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Abstract 
In this paper, we introduce two simple but effective 

reversible pre-compression transformations for raster 

graphics image compressions: horizontal differential and 

vertical differential. By incorporating the two pre-

compression transformations with general purpose 

compression algorithms such as arithmetic or DLZW 

compressions, the resulting raster image compression 

algorithm performs significantly better than the most 

commonly used lossless image compression method PNG. 

Key words: Raster graphics image, reversible pre-

compression transformation, lossless image compression, 

DLZW compression, arithmetic compression, PNG. 

1. Introduction 

As technology advances and the demands of modern 

society increases, the resolution of digital images 

becomes higher and higher. Higher resolution images 

capture more details of pictures and can produce 

higher quality printouts. However, high resolution 

images require more storage space and take more 

time to transmit thru the internet. Thus, the needs of 

efficient algorithms for compressing high resolution 

graphic images are ever increasing. 

There are basically two types of methods for 

compressing digital images: lossy and lossless. Lossy 

compressions, e.g., JPEG (Joint Photographic Experts 

Group) (1992) [1], create smaller files by discarding 

(losing) some information about the original image. It 

discards details and color changes it believes too 

small for the human eye to differentiate.  Lossless 

compressions, e.g., GIF (Graphics Interchange 

Format) (1987) [2], TIFF (Tagged Image File Format) 

(1992) [3], and PNG (Portable Network Graphics) 

(1996) [4], on the other hand, never remove any 

information of the original image. In general, lossy 

compressions result in smaller files than lossless 

compressions. However, image files produced by 

lossless compressions have better sharp reproductions 

and better quality printouts. 

Most digital images are created or captured in raster 

graphics format. In computer graphics, a raster 

graphics image is a data structure representing a 

generally rectangular grid of pixels, or points of color, 

viewable via a computer monitor or printable on 

paper. Raster graphics images are palette-based 

images (with palettes of 24-bit RGB or 32-bit RGBA 

colors), grayscale images (with or without alpha 

channel), or full-color non-palette-based RGB images 

(with or without alpha channel). To simplify matters, 

in this paper we always use palettes-based images 

with palettes of 24-bit RGB in our examples. Fig. 1 

illustrates a raster graphics matrix with palettes of 24-

bit RGB, where h and w are the height and width of 

the matrix, respectively. Also note that in most image 

file formats such as BMP, the size of each row is 

rounded up to a multiple of 4 bytes by padding. BMP 

(bitmap image file) is a bitmapped graphics format 

used internally by the Microsoft Windows graphics 

subsystem (GDI) and used commonly as a simple 

graphics file format on that platform. It is an 

uncompressed format. 

R0 ,h -1 G0,h-1 B0,h-1 R1,h-1 G1,h-1 B1,h-1 … Rw-1,h-1 Gw-1,h-1 Bw-1,h-1 p a d d i n g 

R0 ,h -2 G0,h-2 B0,h-2 R1,h-2 G1,h-2 B1,h-2 … Rw-1,h-2 Gw-1,h-2 Bw-1,h-2 p a d d i n g 

… … … … … … … … … … … 

R0,1 G0,1 B0,1 R1,1 G1,1 B1,1 … Rw-1,1 Gw-1,1 Bw-1,1 p a d d i n g 

R0,0 G0,0 B0,0 R1,0 G1,0 B1,0 … Rw-1,0 Gw-1,0 Bw-1,0 p a d d i n g 

 
Fig. 1 Raster graphics matrix with 24-bit RGB 

Raster images are known to be uncompressible by 

general purpose compression algorithms such as LZ 

family compressions [5, 6, 7], Huffman compression 

[8] and arithmetic compression [9] alone. Thus, the 

general idea of compressing a raster image is to apply 

a pre-compression transformation on the image 

before using a general purpose compression 

algorithm. In a lossy compression algorithm, the pre-

compression transformation is not reversible and in a 

lossless compression algorithm, the transformation is 

reversible. 
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In Section 2, we describe two pre-compression 

reversible transformations that can make raster 

images more compressible. Compared to existing 

pre-compression transformations used in other 

lossless image compression algorithms, our 

transformations are logically simpler and take less 

time to compute.  In Section 3, we summarize some 

empirical results of effects of our two pre-

compression reversible transformations. Finally, in 

Section 4, we conclude our experiments. 

2. Two Simple and Effective Reversible 

Transformations 

The idea of using pre-compression transformations 

isn’t new. For example, Burrows Wheeler Transform 

(BWT) [10] and Prediction by Partial Matching [11] 

have long been used to improve the efficacy of 

general purpose compression algorithms. Moreover, 

well-known image compression algorithms GIF, 

TIFF, JPEG, and PNG all use pre-compression 

transformations. That is, they all incorporate pre-

compression transformations with general purpose 

compression algorithms. Fig. 2 illustrates the scheme 

of incorporating general compression/decompression 

algorithms with pre-compression transformations. 

 

Fig. 2 Compression/Decompression Incorporating a Pre-

compression Transformation 

In this section we describe two reversible pre-

compression transformations suitable for 

compressing raster graphics images. As in any other 

well-known image compression algorithms, the basic 

idea is to replace pixel values with differences of 

adjacent pixel values. In high resolution images, 

adjacent pixel values tend to change gradually. Thus 

the differences will generally be clustered around 0, 

rather than spread over all possible pixel values. 

 

2.1 Horizontal Differential 

In this transformation, every byte except the first byte 

of every row of the raster graphics matrix is replaced 

with the difference from the previous byte. Fig. 3 

shows the result of applying the horizontal 

differential transformation on the raster graphics 

image matrix of Fig. 1. 

R0,h -1 G0,h-1 -R0,h-1 B0,h- 1-G0,h-1 R1,h-1-B0, h-1 G1,h-1-R1,h-1 B1,h- 1-G1,h-1 … Rw-1,h-1-Bw-2,h-1  Gw-1,h-1-Rw-1,h-1 Bw-1,h-1-Gw-1,h-1 p a d d i n g 

R0,h -2 G0,h-2-R0,h-2  B0,h- 2-G0,h-2 R1,h-2-B0, h-2 G1,h-2-R1,h-2 B1,h- 2-G1,h-2 … Rw-1,h-2-Bw-2,h-2  Gw-1,h-2-Rw-1,h-2 Bw-1,h-2-Gw-1,h-2 p a d d i n g 

… … … … … … … … … … … 

R0,0 G0,0-R0,0 B0,0-G0,0 R1 ,0-B0,0 G1,0-R1,0 B1,0-G1,0 … R w - 1 , 0- B w - 2 , 0  G w - 1 , 0- R w - 1 , 0 Bw-1,1-Gw-1,0 p a d d i n g 

 
Fig. 3 Horizontal Differential 

2.2 Vertical Differential 

In this transformation, every byte except the first byte 

of every column of the raster graphics matrix is 

replaced with the difference from the byte above. Fig. 

4 illustrates the result of applying the vertical 

differential transformation on the raster graphics 

image matrix of Fig. 1. 

R0 ,h -1 G0,h-1 B0,h-1 R1,h-1 G1,h-1 B1,h-1 … Rw-1,h-1 Gw-1,h-1 Bw-1,h-1 p a d d i n g 

R 0,h-2-R0,h-1 G0,h-2-G 0,h- 1 B0,h-2-B0, h-1 R1,h-2-R1, h-1 G1,h-2-G 1,h- 1 B1,h-2-B1, h-1 … Rw-1,h-2-Rw-1,h-1 Gw-1,h-2-Gw-1,h-1 Bw-1,h-2-Bw-1,h-1 p a d d i n g 

… … … … … … … … … … … 

R0,0-R0,1 G0,0-G0,1 B0 ,0-B0,1 R1 ,0-R1,1 G1,0-G1,1 B1 ,0-B1,1 … R w-1,0-Rw-1,1 G w-1,0-Gw-1,1 B w-1,0-Bw-1,1 p a d d i n g 

 
Fig. 4 Vertical Differential 

3. Some Empirical Results 

In order to demonstrate the effectiveness of our pre-

compression transformations we need graphics 

images which have never been thru compressing and 

decompressing of any lossy image compression 

algorithm. To do so, we used a Canon camera to take 

10 pictures, saving them in the uncompressed TIFF 

format, and then converted them to the BMP format 

using the Microsoft Paint program.  Our sample 

pictures are captured in 3648×2736 resolution with 

palettes of 24-bit RGB and thus have a raster 

graphics matrix size of 3648×2736×3, i.e. 29,942,784 

bytes. Since BMP files created by Paint has a file 

header of 54 bytes, all resulting BMP files has a size 

of 29,942,838 bytes. In this section, we ignore the file 

headers of images files and only compare the 

resulting compressed sizes of raster image matrices. 

Besides the effectiveness of individual pre-

compression transformation, we also show the 
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effectiveness of the combination of the two pre-

compression transformations. 

3.1 No Reversible Transformation 

First we compress the 10 sample raster images 

without any pre-compression transformations. Four 

general compression algorithms, arithmetic, Huffman, 

LZW [7], and DLZW [12] have been used. LZW 

compression is Terry Welch’s implementation of LZ 

compression. DLZW (Dynamic LZW) compression 

is Wang’s modification of LZW. Without any pre-

compression transformations, LZW inflates image 

sizes. On average, arithmetic and Huffman 

compressions reduce image sizes by 10% and DLZW 

reduces image sizes by 35%.  The results are 

summarized in Table 1. In the table, we use color to 

high light the best case of each sample file. Clearly, 

without any pre-compression transformation, DLZW 

works better than other compression methods. 

3.2 With Horizontal Differential 

In this section, we test sample images with 

combinations of the horizontal differential 

transformation and general compression algorithms. 

With only horizontal differential transformation, 

LZW still inflates image sizes. On average, 

arithmetic and Huffman compressions reduce image 

sizes by 18% and DLZW reduces image sizes by 

41%. The results are summarized in Table 2. 

3.3 With Vertical Differential 

In this section, we test the effectiveness of the 

vertical differential transformation. With vertical 

transformation, on average, LZW reduces image 

sizes by 55%, arithmetic and Huffman compressions 

reduce images sizes by 45% and DLZW reduces 

image sizes by 57%. The results are recapitulated in 

Table 3. Clearly, vertical differential transformation 

can significantly enhance the efficacy of the 

compression. 

3.4 With Combination of Horizontal 

Differential and Vertical Differential 

Transformations 

In this section, we demonstrate that the horizontal 

and the vertical differential transformations can be 

used together to further improve the compression 

efficacy achieved by either transformation alone. 

With the two transformations combined, on average, 

LZW reduces image sizes by 46%, arithmetic and 

Huffman compressions reduce images sizes by 47% 

and DLZW reduces image sizes by 58%. The results 

are exhibited in Table 4. Surprisingly, in more than 

50% of the cases, arithmetic compression works 

better than DLZW compression when combined with 

both transformations even though DLZW works 

better on average and when incorporated with only 

one individual transformation. 

3.5 Combination of Horizontal and Vertical 

Differential Transformations VS. PNG 

In this section, we compare our raster graphic image 

compression algorithms with PNG image 

compression algorithm. To do so, first, we use 

Microsoft Paint to convert our sample uncompressed 

TIFF files to PNG files and then compare PNG file 

sizes with sizes of those images produced by our 

algorithms. Note that since our pre-compression 

transformations are very simple, if we want to save 

the compressed images in files we only need simple 

file headers as BMP file headers. Since the header 

size of BMP files created by Paint is 54 bytes long, in 

Table 5, we add 54 bytes to the sizes of the resulting 

images produce by our resulting image compression 

algorithms. 

As shown in Table 5, on average, by incorporating 

any one of the general-purpose compression 

algorithms, the combination of our two pre-

compression transformations is 9% better than the 

PNG algorithm. 

4. Conclusion 

In this paper we have described two simple pre-

compression transformations, horizontal differential 

and vertical differential, suitable for raster image 

compressions.  We have tested our transformations 

with general purpose compression algorithms on 

sample raster graphic images. The test results show 

that by incorporating both transformations with 

general purpose compression algorithms, the 

compression efficacy can be significantly improved. 

Moreover, as shown in Table 5, the combination of 
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our two per-compression transformations can do 

notably better than the most commonly used lossless 

image compression method PNG. 
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Table 1: No Pre-compression Transformation 

 IMG0001 IMG0002 IMG0003 IMG0004 IMG0005 IMG0006 IMG0007 IMG0008 IMG0009 IMG0010 Average 
Arithmetic 28023647 

(93.59%) 

27224952 

(90.92%) 

26785347 

(89.46%) 

26159746 

(87.37%) 

29486922 

(98.48%) 

23284100 

(77.76%) 

29300244 

(97.85%) 

27107285 

(90.53%) 

27979304 

(93.44%) 

22599036 

(75.47%) 

26795058 

(89.49%) 

Huffman 28109229 
(93.88%) 

27305049 
(91.19%) 

26905675 
(89.86%) 

26292924 
(87.81%) 

29589366 
(98.82%) 

23394981 
(78.13%) 

29428553 
(98.28%) 

27268085 
(91.07%) 

28055759 
(93.70%) 

22768637 
(76.04%) 

26911825 
(89.88%) 

L Z W 36031034 

(120.33%) 

41402126 

(138.27%) 

40828744 

(136.36%) 

38039926 

(127.04%) 

39591696 

(132.22%) 

50321798 

(168.06%) 

45615302 

(152.34%) 

34701696 

(115.89%) 

45805418 

(152.98%) 

27400900 

(91.51%) 

39973864 

(133.50%) 

D L Z W 22757020 
(76.00%) 

21041122 
(70.27%) 

20359444 
(67.79%) 

19300520 
(64.46%) 

23741476 
(79.29%) 

13446436 
(44.91%) 

19382456 
(64.73%) 

19263742 
(64.34%) 

18044920 
(60.26%) 

16485742 
(55.06%) 

19382287 
(64.73%) 

 
 

Table 2: With Horizontal Differential Transformation 

 I M G 0 0 0 1 I M G 0 0 0 2 I M G 0 0 0 3 I M G 0 0 0 4 I M G 0 0 0 5 I M G 0 0 0 6 I M G 0 0 0 7 I M G 0 0 0 8 I M G 0 0 0 9 I M G 0 0 1 0 A v e r a g e 

Arithmetic 25632022 

(85.60%) 

24831641 

(82.93%) 

24145158 

(80.64%) 

23489272 

(78.45%) 

25456683 

(85.02%) 

20269675 

(67.69%) 

25398309 

(84.82%) 

23594805 

(78.80%) 

24090285 

(80.45%) 

27915453 

(93.23%) 

24482330 

(81.76%) 

Huffman 25747787 
(85.99%) 

24924712 
(83.24%) 

24267965 
(81.05%) 

23598319 
(78.81%) 

25535120 
(85.28%) 

20343697 
(67.94%) 

25536134 
(85.28%) 

23706421 
(79.17%) 

24192439 
(80.80%) 

28051038 
(93.68%) 

24590363 
(82.12%) 

L Z W 31436578 

(104.99%) 

33282152 

(111.15%) 

34615030 

(115.60%) 

34047440 

(113.71%) 

34094392 

(113.86%) 

40434716 

(135.04%) 

47263028 

(157.84%) 

26664050 

(89.05%) 

32341832 

(108.01%) 

34633944 

(115.67%) 

348811316 

(116.49%) 

D L Z W 20049516 
(66.96%) 

19303378 
(64.47%) 

18194160 
(60.76%) 

17066020 
(57.00%) 

21263478 
(71.01%) 

12072766 
(40.32%) 

17231770 
(57.55%) 

16125840 
(53.86%) 

14602002 
(48.77%) 

20445960 
(68.28%) 

17635489 
(58.90%) 

 
 

Table 3: With Vertical Differential Transformation 

 IMG0001 IMG0002 IMG0003 IMG0004 IMG0005 IMG0006 IMG0007 IMG0008 IMG0009 IMG0010 Average 
Arithmetic 18958810 

(63.32%) 

18321384 

(61.19%) 

19003710 

(63.47%) 

18884982 

(63.07%) 

19186957 

(64.08%) 

12138779 

(40.54%) 

15687402 

(52.39%) 

14108989 

(47.12%) 

13965046 

(46.64%) 

11848188 

(39.57%) 

16210424 

(54.14%) 

Huffman 19079338 

(63.72%) 

18415165 

(61.50%) 

19135595 

(63.91%) 

19014598 

(63.50%) 

19312081 

(64.50%) 

12258491 

(40.94%) 

15830797 

(52.87%) 

14193175 

(47.40%) 

14124947 

(47.17%) 

12001280 

(40.08%) 

16336546 

(54.56%) 

L Z W 15268194 
(51.00%) 

15627168 
(52.20%) 

15215130 
(50.81%) 

15159202 
(50.63%) 

16718784 
(55.83%) 

10398768 
(34.73%) 

14443728 
(48.24%) 

11252352 
(37.58%) 

10906508 
(36.42%) 

10623566 
(35.48%) 

13561340 
(45.29%) 

D L Z W 15011766 

(50.13%) 

14964702 

(49.98%) 

14712316 

(49.13%) 

14428962 

(48.19%) 

15948254 

(53.26%) 

8501354 

(28.39%) 

12290522 

(41.05%) 

10975864 

(36.66%) 

10348660 

(34.56%) 

10039498 

(33.53%) 

12722189 

(42.49%) 
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Table 4: With Horizontal and Vertical Differential Transformations 

 IMG0001 IMG0002 IMG0003 IMG0004 IMG0005 IMG0006 IMG0007 IMG0008 IMG0009 IMG0010 Average 
Arithmetic 14191762 

(47.40%) 
13889931 
(46.39%) 

13997716 
(46.75%) 

13965976 
(46.64%) 

14048434 
(46.92%) 

9128625 
(30.49%) 

11406570 
(38.09%) 

10484779 
(35.02%) 

10049772 
(33.56%) 

14495673 
(48.41%) 

12565923 
(41.97%) 

Huffman 14349101 

(47.92%) 

14047106 

(46.91%) 

14207567 

(47.45%) 

14158080 

(47.28%) 

14190389 

(47.39%) 

9240406 

(30.86%) 

11616196 

(38.79%) 

10630444 

(35.50%) 

10182448 

(34.01%) 

14617725 

(48.82%) 

12723946 

(42.49%) 

L Z W 14654036 
(48.94%) 

14983962 
(50.04%) 

14441200 
(48.23%) 

14399094 
(48.09%) 

15342124 
(51.24%) 

9834374 
(32.84%) 

12865856 
(42.97%) 

10731148 
(35.84%) 

10406232 
(34.75%) 

12346298 
(41.23%) 

13000432 
(43.42%) 

D L Z W 14498002 

(48.42%) 

14582276 

(48.70%) 

14227890 

(47.52%) 

14019370 

(46.82%) 

14878412 

(49.69%) 

8232290 

(27.50%) 

11718242 

(39.14%) 

10609036 

(35.43%) 

9991328 

(33.37%) 

12056888 

(40.27%) 

12481373 

(41.68%) 

 

 
Table 5: Combination of Horizontal and Vertical Differential Transformations VS. PNG 

 IMG0001 IMG0002 IMG0003 IMG0004 IMG0005 IMG0006 IMG0007 IMG0008 IMG0009 IMG0010 Average 
Arithmetic 14191816 

(47.40%) 
13889985 
(46.39%) 

13997770 
(46.75%) 

13966030 
(46.64%) 

14048488 
(46.92%) 

9128679 
(30.49%) 

11406624 
(38.09%) 

10484833 
(35.02%) 

10049826 
(33.56%) 

14495727 
(48.41%) 

12565977 
(41.97%) 

Huffman 14349155 

(47.92%) 

14047160 

(46.91%) 

14207621 

(47.45%) 

14158134 

(47.28%) 

14190443 

(47.39%) 

9240460 

(30.86%) 

11616250 

(38.79%) 

10630498 

(35.50%) 

10182502 

(34.01%) 

14617779 

(48.82%) 

12724000 

(42.49%) 

L Z W 14654090 
(48.94%) 

14984016 
(50.04%) 

14441254 
(48.23%) 

14399148 
(48.09%) 

15342178 
(51.24%) 

9834428 
(32.84%) 

12865910 
(42.97%) 

10731202 
(35.84%) 

10406286 
(34.75%) 

12346352 
(41.23%) 

13000486 
(43.42%) 

D L Z W 14498056 

(48.42%) 

14582330 

(48.70%) 

14227944 

(47.52%) 

14019424 

(46.82%) 

14878466 

(49.69%) 

8232344 

(27.50%) 

11718296 

(39.14%) 

10609090 

(35.43%) 

9991382 

(33.37%) 

12056942 

(40.27%) 

12481427 

(41.68%) 

P N G 17146217  
(57.26%) 

16990564 
(56.74%) 

16603057 
(55.45%) 

16296394 
(54.43%) 

18484673 
(61.73%) 

11219007 
(37.47%) 

15541703 
(51.90%) 

14512070 
(48.47%) 

13520412 
(45.15%) 

11840880 
(39.54%) 

15215497 
(50.82%) 

 

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 28

2015 International Journal of Computer Science Issues




