
Impact of table partitioning on the query execution performance
Jaumin Ajdari1, Nehat Mustafa1, Xhemal Zenuni1, Bujar Raufi1, Florije Ismaili1

1 Faculty of Contemporary Sciences and Technologies
South East European University (SEEU)

Tetovo, Republic of Macedonia

Abstract
With the increase of database, it is commonly to have tables with
a considerable number of data records. This will bring delays in
database use specially in query execution. A good way to
improve performance and reduce the time is by applying the
partitioning technique, which are known as techniques that
restructures the table data records. Partitioning is a good way to
simplify database maintenance, management and administration
and as well as working with queries. A very important advantage
of using partitioning is that it allows to query and scan just a
small part or some parts of partitioned tables. In this research we
examine the use of partitioning techniques on relatively large
table and we measure the query execution time and cost. As a
result, we have shown some comparisons and given suggestions
how to further increase the performance.
Keywords: Partitioning, Query execution time, Partition
pruning, Paper Specifications, Partition-wise join.

1. Introduction
While increasing the data volume in the database, it is
common to have tables with considerable number of data
rows. This will bring delays in implementing the
requirements and use of data, as a result, it will decrease
the performance. A good way of performance
improvement and reducing the time of data use is the
implementation of partitioning, which is known as a
technique that restructures the data in the table.
Partitioning is presented as a technique for managing large
objects and in our case tables. Maintenance, management
and administration of the database with large tables is a
new challenge where one of the methods for resolving this
challenge is through the use of partitioning. Partitioning
resolves this by dividing the table into smaller parts, which
allows having an easier management and administration.
Another important advantage of the partition use is that
queries have quick access to the data. For example, when
doing a search query in the table, it won’t do a scan of the
whole table, but it will scan just some parts of the table
according the partitions.
The main purposes of our paper are:

1. Analyzing how partitioning techniques can help
on managing large tables and impact of partitioning in data
access and update

2. Analysis and comparison of the use of large
tables, when table is with and without partitions

3. Building a guide for using partitions
4. Presentation of the results of the analysis and the

implementation of the method of partitions on different
cases, which would indicate new opportunities in the use of
database.
In this paper we will examine the performance
improvement with use of the partition techniques of the
large tables. We will explain the partition techniques used
on an Oracle managed database and at the end we will
present the results obtained with the query execution
testing.

2. Related work
In recent years, many papers have been published where
the benefits of the database performance by using the
method of partitioning are analyzed and explained. In the
follow we mention some of those results. The authors
Herodotos Herodotou, et al., have explained that the trend
of rapid growth of data has forced the use of partitions in
databases. According to their paper [1] the creation and
correct use of partitioning enables a better database
performance by reducing the number of unnecessary data
from the query processing, parallel data access during
query execution and easier data management and
maintenance.
With continuous database increase, not only tables are
increased but at the same time we have increase of index
tables. Same concept of table partition can be applied for
indexes. According to Eugene Wu and Samuel Madden [2]
although indexes are standard method for query
performance improving, but sometimes it isn’t enough just
use of indexes. According to them [2] increase of data
volume will increase the index tables and decrease the
performance of data insertion. The authors suggest index

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 4, July 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201604.5258 52

doi:10.20943/01201604.5258 2016 International Journal of Computer Science Issues

http://crossmark.crossref.org/dialog/?doi=10.20943/01201604.5258&domain=pdf

partitioning. In research [2], it is analyzed the use of
partitions and optimizing the indexes by dropping the
indexes and selectively index just the partitions that are
accessed by queries. The performance improvement is
evidently compared to the traditional use of the indexes.

Mayur Sawant, et al. [3] and Abhay Kumar and Jitendra
Singh Yadav 11] in details have described the techniques
of table partitioning. Paper [3] is focused on the three key
methods of partitioning and the composite partition
strategies which includes the date, range and hash
partitions. In both papers is explained that the partitioning
strategy helps to reduce the delay in response time.

Zoltan Mathe and Philippe Charpentier [4], have shown
their experience in coping with huge amount of data by use
of partitioning techniques. They have used the composite
partitioning strategy such as range-hash partition, partition
pruning and usage of the Partition-Wise joins. The
achieved result is that with use of partition pruning in case
of store a large amount of data, it essentially increases the
database performance as a result of reducing the amount of
data retrieved from the disk and optimizing the resource
utilization.

Researches [7, 8, 9, 10] have analyzed partitioning
technics focused on distributed databases and query
executions as well as the strategies and technics and also
advantages and disadvantages of use of partitioning.

Optimization of query plays an important role in the
performance of the database, especially when executing a
complicated SQL command. Another issue is to improve
the performance query when access a large amount of data.
According to many researches [1, 2, 4], partitioning limits
the amount of data to be examined and analyzed, enabling
analyze of a part assigned to the table instead of the table
as a whole, so when the query retrieves data from the table,
it doesn't do a full table scan as a whole, but only a
partition or several partitions.

3. Partitions
With the growth of the database it is common to have
tables that have a significant number of data rows. This
will bring delays in the implementation of request in the
database. A good way to increase performance and reduce
the time of these request is the use of partitions, is known
as a technique that restructures the data in the table.
Partitioning [5, 12] of a table means division of a table in
more parts and maintaining the view as if it were a single
table. The parts are called partitions and each of partitions
should share the same columns, constraints, indexes and

triggers. Also partitions can have its own unique
parameters of storage, so developers can choose to deal
with the entire table or individual partitions. Partitioning
allows us to divide the rows of a table based on a logical
expression of a column called as partitioning key. It
consists of one or more columns that sets partition.

The partition is one of the most efficient methods to ease
the problems database maintaining, limits the amount of
data to be reviewed and analyzed just by use a certain part
of the table instead of the table as a whole. Partition allows
the administrator to apply the method known as "divide
and conquer", data management improve. The partitions
also enable to perform some specific activity, rather than
those activities performs in general, such as making a
backup to a partition instead of whole table, or making any
change only to a partition instead into whole table. It is
easier and faster to delete records because we work with a
part of the table instead of whole table, and also it is much
easier to delete a partitions by using DROP PARTITION
command instead of using the DELETE command into
whole table. Another advantages of partitioning is when we
work with queries. Partitioning enables the query to scan
any parts of table and not the whole table it means that will
be scanned one or few partitions. So the search is made in
smaller parts or in separate parts of the table. In the
following we will focus in Oracle partitioning techniques,
Oracle contains two partitioning methods, which are
known as partition pruning and partition-wise join.

Partition pruning is a relatively simple concept of
partitioning, which can be described as "do not scan
partition where there can be no matching values." Partition
pruning enables to access only that part of the table that
contains the necessary data, that the query have requested,
enabling the choice only of the part that we want [4, 5]. In
other words, partition pruning is sometimes referred to as
partition elimination, because eliminates, or ignores
partitions that are irrelevant to the criteria that we have set
in SQL query.

Partition-wise join is essentially partitioning which can
improve the performance of multi-table joins, by using a
technique known as partition-wise joins. Partition-wise
join is an optimized join of two or more partitioned tables,
which can be implemented and take effect of optimization
when the join tables or indexes using partitioning key as
join attribute between tables [4, 5, 13]. Partition-wise join
breaks large and complex join operations into smaller join
operations, which can then be used sequentially or parallel.

Another advantage of using the partition tables is that each
partition or object is independent to each other. For
example, if one partition of a partitioned table is

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 4, July 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201604.5258 53

doi:10.20943/01201604.5258 2016 International Journal of Computer Science Issues

unavailable, the all other partitions of that table remain
available. The application can continue to use query and
perform transactions to the available partitions of the table,
and DBMS will successfully execute operations while
those operations will not need to access the unavailable
partitions. The other issue is that with increasing database,
it does not impact just in increasing of the data table but
this also increase the index tables. Same concepts of the
table partitioning can be applied into index tables. Index
partitioning allows greater flexibility in terms of how users
and application will access the data. The great benefit is
that the query engine will analyze only the index partitions
which are needed to respond to the query, so in
considerable way will be increase the query access speed.
Partitioned index is a simply index divided into smaller
parts that can be stored on different disks (reducing
input/output operation). Both method of indexes B-tree
and bitmap can be partitioned. All available partitioning
strategies rely on:

1. Fundamental data distribution methods that
can be used for either single (one-level) or composite (two-
level) partitioned tables.

2. Partitioning extensions

Oracle partitioning offers three fundamental data
distribution methods that control how the data is placed
into partitions. The data distribution methods are range, list
and hash partitioning. The first partition method, used by
Oracle in the Oracle version 8 is the range partition. Range
partition method splits the table on parts which contain
rows according to range of values of one or more table
columns [14]. The simplest and widely implemented of
range partitioning is the case where column or attribute
domain is used as a partition key range and this is the
commonly used method in Oracle. Range partitioning
method is more appropriate for use when the table contains
historical data.

List partitioning is similar to range partitioning in many
ways. The main difference between the two types of
partitioning is that, the range partitioning is defined on the
basis of the neighbors range, and in list partitioning, each
partition is defined and selected based on the membership
of a column value in one of a set of value lists. List
partitioning often comes in use when the table which needs
to be partitioned contains any code or ID as a column
value (id of states, cities, departments, regions, etc.) [17].

Partitioning by hash is commonly used to ensure data
delivery between a predetermined numbers of partitions.
Hash partitioning with use of well-known hash algorithm
will make approximately equal distribution of data
between partitions, creating partitions approximately the
same size. The recommendation is that the number of

partitions, on general, has to be a power of number two (2,
4, 8 16 and so on), so, the hash partitioning algorithm to
achieve a better data distribution [15]. On hash partitioning
we have no control over the hash algorithm or how Oracle
distributed data, the only job we have to do is to determine
the number of partitions in which we want to have the
table.

Composite partitioning is a composition of the above
mentioned partitioning methods and it can be partitioning
list – range, range – range, range – list, list – hash, list –
list methods. Composite partitioning means combination of
the two partitioning methods. In the latest versions of
Oracle DBMS, Oracle offers a new strategy, known as
Partitioning Extensions, which makes the extensions of the
basic partitioning strategies by offering more flexibility in
defining of table partitioning key. Partitioning extensions
contains the partitioning methods known as interval
partitioning, reference partitioning and virtual column-
based partitioning.

4. Analysis and results
To analyze the use of partitions and to see the advantages
of partitions, we made some experiments. As experiments
we execute some queries on a database which contains the
tables with several million records (about 50 million
records and a size of 2.6 GB, database with information
from the Pension and Disability Insurance Fund of
Republic of Macedonia). Our analysis and testing in this
paper are focused on the query execution time and cost in
three different cases:

1. comparing the use of the table with and without
partitions,

2. comparing the use of the multi – join with and without
partitions tables and

3. comparing the use of the table with partitions and
without partitions but indexed.

4.1 Analysis of query execution on table with and
without partitions
In case of the analyze the differences of a query execution
time and cost, we execute a query which use only one
table, the table PAYMENTS, when the table is not
partitioned and partitioned. The query gives data about
monthly pension payments for a certain period and other
certain conditions defined in the WHERE clause. This
query will access only the PAYMENT table. Query will be
executed in three cases:

1. in the table with 1 million rows

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 4, July 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201604.5258 54

doi:10.20943/01201604.5258 2016 International Journal of Computer Science Issues

2. in the table with 3 million rows
3. in the table with 20 million rows

In the following tables are shown the summarized results
after execution of query.

Table 1. Query execution time
No. of

records
Without

partitions
With

partitions
1 million 2.641 1.687
3 million 8.391 5.859

20 million 35.672 25.016
Table 2. Query execution cost

No. of
records

Without
partitions

With
partitions

1 million 5255 3566
3 million 8869 5711

20 million 88679 35664

The following figures clearly shows the difference in the
implementation of query when it is used partitioned and
without partitioned table.

05
10152025303540

1 million 3 million 20 million

2.641
8.391

35.672

1.687 5.859

25.016

Execution Time

Without partitions With partitions

0
20,000
40,000
60,000
80,000

100,000

1 million 3 million 20 million

5255 8869

88679

3566 5711
35664

Execution Cost

Without partitions With partitions Fig 1. The effects of using partitions
According to the obtained results we see a significant
performance improvement in case of partitioning use.
Indeed, in case of the table with one millions of records the

improvement is around 56% to the execution time (from
2.641sec to 1.687sec, the difference 0.954 sec) and 47% to
the cost (5255 – 3566 = 1689). In case of the table with
three millions of records the improvement is around 43%
to the execution time (from 8.391sec to 5.859sec, the
difference 2.532sec) and 55% to the cost (8869 – 5711 =
3158) and in case of table with 20 millions of records the
improvement is around 43% to the execution time (from
35.672sec to 25.016sec, the difference 10.656sec) and
more than 100% to the cost (88679 – 35664 = 53015).
Therefore, we can conclude that with the use of
partitioning we have significant performance improvement
of query especially when the number of records in the table
is very large.
4.2 Analysis of query execution when we have multi
– join tables
Our second query provides data from two tables, from the
monthly payments table and from one additional payments
table which contains additional monthly payments to
pensioners which are paid out of regular monthly pension.
So, the query has access into two tables (monthly payments
table with 20 million of records and the extra payments
table with 3 million of records) and it uses the join
between those tables. In the following table are shown the
summarized results after query execution.

Table 3 The effects of using wise-join partitioning method
 Without partitions With partitions

Time 15.859 0.828
Cost 57807 756

The figure 2 clearly shows the difference in the
implementation of query when we have joined table with
and without partitions.

Analyzing the obtained results, we see enormous
performance improvement on both measures, execution
time and cost. The execution time has a better
improvement over 19 times (from 15.859sec to 0.828sec
and difference 15.031sec) and the execution cost over 76
times (57807 – 756 = 57051). According to the obtained
results, we can conclude, that using the partitioning
improves join queries even if the queries are compounded
from many tables in join.

From the results above, it is clear that by use of the
partitioning, we achieve significantly improved
performance. Improvement is seen in both cases, in case of
query execution on a single table and more improvements
in case of query execution on two or more linked tables.
This improvement comes as a result of the data accessing,
so the use of partitioning enables access to selected parts

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 4, July 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201604.5258 55

doi:10.20943/01201604.5258 2016 International Journal of Computer Science Issues

and does not require access to the entire table. In the next,
we analyze the effect of partitioning versus indexing.

02
46
810121416

15.859

0.828

Execution Time

Without partitions With partitions

0
20,000
40,000
60,000

57807

756

Execution Cost

Without partitions With partitions Fig. 2. The effects of using wise-join partitioning

4.3. Analysis of query execution on partitioned and
indexed table
As it is known, the index enables quick access to the data
in the table and indexes created for the attributes that
appears on the selection condition speeds up the query
execution. Below we will analyze the speed up as a result
of indexing and comparing to the speed up gained by use
of partitioning. To show a more visible comparison, we
execute a query in a table with around 50 million records
(and size about 2.6GB), the table where are stored the data
about contribution payments of the pension insurance. The
query is executed for the time period of 2008 year and it is
executed in two cases, first time for the period from
January to March and the second time for period between
January and December. As a result, the query returns the
total number of insured persons to payment their
contributions for a given period and the result for the first
time was 657060 selected records and 13010545 selected
record for the second time. The same query is executed in
both cases, when the table is partitioned (and the partition
key attribute is used in the selection condition) and the
second case when the table is indexed by the attribute
which is used in the selection condition. In the following

tables are shown the summarized results of query
execution.

Table 4. The obtained query execution time while using tables with
indexes and tables with partitions

Case Table with indexes Table with partitions
1 0.109 4.079
2 13.297 4.047
Table 5. The obtained query execution cost while using tables with

indexes and tables with partitions
Case Table with indexes Table with partitions

1 1200 15352
2 36610 15374

02
46
810121416

1 2
With indexes 0.109 13.297
With partitions 4.079 4.047

0.109

13.297

4.079 4.047

Execution Time

1,000
11,000
21,000
31,000

1 2
With indexes 1200 36610
With partitions 15352 15374

1200

36610

15352 15374

Execution Cost

 Fig. 3 Results obtained of query execution time and cost while using
indexed table and partitioned table

Analyzing the obtained query execution results (comparing
number of returned records with total number of records
and execution time and cost), from both cases, we see the
significant difference between times and costs. In first case
(case 1) where the query as a result returns 657060
records, the best results we have with use of indexes.
While in second case (case 2) where the query returns
13010545 records, we see the opposite, so in this case the
execution time and cost are lower to partitioned table than

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 4, July 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201604.5258 56

doi:10.20943/01201604.5258 2016 International Journal of Computer Science Issues

indexed table. According to the above results, we can
confirm and conclude that indexed table is more
appropriate when the query result is up to 5% of the total
number of records (as in case 1) and in the case where the
query result is greater than 5% then it is preferable
partitioning use (as in case 2 where the result is around
26%). So, in general, if it expected access to small amount
of data records (comparing to the whole table) then
indexes are the best choice, and the partitioning gives more
benefits when as a query result is expected a relatively
large amount of data records.

5. Conclusions
Nowadays databases become larger and larger. One of the
main problem is maintaining those databases and coping
with large tables. Another problem of database increase is
the fact that proportionally to database increase the query
execution performance decrease due to query access on
more data, and it brings respond time delays. One of the
way how to deal and maintain large tables is to use
partitioning technics. Easy implementation, simple
administration, less complex are some of the advantages
that make partitioning one of the best strategy and solution
and the one of frequently used in the database, especially
in the “very large database”. Regarding the query
execution, partitioning in some way optimize the query
because query access just a part of table and not the whole.
This optimization of the query significantly will improve
the query and database performances.

In our case, we want to show the database performances
improvement as a result of partitioning. In an Oracle
database with relatively large tables (in experiments we
have used tables with a few million records, up to 50
million records) we execute some queries and we measure
the execution time and cost. We compare the query
execution on case with and without partitions and also
comparison between using partitions and traditional
indexes. Partitioning simplifies these problems by limiting
the amount of data to be reviewed, analyzed, enabling
review of a specific part of the table instead of as a whole
table. This mode also enables the query to scan just one or
some partitions instead of table whole scan.

Through our experiments and the obtained results, we
prove that the use of partitioning when we use table with
large number records shows the increase of query
execution performance. We achieved this by partitioned
table according to the attribute which is used in condition
of selection. From the results it is seen that the
performance improve exceeds 50%. Also the comparison
between the use of indexes and partitioning is significantly.

So, if expected returns, the number of return records is up
to 5% then it is preferable to use indexes and in the
opposite use of partitioning technique.

Acknowledgments
We want to thank the Pension and Disability Insurance
Fund of the Republic of Macedonia which gave us the
possibility of using their data and database and to
conducting experiments.

References
[1] Herodotos Herodotou, Nedyalko Borisov, Shivnath

Babu, Query Optimization Techniques for Partitioned
Tables. Conference: Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD
2011, pp. 49-60, Athens, Greece, June 12-16, 2011

[2] Eugen Wu, Samuel Madden, Partitioning Techniques for
Fine-grained Indexing, Proceeding ICDE '11 Proceedings of
the 2011 IEEE 27th International Conference on Data
Engineering, Hannover, April 11-16, 2011, pp. 1127-1138

[3] Mayur Sawant, Kishor Kinage, Pooja Pilankar, Nikhil
Chaudhari, Database Partitioning: A Review Paper,
International Journal of Innovative Technology and
Exploring Engineering (IJITEE), ISSN: 2278-3075, Volume-
3, Issue-5, October 2013, pp. 82-85

[4] Zoltan Mathe, Philippe Charpentier, Optimising query
execution time in LHCb Bookkeeping System using partition
pruning and Partition-Wise joins, 20th International
Conference on Computing in High Energy and Nuclear
Physics (CHEP2013) IOP Publishing Journal of Physics:
Conference Series, Volume 513 (2014), Track 4 (042032).

[5] Oracle White Paper, Parallel Execution with Oracle Database
12c Fundamentals. Oracle White Paper 2014, pp. 1-5.

[6] Mayur Sawant, Kishor Kinage, Pooja Pilankar, Nikhil
Chaudhari, Database Partitioning: A Review Paper,
International Journal of Innovative Technology and
Exploring Engineering (IJITEE), ISSN: 2278-3075, Volume-
3, Issue-5, October 2013, pp. 82-85

[7] Sudesh Rani, A Partitioning strategy for OODB, IJCSI
International Journal of Computer Science Issues, Vol. 8,
Issue 6, No 3, November 2011 ISSN (Online): 1694-0814,
pp. 317-321

[8] Alka Gangrade and Ravindra Patel, Performance Analysis of
Privacy Preserving Naïve Bayes Classifiers for Distributed
Databases, IJCSI International Journal of Computer Science
Issues, Vol. 10, Issue 2, No 3, March 2013 ISSN (Print):
1694-0814 | ISSN (Online): 1694-0784, pp. 423-429

[9] Seema Patil, Prof. H. M. Jadhav, Distributed query execution
system for Transactional Database using Lookup Table,
International Journal of Emerging Technology and Advanced
Engineering, ISSN 2250-2459, Volume 3, Issue 2, February
2013, pp. 125-131

[10] Herodotos Herodotou, Nedyalko Borisov, Shivnath Babu,
Join Optimization Techniques for Partitioned Tables,
Proceeding SIGMOD '11 Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data,
Pages 49-60

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 4, July 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201604.5258 57

doi:10.20943/01201604.5258 2016 International Journal of Computer Science Issues

[11] Abhay Kumar, Jitendra Singh Yadav, A Review on
Partitioning Techniques in Database, IJCSMC, Vol. 3, Issue.
5, May 2014, pp.342 – 347

[12] Sanjay Mishra, Alan Beaulieu. Mastering Oracle SQL.
2nd. ed. O'Reilly Media, June 2004, ISBN: 978-0-596-
00632-7

[13] Murali Vallath, Oracle Real Application Clusters. Digital
Press, 2003, ISBN :9781555582883

[14] Darl Kuhn, Pro Oracle Database 12c Administration, 2nd
Edition , Apress, 2013, ISBN13: 978-1-4302-5728-8

[15] Tomas Kyte, Expert Oracle, Signature Edition Programming
Techniques and Solutions. Apress, 2005, ISBN 10:
1590595254 / ISBN 13: 9781590595251

Jaumin Ajdari, Assist. Prof. at Faculty of Contemporary Sciences
and Technologies, South East European University. His current
research interest is in parallel processing, data processing and
databases.

Nehat Mustafa, MSc., Faculty of Contemporary Sciences and
Technologies, South East European University. His current research
interest is databases and data processing.
 Xhemal Zenuniu, Assist. Prof. at Faculty of Contemporary Sciences and Technologies, South East European University. His current research interest is in semantic web, contemporary distributed systems, intelligent agent and data analytics.
 Bujar Raufi, Assist. Prof. at Faculty of Contemporary Sciences and Technologies, South East European University. His current research interest is in adaptive web, semantic web, computer graphics and data analytics. Florije Ismaili Assist. Prof. at Faculty of Contemporary Sciences and Technologies, South East European University. His current research interest is in web services, cloud computing and information retrieval.

IJCSI International Journal of Computer Science Issues, Volume 13, Issue 4, July 2016
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org http://dx.doi.org/10.20943/01201604.5258 58

doi:10.20943/01201604.5258 2016 International Journal of Computer Science Issues

