
Some Empirical Results of Compressing High

Resolution Raster Graphics Images

Chung-E Wang

Department of Computer Science, California State University, Sacramento

Sacramento, CA 95819-6021, USA

Abstract
In this paper, we introduce two simple but effective

reversible pre-compression transformations for raster

graphics image compressions: horizontal differential and

vertical differential. By incorporating the two pre-

compression transformations with general purpose

compression algorithms such as arithmetic or DLZW

compressions, the resulting raster image compression

algorithm performs significantly better than the most

commonly used lossless image compression method PNG.

Key words: Raster graphics image, reversible pre-

compression transformation, lossless image compression,

DLZW compression, arithmetic compression, PNG.

1. Introduction

As technology advances and the demands of modern

society increases, the resolution of digital images

becomes higher and higher. Higher resolution images

capture more details of pictures and can produce

higher quality printouts. However, high resolution

images require more storage space and take more

time to transmit thru the internet. Thus, the needs of

efficient algorithms for compressing high resolution

graphic images are ever increasing.

There are basically two types of methods for

compressing digital images: lossy and lossless. Lossy

compressions, e.g., JPEG (Joint Photographic Experts

Group) (1992) [1], create smaller files by discarding

(losing) some information about the original image. It

discards details and color changes it believes too

small for the human eye to differentiate. Lossless

compressions, e.g., GIF (Graphics Interchange

Format) (1987) [2], TIFF (Tagged Image File Format)

(1992) [3], and PNG (Portable Network Graphics)

(1996) [4], on the other hand, never remove any

information of the original image. In general, lossy

compressions result in smaller files than lossless

compressions. However, image files produced by

lossless compressions have better sharp reproductions

and better quality printouts.

Most digital images are created or captured in raster

graphics format. In computer graphics, a raster

graphics image is a data structure representing a

generally rectangular grid of pixels, or points of color,

viewable via a computer monitor or printable on

paper. Raster graphics images are palette-based

images (with palettes of 24-bit RGB or 32-bit RGBA

colors), grayscale images (with or without alpha

channel), or full-color non-palette-based RGB images

(with or without alpha channel). To simplify matters,

in this paper we always use palettes-based images

with palettes of 24-bit RGB in our examples. Fig. 1

illustrates a raster graphics matrix with palettes of 24-

bit RGB, where h and w are the height and width of

the matrix, respectively. Also note that in most image

file formats such as BMP, the size of each row is

rounded up to a multiple of 4 bytes by padding. BMP

(bitmap image file) is a bitmapped graphics format

used internally by the Microsoft Windows graphics

subsystem (GDI) and used commonly as a simple

graphics file format on that platform. It is an

uncompressed format.

R0 ,h -1 G0,h-1 B0,h-1 R1,h-1 G1,h-1 B1,h-1 … Rw-1,h-1 Gw-1,h-1 Bw-1,h-1 p a d d i n g

R0 ,h -2 G0,h-2 B0,h-2 R1,h-2 G1,h-2 B1,h-2 … Rw-1,h-2 Gw-1,h-2 Bw-1,h-2 p a d d i n g

… … … … … … … … … … …

R0,1 G0,1 B0,1 R1,1 G1,1 B1,1 … Rw-1,1 Gw-1,1 Bw-1,1 p a d d i n g

R0,0 G0,0 B0,0 R1,0 G1,0 B1,0 … Rw-1,0 Gw-1,0 Bw-1,0 p a d d i n g

Fig. 1 Raster graphics matrix with 24-bit RGB

Raster images are known to be uncompressible by

general purpose compression algorithms such as LZ

family compressions [5, 6, 7], Huffman compression

[8] and arithmetic compression [9] alone. Thus, the

general idea of compressing a raster image is to apply

a pre-compression transformation on the image

before using a general purpose compression

algorithm. In a lossy compression algorithm, the pre-

compression transformation is not reversible and in a

lossless compression algorithm, the transformation is

reversible.

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 24

2015 International Journal of Computer Science Issues

http://en.wikipedia.org/wiki/RGBA
http://en.wikipedia.org/wiki/Grayscale
http://en.wikipedia.org/wiki/Alpha_channel
http://en.wikipedia.org/wiki/Alpha_channel

In Section 2, we describe two pre-compression

reversible transformations that can make raster

images more compressible. Compared to existing

pre-compression transformations used in other

lossless image compression algorithms, our

transformations are logically simpler and take less

time to compute. In Section 3, we summarize some

empirical results of effects of our two pre-

compression reversible transformations. Finally, in

Section 4, we conclude our experiments.

2. Two Simple and Effective Reversible

Transformations

The idea of using pre-compression transformations

isn’t new. For example, Burrows Wheeler Transform

(BWT) [10] and Prediction by Partial Matching [11]

have long been used to improve the efficacy of

general purpose compression algorithms. Moreover,

well-known image compression algorithms GIF,

TIFF, JPEG, and PNG all use pre-compression

transformations. That is, they all incorporate pre-

compression transformations with general purpose

compression algorithms. Fig. 2 illustrates the scheme

of incorporating general compression/decompression

algorithms with pre-compression transformations.

Fig. 2 Compression/Decompression Incorporating a Pre-

compression Transformation

In this section we describe two reversible pre-

compression transformations suitable for

compressing raster graphics images. As in any other

well-known image compression algorithms, the basic

idea is to replace pixel values with differences of

adjacent pixel values. In high resolution images,

adjacent pixel values tend to change gradually. Thus

the differences will generally be clustered around 0,

rather than spread over all possible pixel values.

2.1 Horizontal Differential

In this transformation, every byte except the first byte

of every row of the raster graphics matrix is replaced

with the difference from the previous byte. Fig. 3

shows the result of applying the horizontal

differential transformation on the raster graphics

image matrix of Fig. 1.

R0,h -1 G0,h-1 -R0,h-1 B0,h- 1-G0,h-1 R1,h-1-B0, h-1 G1,h-1-R1,h-1 B1,h- 1-G1,h-1 … Rw-1,h-1-Bw-2,h-1 Gw-1,h-1-Rw-1,h-1 Bw-1,h-1-Gw-1,h-1 p a d d i n g

R0,h -2 G0,h-2-R0,h-2 B0,h- 2-G0,h-2 R1,h-2-B0, h-2 G1,h-2-R1,h-2 B1,h- 2-G1,h-2 … Rw-1,h-2-Bw-2,h-2 Gw-1,h-2-Rw-1,h-2 Bw-1,h-2-Gw-1,h-2 p a d d i n g

… … … … … … … … … … …

R0,0 G0,0-R0,0 B0,0-G0,0 R1 ,0-B0,0 G1,0-R1,0 B1,0-G1,0 … R w - 1 , 0- B w - 2 , 0 G w - 1 , 0- R w - 1 , 0 Bw-1,1-Gw-1,0 p a d d i n g

Fig. 3 Horizontal Differential

2.2 Vertical Differential

In this transformation, every byte except the first byte

of every column of the raster graphics matrix is

replaced with the difference from the byte above. Fig.

4 illustrates the result of applying the vertical

differential transformation on the raster graphics

image matrix of Fig. 1.

R0 ,h -1 G0,h-1 B0,h-1 R1,h-1 G1,h-1 B1,h-1 … Rw-1,h-1 Gw-1,h-1 Bw-1,h-1 p a d d i n g

R 0,h-2-R0,h-1 G0,h-2-G 0,h- 1 B0,h-2-B0, h-1 R1,h-2-R1, h-1 G1,h-2-G 1,h- 1 B1,h-2-B1, h-1 … Rw-1,h-2-Rw-1,h-1 Gw-1,h-2-Gw-1,h-1 Bw-1,h-2-Bw-1,h-1 p a d d i n g

… … … … … … … … … … …

R0,0-R0,1 G0,0-G0,1 B0 ,0-B0,1 R1 ,0-R1,1 G1,0-G1,1 B1 ,0-B1,1 … R w-1,0-Rw-1,1 G w-1,0-Gw-1,1 B w-1,0-Bw-1,1 p a d d i n g

Fig. 4 Vertical Differential

3. Some Empirical Results

In order to demonstrate the effectiveness of our pre-

compression transformations we need graphics

images which have never been thru compressing and

decompressing of any lossy image compression

algorithm. To do so, we used a Canon camera to take

10 pictures, saving them in the uncompressed TIFF

format, and then converted them to the BMP format

using the Microsoft Paint program. Our sample

pictures are captured in 3648×2736 resolution with

palettes of 24-bit RGB and thus have a raster

graphics matrix size of 3648×2736×3, i.e. 29,942,784

bytes. Since BMP files created by Paint has a file

header of 54 bytes, all resulting BMP files has a size

of 29,942,838 bytes. In this section, we ignore the file

headers of images files and only compare the

resulting compressed sizes of raster image matrices.

Besides the effectiveness of individual pre-

compression transformation, we also show the

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 25

2015 International Journal of Computer Science Issues

effectiveness of the combination of the two pre-

compression transformations.

3.1 No Reversible Transformation

First we compress the 10 sample raster images

without any pre-compression transformations. Four

general compression algorithms, arithmetic, Huffman,

LZW [7], and DLZW [12] have been used. LZW

compression is Terry Welch’s implementation of LZ

compression. DLZW (Dynamic LZW) compression

is Wang’s modification of LZW. Without any pre-

compression transformations, LZW inflates image

sizes. On average, arithmetic and Huffman

compressions reduce image sizes by 10% and DLZW

reduces image sizes by 35%. The results are

summarized in Table 1. In the table, we use color to

high light the best case of each sample file. Clearly,

without any pre-compression transformation, DLZW

works better than other compression methods.

3.2 With Horizontal Differential

In this section, we test sample images with

combinations of the horizontal differential

transformation and general compression algorithms.

With only horizontal differential transformation,

LZW still inflates image sizes. On average,

arithmetic and Huffman compressions reduce image

sizes by 18% and DLZW reduces image sizes by

41%. The results are summarized in Table 2.

3.3 With Vertical Differential

In this section, we test the effectiveness of the

vertical differential transformation. With vertical

transformation, on average, LZW reduces image

sizes by 55%, arithmetic and Huffman compressions

reduce images sizes by 45% and DLZW reduces

image sizes by 57%. The results are recapitulated in

Table 3. Clearly, vertical differential transformation

can significantly enhance the efficacy of the

compression.

3.4 With Combination of Horizontal

Differential and Vertical Differential

Transformations

In this section, we demonstrate that the horizontal

and the vertical differential transformations can be

used together to further improve the compression

efficacy achieved by either transformation alone.

With the two transformations combined, on average,

LZW reduces image sizes by 46%, arithmetic and

Huffman compressions reduce images sizes by 47%

and DLZW reduces image sizes by 58%. The results

are exhibited in Table 4. Surprisingly, in more than

50% of the cases, arithmetic compression works

better than DLZW compression when combined with

both transformations even though DLZW works

better on average and when incorporated with only

one individual transformation.

3.5 Combination of Horizontal and Vertical

Differential Transformations VS. PNG

In this section, we compare our raster graphic image

compression algorithms with PNG image

compression algorithm. To do so, first, we use

Microsoft Paint to convert our sample uncompressed

TIFF files to PNG files and then compare PNG file

sizes with sizes of those images produced by our

algorithms. Note that since our pre-compression

transformations are very simple, if we want to save

the compressed images in files we only need simple

file headers as BMP file headers. Since the header

size of BMP files created by Paint is 54 bytes long, in

Table 5, we add 54 bytes to the sizes of the resulting

images produce by our resulting image compression

algorithms.

As shown in Table 5, on average, by incorporating

any one of the general-purpose compression

algorithms, the combination of our two pre-

compression transformations is 9% better than the

PNG algorithm.

4. Conclusion

In this paper we have described two simple pre-

compression transformations, horizontal differential

and vertical differential, suitable for raster image

compressions. We have tested our transformations

with general purpose compression algorithms on

sample raster graphic images. The test results show

that by incorporating both transformations with

general purpose compression algorithms, the

compression efficacy can be significantly improved.

Moreover, as shown in Table 5, the combination of

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 26

2015 International Journal of Computer Science Issues

our two per-compression transformations can do

notably better than the most commonly used lossless

image compression method PNG.

References

[1] JPEG Requirements and guidelines (ISO/IEC IS

10918-1 | ITU-T T.81)

[2] "Graphics Interchange Format, Version 89a" online

available from the Internet at

http://www.w3.org/Graphics/GIF/spec-gif89a.txt.

[3] “TIFF 6.0 Specification” online available from the

Internet at

http://partners.adobe.com/public/developer/tiff/index.h

tml.

[4] T. Boutell, ed. 1996, "PNG Portable Network

Graphics Specification, Version 1.0" online, available

from the Internet at http://www.w3.org/TR/REC-png.

[5] J. Ziv, and A. Lempel “A universal algorithm for

sequential data compression”. IEEE Trans. Inf. Theory

23, 3 (May), 1977, 337-343.

[6] J. Ziv, and A. Lempel, “Compression of individual

sequences via variable-rate coding”, IEEE Trans.

Inform. Theory, 24(5), 1978, 530-536.

[7] T. A. Welch, “A technique for high-performance data

compression”. Computer 17, 6 (June), 1984, 8-19.

[8] D. A. Huffman, “A Method for the construction of

Minimum-redundancy Codes”, Proc. IRE, vol.40,

no.10, pp., 1952, 1098-1101.

[9] J. Rissanen, and G. G. Landon, “Arithmetic coding”,

IBM J. Res. Dev. 23, 2 (Mar.), 1979, 149-162.

[10] M. Burrows, and. J. Wheeler, “A Block – sorting

Lossless Data compression Algorithm”, SRC Research

report 124, Digital Research Systems Research Centre.

[11] A. Moffat, “Implementing the PPM Data compression

scheme”, IEEE Transaction on Communications,

38(11): 1990, 1917-1921.

[12] C. E. Wang, “Dynamic LZW for Compressing Large

Files”, Proceedings of FCS’11, 57- 60, July 2011.

Table 1: No Pre-compression Transformation

 IMG0001 IMG0002 IMG0003 IMG0004 IMG0005 IMG0006 IMG0007 IMG0008 IMG0009 IMG0010 Average
Arithmetic 28023647

(93.59%)

27224952

(90.92%)

26785347

(89.46%)

26159746

(87.37%)

29486922

(98.48%)

23284100

(77.76%)

29300244

(97.85%)

27107285

(90.53%)

27979304

(93.44%)

22599036

(75.47%)

26795058

(89.49%)

Huffman 28109229
(93.88%)

27305049
(91.19%)

26905675
(89.86%)

26292924
(87.81%)

29589366
(98.82%)

23394981
(78.13%)

29428553
(98.28%)

27268085
(91.07%)

28055759
(93.70%)

22768637
(76.04%)

26911825
(89.88%)

L Z W 36031034

(120.33%)

41402126

(138.27%)

40828744

(136.36%)

38039926

(127.04%)

39591696

(132.22%)

50321798

(168.06%)

45615302

(152.34%)

34701696

(115.89%)

45805418

(152.98%)

27400900

(91.51%)

39973864

(133.50%)

D L Z W 22757020
(76.00%)

21041122
(70.27%)

20359444
(67.79%)

19300520
(64.46%)

23741476
(79.29%)

13446436
(44.91%)

19382456
(64.73%)

19263742
(64.34%)

18044920
(60.26%)

16485742
(55.06%)

19382287
(64.73%)

Table 2: With Horizontal Differential Transformation

 I M G 0 0 0 1 I M G 0 0 0 2 I M G 0 0 0 3 I M G 0 0 0 4 I M G 0 0 0 5 I M G 0 0 0 6 I M G 0 0 0 7 I M G 0 0 0 8 I M G 0 0 0 9 I M G 0 0 1 0 A v e r a g e

Arithmetic 25632022

(85.60%)

24831641

(82.93%)

24145158

(80.64%)

23489272

(78.45%)

25456683

(85.02%)

20269675

(67.69%)

25398309

(84.82%)

23594805

(78.80%)

24090285

(80.45%)

27915453

(93.23%)

24482330

(81.76%)

Huffman 25747787
(85.99%)

24924712
(83.24%)

24267965
(81.05%)

23598319
(78.81%)

25535120
(85.28%)

20343697
(67.94%)

25536134
(85.28%)

23706421
(79.17%)

24192439
(80.80%)

28051038
(93.68%)

24590363
(82.12%)

L Z W 31436578

(104.99%)

33282152

(111.15%)

34615030

(115.60%)

34047440

(113.71%)

34094392

(113.86%)

40434716

(135.04%)

47263028

(157.84%)

26664050

(89.05%)

32341832

(108.01%)

34633944

(115.67%)

348811316

(116.49%)

D L Z W 20049516
(66.96%)

19303378
(64.47%)

18194160
(60.76%)

17066020
(57.00%)

21263478
(71.01%)

12072766
(40.32%)

17231770
(57.55%)

16125840
(53.86%)

14602002
(48.77%)

20445960
(68.28%)

17635489
(58.90%)

Table 3: With Vertical Differential Transformation

 IMG0001 IMG0002 IMG0003 IMG0004 IMG0005 IMG0006 IMG0007 IMG0008 IMG0009 IMG0010 Average
Arithmetic 18958810

(63.32%)

18321384

(61.19%)

19003710

(63.47%)

18884982

(63.07%)

19186957

(64.08%)

12138779

(40.54%)

15687402

(52.39%)

14108989

(47.12%)

13965046

(46.64%)

11848188

(39.57%)

16210424

(54.14%)

Huffman 19079338

(63.72%)

18415165

(61.50%)

19135595

(63.91%)

19014598

(63.50%)

19312081

(64.50%)

12258491

(40.94%)

15830797

(52.87%)

14193175

(47.40%)

14124947

(47.17%)

12001280

(40.08%)

16336546

(54.56%)

L Z W 15268194
(51.00%)

15627168
(52.20%)

15215130
(50.81%)

15159202
(50.63%)

16718784
(55.83%)

10398768
(34.73%)

14443728
(48.24%)

11252352
(37.58%)

10906508
(36.42%)

10623566
(35.48%)

13561340
(45.29%)

D L Z W 15011766

(50.13%)

14964702

(49.98%)

14712316

(49.13%)

14428962

(48.19%)

15948254

(53.26%)

8501354

(28.39%)

12290522

(41.05%)

10975864

(36.66%)

10348660

(34.56%)

10039498

(33.53%)

12722189

(42.49%)

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 27

2015 International Journal of Computer Science Issues

http://www.itu.int/rec/T-REC-T.81/en

Table 4: With Horizontal and Vertical Differential Transformations

 IMG0001 IMG0002 IMG0003 IMG0004 IMG0005 IMG0006 IMG0007 IMG0008 IMG0009 IMG0010 Average
Arithmetic 14191762

(47.40%)
13889931
(46.39%)

13997716
(46.75%)

13965976
(46.64%)

14048434
(46.92%)

9128625
(30.49%)

11406570
(38.09%)

10484779
(35.02%)

10049772
(33.56%)

14495673
(48.41%)

12565923
(41.97%)

Huffman 14349101

(47.92%)

14047106

(46.91%)

14207567

(47.45%)

14158080

(47.28%)

14190389

(47.39%)

9240406

(30.86%)

11616196

(38.79%)

10630444

(35.50%)

10182448

(34.01%)

14617725

(48.82%)

12723946

(42.49%)

L Z W 14654036
(48.94%)

14983962
(50.04%)

14441200
(48.23%)

14399094
(48.09%)

15342124
(51.24%)

9834374
(32.84%)

12865856
(42.97%)

10731148
(35.84%)

10406232
(34.75%)

12346298
(41.23%)

13000432
(43.42%)

D L Z W 14498002

(48.42%)

14582276

(48.70%)

14227890

(47.52%)

14019370

(46.82%)

14878412

(49.69%)

8232290

(27.50%)

11718242

(39.14%)

10609036

(35.43%)

9991328

(33.37%)

12056888

(40.27%)

12481373

(41.68%)

Table 5: Combination of Horizontal and Vertical Differential Transformations VS. PNG

 IMG0001 IMG0002 IMG0003 IMG0004 IMG0005 IMG0006 IMG0007 IMG0008 IMG0009 IMG0010 Average
Arithmetic 14191816

(47.40%)
13889985
(46.39%)

13997770
(46.75%)

13966030
(46.64%)

14048488
(46.92%)

9128679
(30.49%)

11406624
(38.09%)

10484833
(35.02%)

10049826
(33.56%)

14495727
(48.41%)

12565977
(41.97%)

Huffman 14349155

(47.92%)

14047160

(46.91%)

14207621

(47.45%)

14158134

(47.28%)

14190443

(47.39%)

9240460

(30.86%)

11616250

(38.79%)

10630498

(35.50%)

10182502

(34.01%)

14617779

(48.82%)

12724000

(42.49%)

L Z W 14654090
(48.94%)

14984016
(50.04%)

14441254
(48.23%)

14399148
(48.09%)

15342178
(51.24%)

9834428
(32.84%)

12865910
(42.97%)

10731202
(35.84%)

10406286
(34.75%)

12346352
(41.23%)

13000486
(43.42%)

D L Z W 14498056

(48.42%)

14582330

(48.70%)

14227944

(47.52%)

14019424

(46.82%)

14878466

(49.69%)

8232344

(27.50%)

11718296

(39.14%)

10609090

(35.43%)

9991382

(33.37%)

12056942

(40.27%)

12481427

(41.68%)

P N G 17146217
(57.26%)

16990564
(56.74%)

16603057
(55.45%)

16296394
(54.43%)

18484673
(61.73%)

11219007
(37.47%)

15541703
(51.90%)

14512070
(48.47%)

13520412
(45.15%)

11840880
(39.54%)

15215497
(50.82%)

IJCSI International Journal of Computer Science Issues, Volume 12, Issue 3, May 2015
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 28

2015 International Journal of Computer Science Issues

