing and distributed datamining.

Yahya Slimani studied at the Computer Science Institute
of Alger's (Algeria) from 1968 to 1973. He received the
B.Sc.(Eng.), Dr Eng and Ph.D degrees from the Computer
Science Institute of Alger's (Algeria), University of Lille
(French) and University of Oran (Algeria), in 1973, 1986
and 1993, respectively. He is currently Full Professor at
the Department of Computer Science of Faculty of
Sciences of Tunis. His research activities concern
Datamining, parallelism, distributed systems and Grid
Computing. Dr. Yahya Slimani has published more than
200 papers from 1986 to 2010. He contributed to Parallel
and Distributed Computing Handbook, Mc Graw-Hill,
1996. He is currently Scientific Expert for the European
Union. He joined the Editorial Boards of the Information
International Journal in 2000, the J.UCS Journal and
others journals.
Abdelkader Benyettou is a Professor of electrical
engineering at the University of Science and Technoogy of
Oran (USTO), Algeria. He received his BSc of
engineering in 1982 from the institute of
Telecommunications of Oran, and the MSc degree in 1986
from the Universtity of Sciences and Technology of Oran,
Algeria. In 1987, he joined the Computer Sciences
Research Center of Nancy, France, where he worked until
1991 on Arabic speech recognition by expert systems and
received his PhD in electrical engineering in 1993 from the
University of Science and Technology of Oran. His
interests are in the area of speech recognition, neural
networks, and machine learning. He has been the director
of the Signal-Speech-Image- SIMPA Laboratory,
Department of Computer Science, Faculty of Sciences,
University of Sciences and Technology of Oran, since
2002.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 1, No 2, January 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 130

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

http://www.globus.org/toolkit/

