
 

An Efficient Connectivity Measuring Approach for the 

Communication Network 

 
Maneesha Dabas 1, P.C. Saxena 2, Sangeeta Sabharwal 3 

 
1 Division of Computer Engineering, Netaji Subhash Institute of Technology 

New Delhi, Delhi – 110075, India 

 
2 Department of Computer Science, Jawaharlal Nehru University 

New Delhi, Delhi - 110067, India 

 
3 Division of Computer Engineering, Netaji Subhash Institute of Technology 

New Delhi, Delhi – 110075, India 

 

 

 

Abstract 

The purpose of designing an optimal and fault 

tolerant communication network is to achieve a 

precise performance without any disruption at a 

minimal cost. A fault tolerant network is able to 

maintain connectivity under the failure conditions 

only if there are multiple links disjoint paths for 

each node pair (nodes are assumed reliable). Main 

objective in designing a network topology is to 

minimize the cost of the network while 

satisfying the pre specified connectivity. It has 

also been proved that designing a minimum cost 

topology under the connectivity constraint is a NP 

hard problem.   Several Meta- heuristic iterative 

techniques like Genetic Algorithm, Simulated 

Annealing, Tabu Search etc have been proposed by 

many researchers for designing the network 

topologies. There is a need to measure the 

connectivity of each intermediate solution in these 

iterative techniques. Measuring connectivity by 

finding all disjoint paths for each node pair is a 

very time consuming task. Researchers also 

proposed to use node degree as a parameter for 

measuring the connectivity rather than exploring 

all disjoint paths for each node pair. But it is also 

true that node degree is not a sufficient condition 

for measuring the connectivity of the network. In 

this paper, an approach for measuring the 

connectivity of a given network is proposed which 

is as efficient as finding all disjoint paths in 

determining the connectivity at less 

computational effort.  Performance of the 

proposed approach is evaluated using several 

examples. 

Keywords:  Connectivity, Disjoint paths, Degree, 

K-connected network. 

 

 

1 Introduction 
 

Communication network link connectivity is 

defined as the minimum number of links that 

need to be removed to disconnect the network [3]. 

It can be measured by finding all disjoint paths for 

each node pair. Connectivity of a network is equal 

to the number of disjoint paths of a node pair who 

has minimum number of disjoint paths among all 

node pairs.  Connectivity is greatly measured in 

designing a k- connected communication network 

topology. 

 

As we know that, most common network 

topology design deals with finding the best layout 

of the elements subject to fault tolerance [2]. This 

is a well-known optimization problem and difficult 

to solve. For N number of nodes, maximum 

number of links are n*(n-1)/2, and the maximum 

number of topological configurations of n nodes 

are 2 
n*(n-1)/2

. The risk of combinatorial 

explosion is obvious [11][12][13]. As a result,  

various constructive heuristic 

methods[3][6][14][16]  and  meta  heuristic  

methods[7][8][10][15]  are  often  proposed  for 

design of k-connected networks to reduce the 

search of candidate topologies and provide 

suboptimal solutions. 

 

Meta heuristic iterative techniques based on the 

genetic algorithms [7] [8] [10], simulated annealing 

[15] etc. are proposed by researchers to design a k 

connected network. These are the iterative 

techniques and desired connectivity is required to 

check for each intermediate solution. Finding all 

disjoint paths for each node pair to verify the 

connectivity is a very time consuming task which 

has time complexity of O(VE
2

)[16]. To make it 

simpler, some researchers measure the connectivity 

using the node degree only.   For example, Ewa 

Szlachcic [7] used evolutionary algorithm to design 

a minimum cost network subject to connectivity 

and average message delay constraint. 

Connectivity in this paper is described using the 

nodes degree and it is considered that a network 

is k-connected if it satisfies the condition in the 

following equation: 
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Degree (vi) ≥ k for all v                                        (1) (1) 

 

Berna Disgz et. al.[11] proposed an local search 

genetic algorithm for optimal reliable design of a 

network. Nodes  degree  is  used  to  explore  

boundaries  between  the  feasible  and infeasible 

solutions to avoid unnecessary computation of 

fitness function to check all terminal reliability. H. 

sayoud et.al [10] also assumed that k connectivity 

can be checked using the condition given in the 

equation 1.   In [1], Tomas Fencl provided 

example which proves that condition in equation 1 

does not result into k connected network and 

suggested that if node degree is used as a 

connectivity measure then it is necessary to use 

another condition given in equation 2 instead of 

condition given in equation 1. 

 

Degree (vi) = h where h € {k, k+1,...} for all v    (2)                                              

 

But we found that the condition suggested by 

Tomas Fencl [1] also does not result into a k- 

connected network in certain cases as shown in 

figure 1.  Degree of all nodes in figure 2 is 3 but 

the network is not a 3-conencted network. In other 

words, failures in the links 3-5 and 4-6 result into a 

disconnected network. 

 

 
    Figure 1. 

 

So considering only the node degree in all way is 

not a sufficient condition to verify the connectivity 

of a network.  And measuring exact connectivity 

using the algorithms [16] is a very time 

consuming task especially when used in the 

topology design using genetic algorithm. Hence, 

there is a need of computational effective approach 

which would be able to measure the exact 

connectivity of a network. In this paper, an 

approach has been proposed for measuring the 

connectivity of a given network which is 

computationally efficient.  The paper is organised 

as follows. Section 2 presents an approach for 

measuring the connectivity of a network.  

Illustrative examples are discussed in section 3 

and some concluding remarks are given in section 

4. 

 

 

2. Proposed Connectivity Measuring Approach 
 

A communication network consists of a number of 

nodes connected via communication lines. In graph 

theoretic terms, a communication network having 

N nodes and M communication lines can be 

regarded as a Graph G=(V, E) consisting of a 

finite non- empty set V = {v1, v2, …. , vN} of N 

vertices and a set E = { e1, e2,……., eM}. The 

vertices of the graph correspond to the nodes 

(computers) of the network and its edges 

correspond to the communication links. 

Throughout out discussion, we shall use Network 

and Graph interchangeably.  

 

In this paper, an approach has been proposed an 

approach which measures the connectivity of a 

given network by finding the 2-connected 

networks. And at any point, if it is not possible to 

find a 2-connected network, we try to find out a 1-

connected network. Connectivity of a network is 

always equal to two times the number of 2-

connected network plus one if a 1- connected 

network is also found. A given network may be 1-

connected network, 2-connected network or k-

connected network. The necessary and sufficient 

conditions for all three types of  the  network  

representations  that  need  to  be  checked  are  

discussed  in  section  2.1. Necessary conditions are 

checked first and if fulfilled then only the 

sufficient conditions are required to be checked.  

Using this way, we can save computation time by 

avoiding examining the infeasible networks. 

 

2.1 Classification of a Network and their 

Necessary and Sufficient Conditions 
 

A network can be classified as a 1-connected 

network, 2-connected network and k-connected 

network. Here, we describe all the necessary and 

sufficient conditions that need to be checked for all 

types of networks. 

 

2.1.1 1-Connected Network 
 

A network is said to be 1-connected if all nodes are 

reachable to each other. Connectivity of network is 

one only if there exists a spanning tree traversing 

all nodes in the network. Necessary and sufficient 

conditions for a 1-connected network are given 

below: 

 

Necessary condition: 

Number of links in the network should be at least 

N-1. 

 

Sufficient condition: 

There should be at least one spanning tree which 

traverses all nodes in the network. 

 

2.1.2 2-Connected Network: 
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A network is said to be a 2-connected network if 

there are at least two disjoint paths for each node 

pairs. The necessary and sufficient conditions for a 

2-connected network are given below: 

 

Necessary conditions: 

 Minimum number of links should be N. 

 Degree (vi) ≥ 2 for all vi. 

 

Sufficient conditions: 

There are various possible representations 

for a 2-connected network. If a traversed 

network satisfies any of the following 

representations described below, the 

network is said to be a 2-connected 

network. 

 

A network is represented by a cycle containing all 

nodes.  This representation can be proved by a 

theorem given below: 

Theorem 1.  Let G be a graph represented by a 

cycle containing all nodes. Then, G is a 2-

connected network. 

Proof: It is trivial that there are two disjoint paths 

between each node pair in a cycle i.e. one in the 

forward direction and second in backward direction 

from one node to another node. 

 

A network is represented by two disjoint sub 

networks which are connected via two links. 

Theorem which proves this representation is given 

below: 

Theorem 2. Let G1 and G2 are two graphs 

representing two disjoint 2-connected sub graph.  

If G1 and G2 are connected via two links l1and 

l2, then G1 ∪ G2 ∪ l1 ∪ l2 is also a 2-connected 

network. 

Proof: It is also trivial that if two 2-connected 

networks are connected via two links, then 

resultant network would also be a 2-connected 

network. As every node in G1 have two disjoint 

paths to reach every other node in G2. 

 

A network is represented by a 2-connected sub 

network N1 and a spanning tree N2. And all 

nodes of the spanning tree N1 having degree one 

are connected to at least two nodes of sub network 

N1. 

Theorem 3. Let G1 be a graph representing a 2-

connected network. G2 be a graph representing a 

network in which all nodes are connected. Let 

v1, v2,…., vk are the k nodes in G2 who have 

degree one. If these k nodes are connected to at 

least two nodes of G1 via links l1, l2, ……, lk, then, G1 u 

G2 u l1 u l2 u l3………..u lk is also a 2-connected 

network.    

Proof: This is similar to theorem 2 except G2 is 

not a 2-connected network. Once all nodes having 

degree  one  are connected to at least two nodes 

of G1, it means that there are two disjoint paths 

to reach G1 from the nodes of  G2 because all 

nodes in G2 are reachable to those nodes whose 

degree are one and vice-versa. 

 

More than one disjoint sub networks representing 

the cycles (containing all nodes of the network) 

and if these cycles are connected to other cycles via 

at least two links. Theorem 2 can be used as a basis 

for proving this representation. 

 

More than one of disjoint sub networks 

representing cycles (containing subset of the nodes 

of the network) and nodes which are not the part of 

the cycles either represent a single sub network or 

multiple sub network. Theorem 2 and Theorem 3 

can be used for proving this representation. 

 

The representation described above can be found 

by traversing the given network from any 

randomly selected node. If the traversed network 

results into any of the representations discussed 

above, network is said to be a 2-connected network. 

 

2.1.3 k-connected Network 
 

A network is said to be a k-connected network if 

there are at least k disjoint paths for each node pair. 

k may be either even or odd. The necessary and 

sufficient conditions that need to be checked for k-

connected networks are given below: 

 

Necessary Conditions: 

Minimum number of links should be 

(N*k)/2. 

Degree (vi) >= k for all vi.  

 

Sufficient Conditions: 

If any network satisfies the necessary 

conditions described above, then the given 

network would be a k-connected network 

if it also satisfies the conditions listed in 

step1, step 2 and step 3 as given below: 

 

Step 1. Traverse the given network and check 

whether the traversed network satisfies any of 

sufficient condition described for a 2-connected 

network (using marked links only). If yes, then 

increase the connectivity k by 2 and repeat step1 

otherwise go to step 2. 

 

Step 2. If the traversed network at any point does 

not satisfy the condition in step 1, then start joining 

the traversed disjoint sub network until a single sub 

network is formed. While joining the two disjoint 

sub networks, it is also checked whether each 

disjoint sub network is joined to other via at least 

k+2 unmarked links.  If at any point, number of 

links joining two disjoint sub networks are less 

than k+2 then go to step 3, otherwise Set k= k+2 
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and go to step 1. 

 

Step 3.  This is the case for a network having 

odd connectivity. If every traversed node is 

incident on some unmarked links, then check 

whether it is   possible to form a spanning tree 

using these unmarked links. If yes, set k = k+1. 

Otherwise, check whether it is possible to form two 

disjoint sub networks using both marked links 

and unmarked links. If yes, check how many links 

(marked or unmarked) are there which connect 

these two sub networks. If there exist   either k+1 

or more links, then set k =k+1. Resultant 

network is a k-connected network. 

 

2.2 Proposed Algorithm for Measuring 

Connectivity of a Network. 
 

Input: Network topology represented by Graph G 

(V, E)  

Output: link connectivity of the network 

Initialize G` =0, k =0 

Begin 

Calculate the degree of all nodes. 

Set Network_degree = degree of node 

whose has lowest degree among all nodes. 

If (Network_ degree = 1) 

Apply either breadth first search or depth first 

search algorithm to find out whether all nodes 

are connected. And if all node are connected, then 

Set k=1; 

Go to step 5. 

While (Network_degree >= 2) 

Start traversing the network until all nodes 

are traversed. 

 Mark all traversed links. 

If  the  sub  network  represented  by  the  

marked  link  satisfies  any  of  the 

sufficient conditions for a 2-connected 

network described in section 2.1.2.  

Then, 
Set k = k+2; 

Set Network_degree= Network_degree-2; 

Else 
If traversing results into more than one 

disjoint sub networks, then start joining 

these disjoint sub networks using the 

marked/unmarked links until a single sub 

network is formed.  Number of links 

which join two disjoint sub networks 

should be more than or equal to k+2. If at 

any point, number of links joining two 

disjoint sub networks are less than k+2 

then go to step 4, otherwise 

Set k= k+2; 

Network_degree= Network_degree – 2; 

 

If every node is incident on some 

uunmarked links, then check whether it 

is possible to form a spanning tree using 

these unmarked links. If yes, set k = k+1 

and go to step 5. 

Else 

Check whether it is possible to form two 

disjoint sub networks using both marked 

links and unmarked links. If yes, check 

how many links (marked or unmarked) 

which connect these two sub network. If 

there exists at least k+ 2 links, then set k 

=k+1. 

The network is a k-connected network.  

End 

 

 

3.   Illustrative Examples 
 

In this section, we will illustrate the proposed 

approach using various examples. We have 

illustrated all representations of a 2-connected 

network in example 1.    The network in example 2 

describes the case when a given network’s nodes 

have degree 3, still network is not a 3-connected 

network. Details description for checking the 

sufficient conditions for a 4- connected network is 

given in example 3 as the network satisfies the 

necessary conditions for a 4-connected network. 

 

Example 1. Consider a network having 8 nodes, 12 

links with its adjacency matrix shown in figure 2 

given below. 

 

 

 
 

0 1 1 1 0 1 0 0 

1 0 0 0 0 1 1 0 

1 0 0 1 1 0 0 0 

1 0 1 0 0 0 0 1 

0 0 1 0 0 0 0 1 

1 1 0 0 0 0 1 0 

0 1 0 0 0 1 0 1 

0 0 0 1 1 0 1 0 
 

Figure 2. Given network and its adjacency matrix 

 

Traversed network representation depends on the 

starting node and the heuristic used for traversing. 

Hence, if we traverse the network in figure 2, it 
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may results into any of the four grouping of sub 

networks as shown in figure 3, figure 4, figure 5 

and figure 6 which are explained below: 

 

The sub network in figure 3 results when we start 

the traversing from node 7 and always choose 

highest numbered node among the adjacent nodes. 

Step by step description for getting the sub network 

in figure 4 is as follows:  Let’s choose node 7 as a 

starting node.  Mark node 7 as traversed node.  

Node 8 and node 6 are adjacent to node 7.  We 

chose highest numbered node first among the 

adjacent nodes.  So, node 8 and link 7-8 are 

marked as traversed in the network. Links are 

symmetric as network is represented as an 

undirected graph. In the next step, find out the 

adjacent nodes to the current traversed node i.e. 

node 8. Node 5 and node 4 are the adjacent node to 

node 8. So mark node 5 and link 8-5 as traversed in 

the network. Node 5 is adjacent to only one node 

which is not traversed yet i.e. node 3. Mark node 3 

and link 5- 3 as traversed. Node 3 is adjacent to 

node 1 and node 4. Mark node 4 and link 3-4 as 

traversed. Next, we mark node1 and link 4-1. 

Then, node 6 and link 1-6 are marked. After that, 

node 2 and link 6-2 are marked. Now all 

nodes are traversed at this point. Check whether 

there is a link between the starting node and current 

traversed node.  If yes, mark that link also. So link 

2-7 is marked as traversed. Resultant traversed 

network and adjacency matrix containing marked 

(shown bold, italic and underline) and unmarked 

links are shown in figure 3 and it forms a cycle, 

which itself a 2-connected network. Hence the 

given network is a 2-connected network. 

 

 
 

0 1 1 1 0 1 0 0 

1 0 0 0 0 1 1 0 

1 0 0 1 1 0 0 0 

1 0 1 0 0 0 0 1 

0 0 1 0 0 0 0 1 

1 1 0 0 0 0 1 0 

0 1 0 0 0 1 0 1 

0 0 0 1 1 0 1 0 
 
Figure 3.  Network and Adjacency Matrix after traversing 

 

It is not necessary that the given network always 

results into a cycle as we have already said that it 

depends on the starting node and heuristics used for 

traversing. For example, if we traverse the same 

network choosing node 1 as a starting node, any 

adjacent node to current node becomes the new 

current node.  Step by step description for 

constructing the sub networks in figure 4 is as 

follows: choose node 1 as a starting node. Now, 

node 6 and node 2 are adjacent to node 1.  

Suppose node 2 is chosen. Mark node 2 and link 

1-2 as traversed. Suppose node 7 is chosen next.  

Mark node 7 and link 2-7. Following this manner, 

we come across the node 4. At this point, node 6 

is the only node which is not traversed yet. But it 

is not adjacent to current traversed node 4. As there 

is a link between starting node 1and more recently 

traversed node 4.  So, mark link 3-1 as traversed. 

Now start traversing from node 6 and mark node 6 

as traversed.  As there is no node which is left for 

traversing. Hence, traversed network results into 

two sub networks i.e. one cycle containing nodes 

1,2,7,8,5,4,3 and one single node 6. Adjacency 

matrix after traversing is shown in figure 4. 

 

   

 
 
  

 

0 1 1 1 0 1 0 0 

1 0 0 0 0 1 1 0 

1 0 0 1 1 0 0 0 

1 0 1 0 0 0 0 1 

0 0 1 0 0 0 0 1 

1 1 0 0 0 0 1 0 

0 1 0 0 0 1 0 1 

0 0 0 1 1 0 1 0 

 
Figure 4 Traversed Network and Adjacency Matrix after 

Traversing 

 

 

To satisfy the 2-connectivity, there should exist 

two unmarked links which connect node 6 and 

the cycle. If we see the adjacency matrix, there are 

three unmarked links i.e. 6-1, 6-2, 6-7 which 
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connect node 6 to the cycle. Hence the 

sufficient condition is also satisfied and network 

in figure 4 is a 2-connected network once we add 

the any of two links among links 6-1, 6-2, 6-7. 

 

If traversing the same network results into two 

disjoint sub networks as shown in figure 5, we 

check whether there exists at least two unmarked 

links which connect these two sub networks. In this 

example three links 1-6, 1-2, 7-8 which connect the 

two disjoint sub networks.  Hence the sufficient 

condition for this is also satisfied.  So Network is a 

2-connected network once we add the any of the 

two links among links 1-6, 1-2, 7-8. 

     

 

  
 

0 1 1 1 0 1 0 0 

1 0 0 0 0 1 1 0 

1 0 0 1 1 0 0 0 

1 0 1 0 0 0 0 1 

0 0 1 0 0 0 0 1 

1 1 0 0 0 0 1 0 

0 1 0 0 0 1 0 1 

0 0 0 1 1 0 1 0 
 

 
Figure 5. Traversed Network and its Adjacency Matrix after 

Traversing. 

 

Another possibility in which traversed network 

may result into sub networks is   shown in figure 

6.  There are two disjoint sub network S1 (1, 2, 6), 

S2 (3, 4, 5, 8) which form cycle and one sub 

network S3 (7) which do not form a cycle.  In this 

case, we check whether there exist at  least  two  

links  which  connect  sub  network  S1  and  sub  

network  S2.  Looking at the adjacency matrix in 

figure 6, there are two links 1-3 and 1-4 which 

connect sub network S1 and sub network S2. Next 

we check whether there exist two links which 

connect node 7 to S1 or S2 or both. And if we 

look at the adjacency matrix, there are three 

links 7-8, 7-6, 7-2 which connect node 7 to S1 and 

S2. Hence network is a 2-connected network. 

 
 

0 1 1 1 0 1 0 0 

1 0 0 0 0 1 1 0 

1 0 0 1 1 0 0 0 

1 0 1 0 0 0 0 1 

0 0 1 0 0 0 0 1 

1 1 0 0 0 0 1 0 

0 1 0 0 0 1 0 1 

0 0 0 1 1 0 1 0 

 

 
Figure 6.   Traversed Network and its Adjacency Matrix after 
Traversing. 

 

Hence, it is proved that using the sufficient 

conditions described in section 2.12. for a 2- 

connected network, we can measure the 2-

connectivity of a given network. 

 

Example 2. Consider a network having 8 nodes 

and 12 links network with its adjacency matrix 

shown in figure 7. 

 

 
 

0 1 1 1 0 0 0 0 

1 0 1 1 0 0 0 0 

1 1 0 0 0 0 1 0 

1 1 0 0 0 1 0 0 

0 0 0 0 0 1 1 1 

0 0 0 1 1 0 0 1 

0 0 1 0 1 0 0 1 

0 0 0 0 1 1 1 0 

 
Figure 7.  Given Network and Its Adjacency Matrix. 
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The given network satisfies the necessary 

conditions of a 3-connected network and also 

satisfies the equation 2 given in section 1 but it is 

not a 3-connected network. As k is odd, so it is 

first checked for k-1 connectivity i.e. 2. We start 

traversing the network considering node 1 as a 

starting node and select the adjacent nodes 

randomly. Traversed network may result into 

various grouping of sub networks. For example, if 

traversing results in to the sub network shown in 

figure 8 along with its adjacency matrix. 

 

 
 

 

0 1 1 1 0 0 0 0 

1 0 1 1 0 0 0 0 

1 1 0 0 0 0 1 0 

1 1 0 0 0 1 0 0 

0 0 0 0 0 1 1 1 

0 0 0 1 1 0 0 1 

0 0 1 0 1 0 0 1 

0 0 0 0 1 1 1 0 

 
Figure 8. Traversed network and Adjacency Matrix after 

traversing. 

 

The sub network in figure 8 forms a cycle which is 

itself a 2-conencted network. Hence condition in 

step 1 of section 2.1.3 is satisfied.  Next we 

check whether unmarked links are able to form a 

spanning tree. There are only four remaining links 

and spanning tree requires at least 7 links. It is 

not possible to form a spanning tree using four 

unmarked links for a network of 8 nodes. So, we 

check whether it is possible to form disjoint sub 

network using both marked and unmarked links. In 

this example, it is possible to form two disjoint sub 

network or cycles i.e. C1 (1-4-2-3-1) and C2 

(8-6-5-7-8) and if we see in the adjacency 

matrix, there are only two marked  links 3-7 and 4-

6  which connect these two sub networks. Hence 

the condition of k links for this situation is not 

satisfied as there are only k-1 links and failure in 

these two links results into a disconnected network. 

Network in figure 7 is not a 3- connected network 

even though it satisfies the equation 2 discussed in 

section 1. 

 

Example 3. Consider a network having 13 nodes 

and 27 links with its adjacency matrix as shown 

in figure 9. 

 

 
 

 

 

0 0 0 0 0 1 0 0 0 1 1 0 1 

0 0 1 0 1 0 0 1 1 0 0 0 0 

0 1 0 1 0 0 0 0 0 1 1 0 0 

0 0 1 0 0 0 1 1 0 0 0 1 0 

0 1 0 0 0 1 0 0 1 0 1 0 0 

1 0 0 0 1 0 0 0 1 0 1 0 0 

0 0 0 1 0 0 0 1 0 1 0 1 0 

0 1 0 1 0 0 1 0 1 0 0 0 0 

0 1 0 0 1 1 0 1 0 0 0 0 1 

1 0 1 0 0 0 1 0 0 0 0 1 1 

1 0 1 0 1 1 0 0 0 0 0 0 0 

0 0 0 1 0 0 1 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 0 1 0 

 

 

Figure 9 Given Network and its Adjacency 

Network. 

 

The given network satisfies the necessary 

conditions for a 4-connected network. The network 

when traversed using heuristic in which adjacent 

nodes are selected randomly, results into the 

representation shown in figure 10. 
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0 0 0 0 0 1 0 0 0 1 1 0 1 
0 0 1 0 1 0 0 1 1 0 0 0 0 

0 1 0 1 0 0 0 0 0 1 1 0 0 

0 0 1 0 0 0 1 1 0 0 0 1 0 

0 1 0 0 0 1 0 0 1 0 1 0 0 

1 0 0 0 1 0 0 0 1 0 1 0 0 

0 0 0 1 0 0 0 1 0 1 0 1 0 

0 1 0 1 0 0 1 0 1 0 0 0 0 

0 1 0 0 1 1 0 1 0 0 0 0 1 

1 0 1 0 0 0 1 0 0 0 0 1 1 
1 0 1 0 1 1 0 0 0 0 0 0 0 

0 0 0 1 0 0 1 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 0 1 0 

 

 
Figure 10 Traversed Network and its Adjacency Matrix after 

Traversing. 

 

Traversed network in figure 10 contains a cycle C1 

containing the subset of nodes in the network and a 

single node 3 which is not connected. To make it 2-

connected, connect node 3 to any two nodes of the 

cycle C1. If we m,lark link 3-4 and link 3-2.  

Resultant sub network is a 2-connected network. 

Set connectivity = 2. The network is traversed 

again using unmarked links which is shown in 

figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

0 0 0 0 0 1 0 0 0 1 1 0 1 

0 0 1 0 1 0 0 1 1 0 0 0 0 

0 1 0 1 0 0 0 0 0 1 1 0 0 

0 0 1 0 0 0 1 1 0 0 0 1 0 

0 1 0 0 0 1 0 0 1 0 1 0 0 

1 0 0 0 1 0 0 0 1 0 1 0 0 

0 0 0 1 0 0 0 1 0 1 0 1 0 

0 1 0 1 0 0 1 0 1 0 0 0 0 

0 1 0 0 1 1 0 1 0 0 0 0 1 

1 0 1 0 0 0 1 0 0 0 0 1 1 

1 0 1 0 1 1 0 0 0 0 0 0 0 

0 0 0 1 0 0 1 0 0 1 0 0 1 

1 0 0 0 0 0 0 0 1 1 0 1 0 

 
 

Figure 11 Traversed Network and Adjacency Matrix after 

Traversing. 

 

Traversed network in figure 11 is a grouping of 

three sub networks i.e. C1 (1-11-3-10) which form 

a cycle, C2 (4-12-13) and C3 (7-8-9-6-5-2). To 

verify the 2-conenctivity, check whether there 

exists at least two unmarked or marked links 

which can connect node 2 and node 7 of C3 to the 

nodes of C1.  Links 2-3 and link 7-10 are marked 

and C1 and C3 result into a single 2-connected sub 

network. Now check whether there exists at 

least two unmarked/marked links which connect 

node 4 and node 13 to newly formed 2-connected 

sub network.  Link 4-3 and 9-13 are two 
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unmarked links which connect C2 to newly 

formed 2-conencted network and satisfy the 2-

conencvity. Hence, it proved that network given in 

figure 9 is a 4-connected network. 

 

 

4.   Performance Evaluation 
 

Running time of the algorithm proposed in the 

section 2.2 for measuring the connectivity depends 

on the running time required to traverse the 

network i.e. O (V+E).  Once the network is 

traversed, next task is to join the entire connected 

disjoint component found in traversing the 

network. If during traversing m connected 

components are formed then join operation will 

be called m-1 times. Running time of joining all 

components are O (m*E). For a network whose 

network degree is k, this whole process is called 

k/2 times. So total running time of the algorithm 

measuring the connectivity would be O (k/2(V+E) 

+ (m*E)) which is smaller than the Karp Edmond 

algorithm whose time complexity is O (VE
2

). 

 

 

5.   Conclusion and Future Work 
 

In this paper, we have proposed an approach for 

measuring the connectivity of a given network.  

The proposed approach is robust enough that it 

gives exact connectivity of a network in all 

situations without finding out all disjoint paths 

between all node pairs. 
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