

A Word Matching Algorithm in Handwritten Arabic Recognition

Using Multiple-Sequence Weighted Edit Distances

Gheith A. Abandah1 and Fuad T. Jamour2

 1 Computer Engineering Department, The University of Jordan

Amman 11942, Jordan

2 King Abdullah University of Science and Technology

Thuwal, Saudi Arabia

Abstract
No satisfactory solutions are yet available for the offline

recognition of handwritten cursive words, including the words of

Arabic text. Word matching algorithms can greatly improve the

OCR output when recognizing words of known and limited

vocabulary. This paper describes the word matching algorithm

used in the JU-OCR2 optical character recognition system of

handwritten Arabic words. This system achieves state-of-the-art

accuracy through multiple techniques including an efficient word

matching algorithm. This algorithm reduces the average

sequence error for the IfN/ENIT database of handwritten Arabic

words from 32.3% to an average word error of just 5.0%. This

algorithm is a weighted version of the edit distance algorithm.

The weighted version has a 5.0% advantage over the plain edit

distance algorithm. This algorithm selects the best match

utilizing a set of multiple probable sequences from the sequence

transcription stage. Using multiple sequences, instead of one,

reduces the average error by 27.0% over the weighted edit

distance algorithm. Compared with an algorithm used in a

leading system, this algorithm offers 6.7% lower average word

error for the main two test sets.

Keywords: Optical Character Recognition, Handwritten Arabic

Words, Word Matching, Edit Distance.

1. Introduction

Offline cursive handwriting recognition is a hard problem

for which no satisfactory general solutions are yet

available. Major challenges include the overlap and

interconnection of neighboring characters, the huge

variability in both quality and style of human handwriting,

and the similarities of distinct character shapes [1, 2].

Arabic is the native language of more than 440 million

people and its alphabet is used in around 27 languages,

including Arabic, Persian, Kurdish, Urdu, and Jawi [3].

Arabic is always cursive in print and in handwriting.

Despite decades of research, there is still a lack of accurate

Arabic handwriting recognition systems [4].

Post processing is often used to improve the recognition

accuracy of handwritten words [5, 6]. In limited

vocabulary applications, a word matching algorithm is

used to map the output words to the closest lexicon words.

The JU-OCR2 system for recognizing handwritten Arabic

words achieves high accuracy using efficient segmentation,

feature extraction, recurrent neural network (RNN), and

word matching [7]. This paper focuses on the word

matching stage that is used in JU-OCR2.

This paper describes the experimental method used to

develop an efficient word matching algorithm for

recognizing handwritten Arabic words. It describes this

algorithm and evaluates its performance. The main

contributions of this paper are summarized as follows:

 Multiple popular string distance measures are

evaluated to select the most efficient measure.

 A weighted distance measure is developed to take

into consideration the similarities among the

Arabic letters.

 A novel accurate word matching algorithm is

described that uses multiple-sequence weighted

edit distances.

This paper is organized as follows: The rest of this section

reviews the related work and briefly describes the JU-

OCR2 recognition system. Section 2 describes our

experimental setup including the samples used in this work.

Section 3 describes and evaluates six popular string

distance measures. Section 4 describes and evaluates a

weighted distance measure appropriate for recognizing

Arabic words including an optimization that leverages

word prior probabilities. Section 5 presents and evaluates

the final algorithm developed which uses multiple-

sequence weighted edit distances. Section 6 concludes by

discussing the accuracy of this algorithm and compares its

accuracy with the accuracy of a leading algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 18

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

1.1 Related Work

Navarro performed a detailed study on the problem of

approximate string matching [5]. The general goal is to

perform string matching of a pattern in a text where one or

both of them have suffered some kind of corruption.

Many general algorithms have been developed for string

matching [8, 9, 10, 11, 12, 13]. These algorithms are

described and evaluated in Section 3.

Märgner, El Abed, and Pechwitz have organized a series

of Arabic handwriting recognition competitions [4, 14, 15,

16, 17]. The purpose of these competitions is to advance

the research and development of Arabic handwritten word

recognition systems. These competitions use the IfN/ENIT

database [18] and have had excellent participations from

the research leaders in the area. The participations have

shown remarkable progress over seven years. The

following paragraphs review some of the best systems

concentrating on their word matching algorithms.

The UOB system developed by Al-Hajj et al. won the first

competition in ICDAR 2005. This system uses HMM

character and word modeling [19]. Each word of the

lexicon is built by concatenating the appropriate character

models. Thus, no explicit word matching stage is needed.

The competitions organizers also participated with their

ARAB-IFN system in ICDAR 2005. This system got the

second place and is described in [20]. They also use HMM

to recognize individual characters. However, their

recognition process assigns to an unknown feature

sequence a valid word from the lexicon. This is done by

calculating the probability that the observation was

produced by a state sequence for each word of the lexicon,

and then selecting the sequence with the highest

probability.

The Siemens system submitted by Alary et al. was the

winner of the ICDAR 2007 competition. This system was

adapted for Arabic script from the standard HMM-based

Latin script word recognizer that is widely in use within

Siemens AG for postal automation projects [21]. They use

HMM to recognize individual characters and then they

find the best word in the lexicon that comprises the words

writing variants.

The MDLSTM system developed by Graves was the

winner of the ICDAR 2009 competition [22]. This system

holds the current record for recognition accuracy on the

main competition test set. It has a connectionist temporal

classification (CTC) token passing algorithm for word

matching algorithm that is integrated in the RNN CTC

output layer.

The UPV-PRHLT system developed by Alkhoury et al.

was the winner of the ICFHR 2010 competition. This

system uses windows of raw, binary image pixels, which

are directly fed into embedded Bernoulli HMMs [23]. It

recognizes the most likely word using the lexicon image

models that each is modeled as a BHMM (built from

shared, embedded BHMMs at the character level).

The RWTH-OCR system developed by Dreuw et al. was

the winner of the ICDAR 2011 competition. This system

uses sliding window for HMM-based handwriting

recognition [24]. It uses 120 glyph models for the possible

Arabic letters presentation forms. A word is modeled by a

sequence of glyph models.

All the HMM-based systems reviewed above do not have

explicit word matching algorithms. They recognize words

through their HMM models. Unlike these systems, JU-

OCR2 has a sequence transcription stage that recognizes

characters and does not have word models. Thus, word

matching is needed as a post processing stage to improve

the accuracy when a lexicon is available.

1.2 OCR-JU2 Overview

JU-OCR 2 is a system for recognizing handwritten Arabic

words. It achieves high accuracy using efficient

segmentation, feature extraction, and recurrent neural

network (RNN). Figure 1 summarizes its five main stages:

(i) sub-word segmentation, (ii) grapheme segmentation,

(iii) feature extraction, (iv) sequence transcription, and (v)

word matching.

This system uses a robust rule-based segmentation

algorithm that uses special feature points identified in the

word skeleton to segment the cursive words into

graphemes. An efficient set of features extracted from the

graphemes are fed to a tuned RNN that transcribes the

sequences of feature vectors to character sequences. This

RNN was implemented using the publically available

RNNLIB library [25]. The used word matching algorithm

gives ordered list of the ten most probable lexicon

(dictionary) words for each word image. This paper

concentrates on the word matching algorithm. For more

details about JU-OCR2, refer to Ref. [7].

Word matching can greatly improve accuracy since many

transcription mistakes that result in non-lexicon words are

corrected. The example in Fig. 1 shows how word

matching corrects the miss-transcribed last letter from

Lam (ل) to the letter Reh (ر), drawn underlined.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 19

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 1 Processing stages of the JU-OCR2 Arabic handwriting recognition

system.

2. Experimental Setup

This section describes the samples used in developing and

evaluating the word matching algorithm. We also report

here the base recognition accuracy without using word

matching.

2.1 Samples

Our experiments are based on the IfN/ENIT database of

handwritten Arabic words [18]. This database is used by

more than 110 research groups in about 35 countries [4].

The database version used is v2.0p1e and consists of

32,492 Arabic words handwritten by more than 1,000

writers. These words are 937 Tunisian town/village names.

This database is divided into five training sets and two test

sets. The numbers of names, parts of Arabic words

(PAWs), and characters in the seven sets are shown in

Table 1.

In the rest of this paper, we show results of experiments

carried out by training the system using some of these sets

and testing using some other set. We refer to each

experiment by its training sets followed by its test set,

separated by a hyphen. For example, abcd-e experiment

indicates that the training sets are a through d and the test

set is e.

Table 1: The IfN/ENIT database of handwritten Arabic words

 Set Names PAWs Characters

Training sets

a 6,537 28,298 51,984

b 6,710 29,220 53,862

c 6,477 28,391 52,155

d 6,735 29,511 54,166

e 6,033 22,640 45,169

Test sets
f 8,671 32,918 64,781

s 1,573 6,109 11,922

We randomly select 90% of the training sets samples for

training the RNN and the rest 10% for validation.

2.2 Raw Sequence Error

Figure 2 shows the sequence error of the seven sets and the

average sequence error without any application of word

matching. The sequence error is the ratio of sequences

(words) that have one or more character recognition errors.

Fig. 2 The sequence error for the seven IfN/ENIT sample sets. For each
experiment, the label shows the training sets followed by the test set,

separated by a hyphen.

Note that the five training sets (a through e) are each tested

using an RNN trained using the rest four training sets.

Whereas, the two test sets (f and s) are tested using an

RNN trained using the five training sets.

The sequence error for the seven sets ranges from 16.57%

to 62.68%, reflecting large differences among these sets.

Due to differences in numbers of writers per set and

writing quality, set s, is hardest to recognize, followed by

sets e and f. Whereas sets a through d are easier to

recognize. In fact, set s is particularly different from the

other sets as it was collected from writers of another

country.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 20

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

3. Distance Measures

The output of the word matching algorithm is the lexicon

word that is in some sense “closest” to the sequence

transcriber’s output . More formally, if the lexicon is a

set of words , the word matching stage outputs the word

 where

 (1)

The function returns a distance measure between

two sequences, where a lower value indicates that the two

sequences are closer. We have experimented with six

popular distance functions to find the most suitable

function: Hamming , Jaro , Jaro-Winkler ,

Ratcliff/Obershelp , Levenshtein , and Damerau-

Levenshtein . These distance measures are described

and evaluated in the following subsections.

3.1 Hamming Distance

Hamming distance [8] between two strings of equal

length is the number of mismatching letters between the

two string. When the strings are not of equal length, the

difference between their lengths is added to the Hamming

distance between the shorter string and a prefix of length

| | of the longer string, where | | is the length of the

shorter string. For example, the Hamming distance

between SOURCE and SUORCE is 2.

Figure 3 shows the word error for the five IfN/ENIT

training sets using Hamming distance. The figure also

shows the average word error of these five sets. The word

error, similar to the sequence error, is the ratio of words

that have one or more character recognition errors.

However, we reserve using the word error as a metric to

evaluate the output of the word matching stage. Consistent

with the sequence errors, the word error of set e is higher

than the word errors of sets a through d.

Fig. 3 The word error for the five training sets using Hamming distance

 .

3.2 Jaro Distance

Jaro distance is described in Ref. [9]. Let

 ⌊
 | | | |

⌋ (2)

be the match distance between strings and , which is

the maximum allowed distance between two equal letters

in the two strings to be considered a match. The number of

matches is the number of equal letters that are within

 distance from each other. The number of

transpositions is the number of matching letters that are

not at the same position in their respective strings divided

by two. Jaro string similarity is defined to be:

 {

(

| |

| |

)

 (3)

Jaro similarity is between 0 and 1, 0 being very different

strings and 1 being exact match. In our work, our

convention is that smaller distance means more similar

strings, so what we actual use is . For example,

the Jaro distance between SOURCE and SUORCE is

 . In this example, the values of , , | |, | |,
and are: 2, 6, 6, 6, and 1, respectively.

Figure 4 shows the word error for the five sets using Jaro

distance. Jaro distance is much better than Hamming

distance for these samples. Its word error is less than half

the word error of the Hamming distance.

Fig. 4 The word error for the five training sets using Jaro distance .

3.3 Jaro-Winkler Distance

Jaro-Winkler distance [10] is based on Jaro distance

with a slight modification to give equal prefixes some

weight. Let be the length of the common prefix between

the two strings, and be a parameter between 0 and 0.25.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 21

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

If exceeds 4, it is limited to 4 to keep the Jaro-Winkler

similarity between 0 and 1. Jaro-Winkler string similarity

is defined as:

 (4)

Again, we use in our work to get similar

strings to have smaller distances. For example, the Jaro-

Winkler distance between SOURCE and SUORCE is

 ; is

set to here.

Figure 5 shows the word error for the five sets using Jaro-

Winkler distance. Comparing with Jaro distance, set e

benefits form the Winkler optimization. The four other sets

get higher word errors. However, the word error averages

for Jaro and Jaro-Winkler distances are identical.

Fig. 5 The word error for the five training sets using Jaro-Winkler

distance .

3.4 Ratcliff/Obershelp Distance

In Ratcliff/Obershelp pattern matching algorithm, the

similarity of two strings is found as the doubled number

of matching characters divided by the total number of

characters in the two strings [11]. Matching characters are

those in the longest common subsequence plus, recursively,

matching characters in the unmatched region on either side

of the longest common subsequence.

We compute Ratcliff/Obershelp distance as .

For example, the Ratcliff/Obershelp distance between

SOURCE and SUORCE is
 .

Figure 6 shows the word error for the five sets using

Ratcliff/Obershelp distance. This distance measure is

better than by 5.8% on average.

Fig. 6 The word error for the five training sets using Ratcliff/Obershelp

distance .

3.5 Levenshtein Distance

The Levenshtein distance is commonly known as the edit

distance [12]. The edit distance between sequence and

word is the minimum total number of insertions,

deletions, and changes required to change pattern to

word . Let be the edit distance between a prefix from

sequence of length and a prefix from sequence of

length , which is defined by the recurrence

 | |

 | |

 (

 ()

)

 () {

 (5)

The edit distance equals the edit distance of the entire two

sequences .

Figure 7 shows the word error for the five sets using the

edit distance. This distance measure is much better than

the previous distances and is better than by 10.6% on

average.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 22

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 7 The word error for the five training sets using the edit distance .

3.6 Damerau-Levenshtein Distance

Damerau-Levenshtein distance is based on Levenshtein

distance [13]. The only difference is that adjacent letter

transpositions are allowed as transformation operations in

addition to insertions, deletions, and changes. For example,

while the Lavenshtein distance between SOURCE and

SUORCE is 2 (one insertion and one deletion), the

Damerau-Levenshtein distance between these two strings

is 1 (one transposition of the “U” and the “O”).

Figure 8 shows the word error for the five sets using

Damerau-Levenshtein distance. This distance measure has

an average word error equal to that of the edit distance.

However, gives lower error rate for sets a, b, and c; and

 gives better rate for set e.

Fig. 8 The word error for the five training sets using Damerau-

Levenshtein distance .

Among these six distances, the best two are the edit

distance and Damerau-Levenshtein distance. We adopted

these two distance measures for further improvement as

described below.

4. Weighted Distance Measures

We have noticed that many recognition errors include

output letters that have similar shapes to their respective

target letters, as is the example in Fig. 1 where Lam (لـ) is

the output for the target Reh (ـر). This has motivated us to

experiment with weighted edit distance measures [26].

We developed weighted versions for the edit distance

and Damerau-Levenshtein distance called and

 , respectively. In these two versions, the function

 () of Eq. (5) is modified to return weights ranging

from 0 to 1 instead of returning 0 or 1. The return value

reflects how different the two letters are. This function

uses a lookup table that was created based on the Arabic

letter shape similarities. For example, as the letters Beh (ب)

and Teh (ت) have similar shapes, they have low value.

And as letters Alef (ا) and Seen (س) are dissimilar, they

have high value.

We have built the lookup table through two techniques:

Weights 1: The weights are manually estimated based on

our expert knowledge of the similarities among the Arabic

letters.

Weights 2: The weights are computed from the confusion

matrix of the recognition errors of the training sets [27].

The change weight (penalty) for letters and is

computed as:

 {

 (6)

where is the frequency of output for letter

of the confusion matrix of the recognition errors.

Figure 9 shows the word error for the five sets using

and word matching algorithm with the Weights 1

technique. This figures illustrates that the weighted

distance modification improves the word error by averages

of 5.0% and 5.8% for and , respectively,

compared with and . The following section gives an

evaluation for the Weights 1 and Weights 2 techniques.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 23

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 9 The word error for the five training sets using weighted edit

distance () and weighted Damerau-Levenshtein distance ()
with Weights 1.

4.1 Leveraging Prior Probabilities

The word prior probabilities in the training set

are not the same. Therefore, we experimented leveraging

these probabilities by modifying Eq. (1) as follows:

 (7)

Here the matching criterion selects the word that has the

minimum product of distance and prior probability.

Figure 10 shows the word error for the five sets using two

versions of the weighted edit distance algorithm: One that

does not use word probabilities () and one that does

(). We also use Weights 1 in this comparison.

Although is on average better than ,

gives better results with the difficult set e.

Fig. 10 The word error for the five training sets using weighted edit

distance without/with word prior probabilities (/) with
Weights 1.

The word matching has similar behavior with

respect to using the word prior probabilities as .

5. Multiple-Sequence Weighted Edit

Distances

The RNN of the sequence transcription stage outputs the

sequence that has highest probability | given the

observed input features sequence . The RNN can

optionally output the set of the most probable output

sequences (of highest |). We exploit these

multiple output sequences through the following equation:

 ∑ |

 (8)

where is the composite distance of the multiple

sequences from word and | is the output

conditional probability. We use (|) instead of

 | to get higher distances for lower probabilities.

The distance can be any of the above distances.

However, we only experimented with the two best distance

measures in this approach; the edit distances and . In

this multiple-sequence weighted edit distances approach,

 replaces in Eqs. (1) and (7). We refer to

the variant word matching algorithm that uses by

 and the one that uses by .

Figure 11 shows the average word error of the five sets

when using word matching algorithm as a

function of the number of RNN output sequences . The

figure shows the results for the two weight types.

Fig. 11 The average word error of the five training sets using multiple-

sequence weighted edit distances () as function of the number

of sequences for the two weight types.

The word error decreases as increases from to and

increases for , indicating that considering multiple

output sequences improves accuracy. However, when too

many output sequences are considered, the accuracy

worsens due to including too far sequences.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 24

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

As for the comparison between the two weight types,

Weights 2 is better than Weights 1 only when . This

is expected as the weights in Weights 2 are directly related

to the recognition errors of the first output sequence.

Weights 1 is superior for , indicating that the

expertly-selected weights perform better beyond the first

output sequence. As the best result is achieved with

 and Weights 1, we adopt and Weights 1 in

the final algorithm.

Figure 12 shows a comparison between and

 using Weights 1. Although for some values,

 has lower error than , lowest error is

obtained at with . This indicates that the

adjacent letter transposition optimization of the Damerau-

Levenshtein distance that is useful in correcting typing

mistakes is not very useful in correcting OCR errors.

Fig. 12 The average word error of the five training sets using multiple-

sequence weighted edit distances () and multiple-sequence

weighted Damerau-Levenshtein distances () as functions of the

number of sequences .

6. Discussion and Conclusions

The previous sections summarize our work in developing

an accurate word matching algorithm for recognizing

handwritten Arabic words. We noticed that the best

distance measure for this application is Levenshtein’s edit

distance . This distance reduces the average sequence

error of the five training sets from 24.28% to an average

word error of 3.63% for the five training sets. This

demonstrates that word matching is very effective in this

application.

The weighted edit distance improvement reduces the

average word error to 3.45%. This is a 5.0% improvement

over the plain edit distance and using Weights 1 that were

expertly selected. The multiple-sequence

improvement at further reduces this average word

error to 2.52%. This is a significant 27.0% improvement

over .

We noticed that the best algorithm for sets a through d is

 . However, the best algorithm for set e is the

variant that uses the word prior probabilities .

These best results for the five training sets are shown in

Fig. 13. When testing these two algorithms with the two

test sets, we found that also gives best results.

The best word errors for sets f and s are also shown in

Fig. 13 and are 7.54% and 15.20%, respectively. Although

the sequence error of set e is larger than that of set f, set e

has a lower word error. This indicates that set e benefits

more than set f from word matching.

Fig. 13 The word error for the seven sets using the RNNLIB word

matching and the best multiple-sequence weighted edit distances

(or).

Figure 13 also shows a comparison between our best

results and the RNNLIB word matching algorithm [25].

This algorithm was used in the MDLSTM system which is

the winner of the ICDAR 2009 competition and the system

that holds the record score on set f [4]. This algorithm is

integrated in the CTC output layer and is the CTC token

passing algorithm described in Refs. [28, 29]. Through this

algorithm the CTC labeling is constrained to only the

sequences of the complete dictionary words. For any word

that has variant spellings, this algorithm sums the

probabilities of all the word’s variants to find the word

probability.

Although RNNLIB has better performance on sets a

through d, our algorithm gives better average error and

better results for the difficult test sets. For the important

test sets f and s, our algorithm is better than RNNLIB word

matching by an average 6.7%.

Acknowledgment

This work was supported by the Deanship of the Scientific

Research in the University of Jordan. We would like to

thank Alex Graves for making the RNNLIB publically

available [25], for giving us a copy of the latest RNNLIB

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 25

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

version, and for his help in using it. We would like also to

thank Haikal El Abed for giving us copies of sets f and s of

the IfN/ENIT database.

References
[1] N. Arica, and F. Yarman-Vural, "Optical Character

Recognition for Cursive Handwriting", IEEE Trans Pattern

Anal Mach Intell, Vol. 24, No. 6, 2002, pp. 801-813.

[2] H. Lee, and B. Verma, "Binary Segmentation Algorithm for

English Cursive Handwriting Recognition", Pattern

Recognition, Vol. 45, No. 4, 2012, pp.1306-1317.

[3] M. P. Lewis (ed.), Ethnologue: Languages of the World, SIL

International, Dallas, TX, 2009.

[4] V. Märgner, and H. El Abed, "ICDAR 2011 - Arabic

Handwriting Recognition Competition", in Int’l Conf.

Document Analysis and Recognition, 2011, pp. 1444-1448.

[5] G. Navarro, "A Guided Tour to Approximate String

Matching", ACM Computing Surveys, Vol. 33, No. 1, 2001,

pp. 31-88.

[6] V. SaiKrishna, A. Rasool, and N. Khare, "String Matching

and its Applications in Diversified Fields", Int’l Journal of

Computer Science Issues, Vol. 9, No. 1, 2012, pp. 219-226.

[7] G. Abandah, F. Jamour, and E. Qaralleh, "Recognizing

Handwritten Arabic Words Using Grapheme Segmentation

and Recurrent Neural Networks", Int’l J. Document Analysis

and Recognition, Springer, 2014, DOI: 10.1007/s10032-014-

0218-7.

[8] R. W. Hamming, "Error Detecting and Error Correcting

Codes", Bell System Technical Journal, Vol. 29, No. 2, 1950,

pp. 147-160.

[9] M. A. Jaro, "Advances in Record-Linkage Methodology as

Applied to Matching the 1985 Census of Tampa, Florida",

Journal of the American Statistical Association, Vol. 84, No.

406, 1989, pp. 414-420.

[10] W. E. Winkler, "String Comparator Metrics and Enhanced

Decision Rules in the Fellegi-Sunter Model of Record

Linkage", in Section on Survey Research Methods, American

Statistical Assn., 1990, pp. 354-359.

[11] J. Ratcliff, and D. Metzener, "Pattern Matching: The Gestalt

Approach", Dr. Dobb’s Journal, Vol. 13, No. 7, 1988, pp. 46-

72.

[12] V. I. Levenshtein, "Binary Codes Capable of Correcting

Deletions, Insertions, and Reversals", Soviet Physics

Doklady, Vol. 10, No. 8, 1966, pp. 707-710.

[13] F. J. Damerau, "A Technique for Computer Detection and

Correction of Spelling Errors", Communications of the

ACM, Vol. 7, No. 3, 1964, pp. 171-176.

[14] V. Märgner, M. Pechwitz, and H. El Abed, "ICDAR 2005 -

Arabic Handwriting Recognition Competition", in Int’l Conf.

Document Analysis and Recognition, 2005, pp. 70-74.

[15] V. Märgner, and H. El Abed, "ICDAR 2007 - Arabic

Handwriting Recognition Competition", in Int’l Conf.

Document Analysis and Recognition, 2007, pp. 1274-1278.

[16] V. Märgner, and H. El Abed, "ICDAR 2009 - Arabic

Handwriting Recognition Competition", in Int’l Conf.

Document Analysis and Recognition, 2009, pp. 1383-1387.

[17] V. Märgner, and H. El Abed, "ICFHR 2010 - Arabic

Handwriting Recognition Competition", in Int’l Conf.

Frontiers in Handwriting Recognition, 2010, pp. 709-714.

[18] M. Pechwitz, S. S. Maddouri, V. Märgner, N. Ellouze, and

H. Amiri, "IFN/ENIT - Database of Handwritten Arabic

Words", in 7th Colloque Int’l Francophone sur l’Ecrit et le

Document, 2002, pp. 129-136.

[19] R. Al-Hajj, L. Likforman-Sulem, and C. Mokbel, "Arabic

Handwriting Recognition Using Baseline Dependent

Features and Hidden Markov Modeling", in Int’l Conf.

Document Analysis and Recognition, 2005, pp. 893-897.

[20] M. Pechwitz, H. El Abed, and V. Märgner, "Handwritten

Arabic Word Recognition Using the IFN/ENIT-Database", in

V. Märgner, H. El Abed (eds.), Guide to OCR for Arabic

Scripts, Springer, London, 2012, pp. 169-213.

[21] M. P. Schambach, J. Rottland, and T. Alary, "How to

Convert a Latin Handwriting Recognition System to Arabic",

in Int’l Conf. Frontiers in Handwriting Recognition, 2008.

[22] A. Graves, and J. Schmidhuber, "Offline Handwriting

Recognition with Multidimensional Recurrent Neural

Networks", in Advances in Neural Information Processing

Systems, 2009, vol. 22, pp. 545-552.

[23] I. Alkhoury, A. Giménez, and A. Juan, "Arabic Handwriting

Recognition Using Bernoulli HMMs", in V. Märgner, H. El

Abed (eds.), Guide to OCR for Arabic Scripts, Springer,

London, 2012, pp. 255-272.

[24] P. Dreuw, D. Rybach, G. Heigold, and H. Ney, "RWTH

OCR: A Large Vocabulary Optical Character Recognition

System for Arabic Scripts", in V. Märgner, H. El Abed (eds.),

Guide to OCR for Arabic Scripts, Springer, London, 2012,

pp. 215-254.

[25] A. Graves, "RNNLIB: A Recurrent Neural Network Library

for Sequence Learning Problems",

http://sourceforge.net/projects/rnnl/

[26] E. Ristad, and P. Yianilos, "Learning String-Edit Distance",

IEEE Trans Pattern Anal Mach Intell, Vol. 20, No. 5, 1998,

pp. 522-532.

[27] K. Audhkhasi, and A. Verma, "Keyword Search Using

Modified Minimum Edit Distance Measure", in IEEE Int’l

Conf. Acoustics, Speech and Signal Processing, 2007. Vol. 4,

pp. 929-932.

[28] A. Graves, S. Fernández, M. Liwicki, H. Bunke, and J.

Schmidhuber, "Unconstrained Online Handwriting

Recognition with Recurrent Neural Networks", Advances in

Neural Information Processing Systems, Vol. 20, No. 1-8,

2008, pp. 577-584.

[29] A. Graves, "Offline Arabic Handwriting Recognition with

Multidimensional Recurrent Neural Networks", in V.

Märgner, H. El Abed (eds.), Guide to OCR for Arabic

Scripts, Springer, London, 2012, pp. 297-313.

Gheith A. Abandah has received MSE and PhD in Computer

Science and Engineering from the University of Michigan in 1995
and 1998. He has been responsible for several funded projects in
the areas of Arabic text recognition and electronic voting. He has
more than 15 years of industrial experience in localization, military
electronics, product and project development and deployment. He
is an associate professor with the University of Jordan.

Fuad T. Jamour received a BS degree in Computer Engineering
from the University of Jordan in 2011 with top honors. He has
worked on handwritten Arabic word recognition as an
undergraduate research assistant and also in his BS project. He is
currently a graduate student in King Abdullah University of Science
and Technology (KAUST), and his interests include data
management, cloud computing, and pattern recognition.

IJCSI International Journal of Computer Science Issues, Vol. 11, Issue 3, No 1, May 2014
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 26

Copyright (c) 2014 International Journal of Computer Science Issues. All Rights Reserved.

