
 

 

A Word Matching Algorithm in Handwritten Arabic Recognition 

Using Multiple-Sequence Weighted Edit Distances 

Gheith A. Abandah1 and Fuad T. Jamour2 

 

 1 Computer Engineering Department, The University of Jordan 

Amman 11942, Jordan 

 
 

2 King Abdullah University of Science and Technology 

Thuwal, Saudi Arabia 

 

 

 

Abstract 
No satisfactory solutions are yet available for the offline 

recognition of handwritten cursive words, including the words of 

Arabic text. Word matching algorithms can greatly improve the 

OCR output when recognizing words of known and limited 

vocabulary. This paper describes the word matching algorithm 

used in the JU-OCR2 optical character recognition system of 

handwritten Arabic words. This system achieves state-of-the-art 

accuracy through multiple techniques including an efficient word 

matching algorithm. This algorithm reduces the average 

sequence error for the IfN/ENIT database of handwritten Arabic 

words from 32.3% to an average word error of just 5.0%. This 

algorithm is a weighted version of the edit distance algorithm. 

The weighted version has a 5.0% advantage over the plain edit 

distance algorithm. This algorithm selects the best match 

utilizing a set of multiple probable sequences from the sequence 

transcription stage. Using multiple sequences, instead of one, 

reduces the average error by 27.0% over the weighted edit 

distance algorithm. Compared with an algorithm used in a 

leading system, this algorithm offers 6.7% lower average word 

error for the main two test sets. 

Keywords: Optical Character Recognition, Handwritten Arabic 

Words, Word Matching, Edit Distance. 

1. Introduction 

Offline cursive handwriting recognition is a hard problem 

for which no satisfactory general solutions are yet 

available. Major challenges include the overlap and 

interconnection of neighboring characters, the huge 

variability in both quality and style of human handwriting, 

and the similarities of distinct character shapes [1, 2]. 

 

Arabic is the native language of more than 440 million 

people and its alphabet is used in around 27 languages, 

including Arabic, Persian, Kurdish, Urdu, and Jawi [3]. 

Arabic is always cursive in print and in handwriting. 

Despite decades of research, there is still a lack of accurate 

Arabic handwriting recognition systems [4]. 

 

Post processing is often used to improve the recognition 

accuracy of handwritten words [5, 6]. In limited 

vocabulary applications, a word matching algorithm is 

used to map the output words to the closest lexicon words. 

 

The JU-OCR2 system for recognizing handwritten Arabic 

words achieves high accuracy using efficient segmentation, 

feature extraction, recurrent neural network (RNN), and 

word matching [7]. This paper focuses on the word 

matching stage that is used in JU-OCR2. 

 

This paper describes the experimental method used to 

develop an efficient word matching algorithm for 

recognizing handwritten Arabic words. It describes this 

algorithm and evaluates its performance. The main 

contributions of this paper are summarized as follows: 

 

 Multiple popular string distance measures are 

evaluated to select the most efficient measure. 

 A weighted distance measure is developed to take 

into consideration the similarities among the 

Arabic letters. 

 A novel accurate word matching algorithm is 

described that uses multiple-sequence weighted 

edit distances. 

 

This paper is organized as follows: The rest of this section 

reviews the related work and briefly describes the JU-

OCR2 recognition system. Section 2 describes our 

experimental setup including the samples used in this work. 

Section 3 describes and evaluates six popular string 

distance measures. Section 4 describes and evaluates a 

weighted distance measure appropriate for recognizing 

Arabic words including an optimization that leverages 

word prior probabilities. Section 5 presents and evaluates 

the final algorithm developed which uses multiple-

sequence weighted edit distances. Section 6 concludes by 

discussing the accuracy of this algorithm and compares its 

accuracy with the accuracy of a leading algorithm. 
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1.1 Related Work 

Navarro performed a detailed study on the problem of 

approximate string matching [5]. The general goal is to 

perform string matching of a pattern in a text where one or 

both of them have suffered some kind of corruption. 

 

Many general algorithms have been developed for string 

matching [8, 9, 10, 11, 12, 13]. These algorithms are 

described and evaluated in Section 3. 

 

Märgner, El Abed, and Pechwitz have organized a series 

of Arabic handwriting recognition competitions [4, 14, 15, 

16, 17]. The purpose of these competitions is to advance 

the research and development of Arabic handwritten word 

recognition systems. These competitions use the IfN/ENIT 

database [18] and have had excellent participations from 

the research leaders in the area. The participations have 

shown remarkable progress over seven years. The 

following paragraphs review some of the best systems 

concentrating on their word matching algorithms. 

 

The UOB system developed by Al-Hajj et al. won the first 

competition in ICDAR 2005. This system uses HMM 

character and word modeling [19]. Each word of the 

lexicon is built by concatenating the appropriate character 

models. Thus, no explicit word matching stage is needed. 

 

The competitions organizers also participated with their 

ARAB-IFN system in ICDAR 2005. This system got the 

second place and is described in [20]. They also use HMM 

to recognize individual characters. However, their 

recognition process assigns to an unknown feature 

sequence a valid word from the lexicon. This is done by 

calculating the probability that the observation was 

produced by a state sequence for each word of the lexicon, 

and then selecting the sequence with the highest 

probability. 

 

The Siemens system submitted by Alary et al. was the 

winner of the ICDAR 2007 competition. This system was 

adapted for Arabic script from the standard HMM-based 

Latin script word recognizer that is widely in use within 

Siemens AG for postal automation projects [21]. They use 

HMM to recognize individual characters and then they 

find the best word in the lexicon that comprises the words 

writing variants. 

 

The MDLSTM system developed by Graves was the 

winner of the ICDAR 2009 competition [22]. This system 

holds the current record for recognition accuracy on the 

main competition test set. It has a connectionist temporal 

classification (CTC) token passing algorithm for word 

matching algorithm that is integrated in the RNN CTC 

output layer. 

 

The UPV-PRHLT system developed by Alkhoury et al. 

was the winner of the ICFHR 2010 competition. This 

system uses windows of raw, binary image pixels, which 

are directly fed into embedded Bernoulli HMMs [23]. It 

recognizes the most likely word using the lexicon image 

models that each is modeled as a BHMM (built from 

shared, embedded BHMMs at the character level). 

 

The RWTH-OCR system developed by Dreuw et al. was 

the winner of the ICDAR 2011 competition. This system 

uses sliding window for HMM-based handwriting 

recognition [24]. It uses 120 glyph models for the possible 

Arabic letters presentation forms. A word is modeled by a 

sequence of glyph models. 

 

All the HMM-based systems reviewed above do not have 

explicit word matching algorithms. They recognize words 

through their HMM models. Unlike these systems, JU-

OCR2 has a sequence transcription stage that recognizes 

characters and does not have word models. Thus, word 

matching is needed as a post processing stage to improve 

the accuracy when a lexicon is available. 

1.2 OCR-JU2 Overview 

JU-OCR 2 is a system for recognizing handwritten Arabic 

words. It achieves high accuracy using efficient 

segmentation, feature extraction, and recurrent neural 

network (RNN). Figure 1 summarizes its five main stages: 

(i) sub-word segmentation, (ii) grapheme segmentation, 

(iii) feature extraction, (iv) sequence transcription, and (v) 

word matching.  

 

This system uses a robust rule-based segmentation 

algorithm that uses special feature points identified in the 

word skeleton to segment the cursive words into 

graphemes. An efficient set of features extracted from the 

graphemes are fed to a tuned RNN that transcribes the 

sequences of feature vectors to character sequences. This 

RNN was implemented using the publically available 

RNNLIB library [25]. The used word matching algorithm 

gives ordered list of the ten most probable lexicon 

(dictionary) words for each word image. This paper 

concentrates on the word matching algorithm. For more 

details about JU-OCR2, refer to Ref. [7]. 

 

Word matching can greatly improve accuracy since many 

transcription mistakes that result in non-lexicon words are 

corrected. The example in Fig. 1 shows how word 

matching corrects the miss-transcribed last letter from 

Lam (ل) to the letter Reh (ر), drawn underlined. 
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Fig. 1  Processing stages of the JU-OCR2 Arabic handwriting recognition 

system. 

2. Experimental Setup 

This section describes the samples used in developing and 

evaluating the word matching algorithm. We also report 

here the base recognition accuracy without using word 

matching. 

2.1 Samples 

Our experiments are based on the IfN/ENIT database of 

handwritten Arabic words [18]. This database is used by 

more than 110 research groups in about 35 countries [4]. 

The database version used is v2.0p1e and consists of 

32,492 Arabic words handwritten by more than 1,000 

writers. These words are 937 Tunisian town/village names. 

This database is divided into five training sets and two test 

sets. The numbers of names, parts of Arabic words 

(PAWs), and characters in the seven sets are shown in 

Table 1. 

 

In the rest of this paper, we show results of experiments 

carried out by training the system using some of these sets 

and testing using some other set. We refer to each 

experiment by its training sets followed by its test set, 

separated by a hyphen. For example, abcd-e experiment 

indicates that the training sets are a through d and the test 

set is e. 

Table 1: The IfN/ENIT database of handwritten Arabic words 

 Set Names PAWs Characters 

Training sets 

a 6,537 28,298 51,984 

b 6,710 29,220 53,862 

c 6,477 28,391 52,155 

d 6,735 29,511 54,166 

e 6,033 22,640 45,169 

Test sets 
f 8,671 32,918 64,781 

s 1,573 6,109 11,922 

 

We randomly select 90% of the training sets samples for 

training the RNN and the rest 10% for validation. 

2.2 Raw Sequence Error 

Figure 2 shows the sequence error of the seven sets and the 

average sequence error without any application of word 

matching. The sequence error is the ratio of sequences 

(words) that have one or more character recognition errors. 

 

 

Fig. 2  The sequence error for the seven IfN/ENIT sample sets. For each 
experiment, the label shows the training sets followed by the test set, 

separated by a hyphen. 

Note that the five training sets (a through e) are each tested 

using an RNN trained using the rest four training sets. 

Whereas, the two test sets (f and s) are tested using an 

RNN trained using the five training sets. 

 

The sequence error for the seven sets ranges from 16.57% 

to 62.68%, reflecting large differences among these sets. 

Due to differences in numbers of writers per set and 

writing quality, set s, is hardest to recognize, followed by 

sets e and f. Whereas sets a through d are easier to 

recognize. In fact, set s is particularly different from the 

other sets as it was collected from writers of another 

country. 
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3. Distance Measures 

The output of the word matching algorithm is the lexicon 

word that is in some sense “closest” to the sequence 

transcriber’s output  . More formally, if the lexicon is a 

set of words  , the word matching stage outputs the word 

    where 

 

         
   

       (1) 

 

The function        returns a distance measure between 

two sequences, where a lower value indicates that the two 

sequences are closer. We have experimented with six 

popular distance functions to find the most suitable 

function: Hamming   , Jaro   , Jaro-Winkler   , 

Ratcliff/Obershelp   , Levenshtein   , and Damerau-

Levenshtein   . These distance measures are described 

and evaluated in the following subsections. 

3.1 Hamming Distance 

Hamming distance    [8] between two strings of equal 

length is the number of mismatching letters between the 

two string. When the strings are not of equal length, the 

difference between their lengths is added to the Hamming 

distance between the shorter string and a prefix of length 

| |  of the longer string, where | |  is the length of the 

shorter string. For example, the Hamming distance 

between SOURCE and SUORCE is 2. 

 

Figure 3 shows the word error for the five IfN/ENIT 

training sets using Hamming distance. The figure also 

shows the average word error of these five sets. The word 

error, similar to the sequence error, is the ratio of words 

that have one or more character recognition errors. 

However, we reserve using the word error as a metric to 

evaluate the output of the word matching stage. Consistent 

with the sequence errors, the word error of set e is higher 

than the word errors of sets a through d. 

 

 

Fig. 3  The word error for the five training sets using Hamming distance 

  . 

3.2 Jaro Distance 

Jaro distance    is described in Ref. [9].  Let 

 

   ⌊
    |  | |  | 

 
⌋    (2) 

 

be the match distance between strings    and   , which is 

the maximum allowed distance between two equal letters 

in the two strings to be considered a match. The number of 

matches   is the number of equal letters that are within 

   distance from each other. The number of 

transpositions   is the number of matching letters that are 

not at the same position in their respective strings divided 

by two. Jaro string similarity is defined to be: 

 

   {

              
 

 
(

 

|  |
 

 

|  |
 

   

 
)           

 (3) 

 

Jaro similarity is between 0 and 1, 0 being very different 

strings and 1 being exact match. In our work, our 

convention is that smaller distance means more similar 

strings, so what we actual use is        . For example, 

the Jaro distance between SOURCE and SUORCE is 

       . In this example, the values of   ,  , |  |, |  |, 
and   are: 2, 6, 6, 6, and 1, respectively. 

 

Figure 4 shows the word error for the five sets using Jaro 

distance. Jaro distance is much better than Hamming 

distance for these samples. Its word error is less than half 

the word error of the Hamming distance. 

 

 

Fig. 4  The word error for the five training sets using Jaro distance   . 

3.3 Jaro-Winkler Distance 

Jaro-Winkler distance    [10] is based on Jaro distance 

with a slight modification to give equal prefixes some 

weight. Let   be the length of the common prefix between 

the two strings, and   be a parameter between 0 and 0.25. 
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If   exceeds 4, it is limited to 4 to keep the Jaro-Winkler 

similarity between 0 and 1. Jaro-Winkler string similarity 

is defined as: 

 

                 (4) 

 

Again, we use         in our work to get similar 

strings to have smaller distances. For example, the Jaro-

Winkler distance between SOURCE and SUORCE is 

                                     ;   is 

set to     here. 

 

Figure 5 shows the word error for the five sets using Jaro-

Winkler distance. Comparing with Jaro distance, set e 

benefits form the Winkler optimization. The four other sets 

get higher word errors. However, the word error averages 

for Jaro and Jaro-Winkler distances are identical. 

 

 

Fig. 5  The word error for the five training sets using Jaro-Winkler 

distance   . 

3.4 Ratcliff/Obershelp Distance 

In Ratcliff/Obershelp pattern matching algorithm, the 

similarity of two strings    is found as the doubled number 

of matching characters divided by the total number of 

characters in the two strings [11]. Matching characters are 

those in the longest common subsequence plus, recursively, 

matching characters in the unmatched region on either side 

of the longest common subsequence. 

 

We compute Ratcliff/Obershelp distance as         . 

For example, the Ratcliff/Obershelp distance between 

SOURCE and SUORCE is                
            . 

 

Figure 6 shows the word error for the five sets using 

Ratcliff/Obershelp distance. This distance measure is 

better than    by 5.8% on average. 

 

 

Fig. 6  The word error for the five training sets using Ratcliff/Obershelp 

distance   . 

3.5 Levenshtein Distance 

The Levenshtein distance is commonly known as the edit 

distance [12]. The edit distance between sequence   and 

word   is the minimum total number of insertions, 

deletions, and changes required to change pattern   to 

word  . Let     be the edit distance between a prefix from 

sequence   of length   and a prefix from sequence   of 

length  , which is defined by the recurrence 

 

                | | 

                | | 

       (

         

         

              (     )

) 

    (     )  {
         
         

 (5) 

 

The edit distance equals the edit distance of the entire two 

sequences       . 

 

Figure 7 shows the word error for the five sets using the 

edit distance. This distance measure is much better than 

the previous distances and is better than    by 10.6% on 

average. 
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Fig. 7  The word error for the five training sets using the edit distance   . 

3.6 Damerau-Levenshtein Distance 

Damerau-Levenshtein distance    is based on Levenshtein 

distance [13]. The only difference is that adjacent letter 

transpositions are allowed as transformation operations in 

addition to insertions, deletions, and changes. For example, 

while the Lavenshtein distance between SOURCE and 

SUORCE is 2 (one insertion and one deletion), the 

Damerau-Levenshtein distance between these two strings 

is 1 (one transposition of the “U” and the “O”).  

 

Figure 8 shows the word error for the five sets using 

Damerau-Levenshtein distance. This distance measure has 

an average word error equal to that of the edit distance. 

However,    gives lower error rate for sets a, b, and c; and 

   gives better rate for set e. 

 

 

Fig. 8  The word error for the five training sets using Damerau-

Levenshtein distance   . 

Among these six distances, the best two are the edit 

distance and Damerau-Levenshtein distance. We adopted 

these two distance measures for further improvement as 

described below. 

4. Weighted Distance Measures 

We have noticed that many recognition errors include 

output letters that have similar shapes to their respective 

target letters, as is the example in Fig. 1 where Lam ( لـ ) is 

the output for the target Reh (ـر). This has motivated us to 

experiment with weighted edit distance measures [26]. 

 

We developed weighted versions for the edit distance    

and Damerau-Levenshtein distance    called     and 

   , respectively. In these two versions, the function 

    (     ) of Eq. (5) is modified to return weights ranging 

from 0 to 1 instead of returning 0 or 1. The return value 

reflects how different the two letters are. This function 

uses a lookup table that was created based on the Arabic 

letter shape similarities. For example, as the letters Beh (ب) 

and Teh (ت) have similar shapes, they have low      value. 

And as letters Alef (ا) and Seen (س) are dissimilar, they 

have high      value. 

 

We have built the lookup table through two techniques: 

 

Weights 1: The weights are manually estimated based on 

our expert knowledge of the similarities among the Arabic 

letters. 

 

Weights 2: The weights are computed from the confusion 

matrix of the recognition errors of the training sets [27]. 

The change weight (penalty) for letters   and   is 

computed as: 

 

          {
       

                 
 (6) 

 

where           is the frequency of output   for letter   

of the confusion matrix of the recognition errors. 

 

Figure 9 shows the word error for the five sets using     

and     word matching algorithm with the Weights 1 

technique. This figures illustrates that the weighted 

distance modification improves the word error by averages 

of 5.0% and 5.8% for     and    , respectively, 

compared with    and   . The following section gives an 

evaluation for the Weights 1 and Weights 2 techniques. 
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Fig. 9  The word error for the five training sets using weighted edit 

distance (   ) and weighted Damerau-Levenshtein distance (   ) 
with Weights 1. 

4.1 Leveraging Prior Probabilities 

The word prior probabilities      in the training set     

are not the same. Therefore, we experimented leveraging 

these probabilities by modifying Eq. (1) as follows: 

 

         
   

            (7) 

 

Here the matching criterion selects the word that has the 

minimum product of distance and prior probability. 

Figure 10 shows the word error for the five sets using two 

versions of the weighted edit distance algorithm: One that 

does not use word probabilities (   ) and one that does 

(    ). We also use Weights 1 in this comparison. 

Although     is on average better than     ,      

gives better results with the difficult set e. 

 

 

Fig. 10  The word error for the five training sets using weighted edit 

distance without/with word prior probabilities (   /    ) with 
Weights 1. 

The     word matching has similar behavior with 

respect to using the word prior probabilities as    . 

5. Multiple-Sequence Weighted Edit 

Distances 

The RNN of the sequence transcription stage outputs the 

sequence   that has highest probability    |   given the 

observed input features sequence  . The RNN can 

optionally output the set   of the   most probable output 

sequences (     of highest    |  ). We exploit these 

multiple output sequences through the following equation: 

 

       ∑      |          

   

 (8) 

 

where        is the composite distance of the multiple 

sequences   from word   and    |   is the output 

conditional probability. We use (     |  )  instead of 

   |   to get higher distances for lower probabilities. 

 

The distance        can be any of the above distances. 

However, we only experimented with the two best distance 

measures in this approach; the edit distances    and   . In 

this multiple-sequence weighted edit distances approach, 

       replaces        in Eqs. (1) and (7). We refer to 

the variant word matching algorithm that uses    by 

        and the one that uses    by       . 
 

Figure 11 shows the average word error of the five sets 

when using        word matching algorithm as a 

function of the number of RNN output sequences  . The 

figure shows the results for the two weight types. 

 

 

Fig. 11  The average word error of the five training sets using multiple-

sequence weighted edit distances (      )  as function of the number 

of sequences   for the two weight types. 

The word error decreases as   increases from   to    and 

increases for     , indicating that considering multiple 

output sequences improves accuracy. However, when too 

many output sequences are considered, the accuracy 

worsens due to including too far sequences. 

 

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 24

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.



 

 

As for the comparison between the two weight types, 

Weights 2 is better than Weights 1 only when    . This 

is expected as the weights in Weights 2 are directly related 

to the recognition errors of the first output sequence. 

Weights 1 is superior for    , indicating that the 

expertly-selected weights perform better beyond the first 

output sequence. As the best result is achieved with 

     and Weights 1, we adopt      and Weights 1 in 

the final algorithm. 

 

Figure 12 shows a comparison between        and 

       using Weights 1. Although for some   values, 

       has lower error than       , lowest error is 

obtained at      with       . This indicates that the 

adjacent letter transposition optimization of the Damerau-

Levenshtein distance that is useful in correcting typing 

mistakes is not very useful in correcting OCR errors.  

 

 

Fig. 12  The average word error of the five training sets using multiple-

sequence weighted edit distances (      ) and multiple-sequence 

weighted Damerau-Levenshtein distances (      ) as functions of the 

number of sequences  . 

6. Discussion and Conclusions 

The previous sections summarize our work in developing 

an accurate word matching algorithm for recognizing 

handwritten Arabic words. We noticed that the best 

distance measure for this application is Levenshtein’s edit 

distance   . This distance reduces the average sequence 

error of the five training sets from 24.28% to an average 

word error of 3.63% for the five training sets. This 

demonstrates that word matching is very effective in this 

application. 

 

The weighted edit distance     improvement reduces the 

average word error to 3.45%. This is a 5.0% improvement 

over the plain edit distance and using Weights 1 that were 

expertly selected. The multiple-sequence        

improvement at      further reduces this average word 

error to 2.52%. This is a significant 27.0% improvement 

over    . 

 

We noticed that the best algorithm for sets a through d is 

       . However, the best algorithm for set e is the 

variant that uses the word prior probabilities        . 

These best results for the five training sets are shown in 

Fig. 13. When testing these two algorithms with the two 

test sets, we found that         also gives best results. 

The best word errors for sets f and s are also shown in 

Fig. 13 and are 7.54% and 15.20%, respectively. Although 

the sequence error of set e is larger than that of set f, set e 

has a lower word error. This indicates that set e benefits 

more than set f from word matching. 

 

 

Fig. 13  The word error for the seven sets using the RNNLIB word 

matching and the best multiple-sequence weighted edit distances 

(       or        ). 

Figure 13 also shows a comparison between our best 

results and the RNNLIB word matching algorithm [25]. 

This algorithm was used in the MDLSTM system which is 

the winner of the ICDAR 2009 competition and the system 

that holds the record score on set f [4]. This algorithm is 

integrated in the CTC output layer and is the CTC token 

passing algorithm described in Refs. [28, 29]. Through this 

algorithm the CTC labeling is constrained to only the 

sequences of the complete dictionary words. For any word 

that has variant spellings, this algorithm sums the 

probabilities of all the word’s variants to find the word 

probability. 

 

Although RNNLIB has better performance on sets a 

through d, our algorithm gives better average error and 

better results for the difficult test sets. For the important 

test sets f and s, our algorithm is better than RNNLIB word 

matching by an average 6.7%. 
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