
Localization to Bidirectional Languages for a Visual

Programming Environment on Smartphones

Aiman M. Ayyal Awwad

Institute of Software Technology, Graz University of Technology, 8010 Graz, Austria

Abstract
Catrobat is a free and open source visual programming
environment for smartphones. It has been developed for
educational purposes to help students visualize and understand
learning material. It allows students to build their own animations
and games for their classes in academic subjects and wirelessly

control external hardware. Catrobat needs to talk to the young
children in schools in their native language and enable them to get
the best experience in the language of their choice. In this paper,
we localize Catrobat into bidirectional languages such as Arabic,
Persian, Urdu, and Hebrew, and introduce the challenging aspects
of localization to such languages. The localization testing results
show that the product is cosmetically correct, linguistically
accurate, and culturally appropriate. Therefore, it meets

bidirectional requirements, complies with bidirectionality design
guidelines, and can be employed in programming education for
young schoolchildren.

Keywords: Localization, Bidirectional Languages, Visual

Programming Environment, Smartphone, Educational.

1. Introduction

To design effective educational apps, solve basic problems,

and attract inexpert developers to build interactive

applications a visual programming environment can be used

[1]. Visual programming environments (VPEs) let users

create programs by manipulating program elements

graphically instead of specifying them textually [1, 2].

In fact, VPEs are very popular in programming education

for young children like primary and secondary schools,

since they do not require previous knowledge of

programming syntax and create an environment where

compile-time errors are nonexistent [2]. It is important to
investigate the characteristics of VPEs as they used in the

programming education for young children. When using

VPEs, it is relatively easy for the young children to create

simple games since there are usually built-in libraries in the

language environments [2, 3].

In recent years, there are many so-called VPEs, which have

been developed for educational objectives. Examples of

those VPEs include Scratch, Kodu, Snap!, and Catrobat [2,

3]. They are not only easy to learn, but also introduce rich

and charming visual outcomes.

Pocket Code, Catrobat’s version for Android platform, is a

learning application for mobile devices that has been

developed in Austria at Graz University of Technology [3].

With Pocket Code children and young people can create
their own games, stories, animations, interactive music

videos, and many types of other apps, directly on their

phones or tablets, and taking advantage of multi-touch,

built-in sensors, and the full display resolution of the device.

It uses a visual programming language and it is developed

by the free and open source project. Also, it is featured by

Google on Google Play for education platform [4, 5].

Catrobat lets students to program and design games for their

classes in academic subjects such as science, math, and

languages by effectively developing and adapting the

learning material themselves. On various occasions,
children and teenagers were being taught to program their

own applications [3, 4]. They had a lot of fun using VPE to

build a simple game without any previous knowledge about

programming and thus, not just being users but being

developers too [3, 6].

Nowadays, many countries in the world are promoting

programming education for primary and secondary

schoolchildren [7]. Some countries have already adopted

programming as a major subject in primary education. In

those countries, almost always VPEs are employed to teach
programming to the children [2, 7]. Therefore, the release

of VPEs on a worldwide scale requires them to be made

available in many languages, including bidirectional

languages such as Arabic, Persian, Urdu, and Hebrew. This

asks for internationalization (I18n) and localization (L10n)

of the product.

In software development, internationalization and

localization are processes of adapting computer software

for non-native regions, especially other locales, cultures and

environments [8].

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 1

2017 International Journal of Computer Science Issues

http://www.catrobat.org/
http://portal.tugraz.at/portal/page/portal/TU_Graz
http://crossmark.crossref.org/dialog/?doi=10.20943/01201703.113&domain=pdf

Localization of software for bidirectional languages has still

not reached its full potential due to a shortage of research

[8]. At present, most of the localization of VPEs is only

expressed in language translation and adaptation of time,

date, number, and currency formats. There are many

challenging aspects of the bidirectional languages which
have been neglected during localization. Until recently,

many of these aspects were considered non-essential.

However, with the wide-spread of the smartphones and the

increased use of mobile applications in business, education,

gaming, communication, and engaging in social networking

among bidirectional languages speaking populations, many

of these aspects are becoming necessary, even expected

requirements.

The localized VPE should meet a local user’s expectations

in terms of language, culture, and user experience.

However, Catrobat has specific issues that should be
considered during the localization process. To enhance the

usability of localized smartphone’s applications, Google

develops the Material Design guidelines for

bidirectionality. In these guidelines, UI layout for languages

that are read and written from right-to-left, such as Arabic

and Urdu, should be mirrored to ensure content is easy to

understand [9].

In this paper, the visual programming environment

(Catrobat) is localized into bidirectional in general and

specifically to the Arabic language (Arabization),
furthermore all the challenging aspects of the bidirectional,

which facing the application’s developers, are introduced as

well as the comprehensive solutions to these challenges are

proposed. Without considering these challenges by the

software localization specialist, the quality of bidirectional

languages product will continue to lag behind other

languages. The bidirectional languages localization testing

results show that the product is cosmetically correct,

linguistically accurate, and culturally appropriate.

Therefore, it meets bidirectional requirements, complies

with bidirectionality design guidelines, and can be

employed in programming education for young
schoolchildren.

2. Internationalization and Localization

Nowadays, software applications always need to be

developed and deployed to different regions of the world.

To be successful in domination the global market, software

vendors need to develop world-ready products. However,
the local version of application help local customers better

understand and use it, attract more customers and maximize

application sales [10].

Software internationalization and localization are important

steps in deploying software to different locales of the world.

Internationalization refers to the process of re-engineering

a system that supports different languages and regions.

Localization refers to the process of adapting an

internationalized software for use in a specific country,

region, or culture, by adding local-specific features and

translated text [8, 10].

However, localization is not just about translating all strings

and customizing of the software user interface (UI) but also

making sure the product matches to a local user experience.

It aimed at developing an accessible, usable and culturally

suitable product for a specific locale [8]. According to data

collected by Google and Admob in March 2014, it was

found that 48 percent of app users in the United States had

stopped using an app because of insufficient localization

[11].

The difference between internationalization and

localization is subtle but substantial. Internationalization is
the adaptation of products to be used everywhere, while

localization is the process of translating an application’s

resources into localized products for each locale that the

application will support and adding special features for use

in a specific locale [12]. Practically, internationalization

process is performed once per product. Whereas

localization process is performed once for every

combination of product and locale. The two processes are

complementary and must be integrated to lead the purpose

of a system that works globally [8, 13].

Delaying localization process to the end of the software

development cycle will very likely delay the shipping date

because of unforeseen localization defects that require code

changes and UI customization [8]. Furthermore, one

localized version of the software can be used in more than

one country, as long as these countries have the same

language. For example, the French language is used in more

than 39 countries, and the Arabic language is used in more

than 23 countries [14]. Internationalization is very cost

effective by having key tasks performed just once, which

decreases the effort and time to localize an application into

other languages [8, 12].

In designing phase it is important to consider features and

peculiarities of different languages. Some of the issues that

the internationalization needs to consider include [8, 10]:

 Locale and culture awareness (formats for

numbers, dates, times, addresses, and units of

measurement)

 Layout direction (left-to-right script vs. right-to-

left)

 Complex scripts awareness

 Language character coding sets

 Sorting and indexing rules

 Case conversion

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 2

2017 International Journal of Computer Science Issues

The better the application is internationalized, the easier it

is localized [8, 10]. This is because an application that

internationalized will have built-in support for elements

which are needed for localization. These may include [8]

 Language translation

 Aesthetics (layout direction)

 Visual language (logos and icons that

communicate direction)

 Spelling variants (localization (en-US, en-CA) vs.

localization (en-GB, en-AU)

 Locales (e.g. displays of money amounts. In the

U.S. (1,234.56). In Germany (1.234,56)

 Cultural values and social context

The colors are also another issue to consider in the

internationalization of the application. Sometimes, colors

express cultural meanings that need to be analyzed in apps
localization. The same color may have different meanings

in different cultures. For instance, red color means danger

in U.S, but in China it means happiness. Similarly, in U.S.

while yellow means cowardice, in Egypt it means

prosperity [13].

Often applications are distributed to many countries and

regions. Every country or region has its own language and

culture; accordingly, they should be localized to meet all

demands of local users. So what is behind the cloud in Fig.

1 is the localization process that guarantees their usability
and robustness.

There are three major steps to localize application

successfully [8]:

1. Translating all user-facing text strings in the application

to specific language before it is displayed to the user.

2. Customizing graphics, icons, colors, fonts, styles,

menus and if necessary the text rendering of each user

interface element for different cultures to display text

correctly and matches the intended specifications and

expectations of local users.

3. Adding a locale that guarantees that all country-specific

formats are shown correctly.

Fig. 1 The localization process.

3. Characteristics of the Arabic Writing

System

This section covers the major characteristics of the Arabic

and other bidirectional languages. In the area of app

localization, the Arabic language still remains one of the

most challenging languages [12, 15]. Although the Arabic

language is right-to-left (RTL), it is also bidirectional

(BiDi), which means that numbers and text in Latin based
characters will display left-to-right (LTR). The Arabic

language is cursive, bidirectional, and context dependent [8,

12].

3.1 Bidirectionality and Characters Reordering

Arabic scripts (used for languages such as Arabic, Persian,

Pashto, Urdu, and other) and Hebrew scripts (used for

Hebrew, Yiddish, and others) are read from right-to-left,

further, numbers are read from left to right with the highest
order digit on the left side. This leads to a mixed direction

of text parts. However, it is commonly expected by readers

of such languages for the scripts to be right-aligned [8, 15].

For these particular scripts, the logical order (the order in

which the user enters text with a sequence of virtual-key

inputs) and the visual order (the order in which characters

are rendered on the screen) are different in most cases (see

Fig. 2). Character positioning and a hat character movement

in bidirectional context, in which RTL characters and LTR

characters coexist, are the significant challenges to solving

when dealing with RTL scripts. A bidirectional context can
be a mixture of Latin and Arabic or Hebrew text, or it can

include Arabic and Hebrew characters with numbers that

have an LTR characteristic in Arabic and Hebrew [8].

Fig. 2 Arabic text (bidirectional) where the logical order in the first row

and the visual order in the second row are not of the same sequence of

characters.

3.2 Contextual Shaping

The Arabic character font is cursive which means that the

letters are connected together like English handwriting. For

the Arabic and Indic families of languages, a character’s

glyph (that is, all the character’s different possible

representations) can form in four different shapes
depending on the glyph’s position in a word and the

surrounding characters. Whether the letters are in initial,

medial, end or isolated form, they will take on different

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 3

2017 International Journal of Computer Science Issues

shapes [16, 17]. An example of the four different shapes of

the Arabic character “ض” (Daad/ d) is illustrated in Table

1:

Table 1: Four different shapes of the Arabic character “ض”

Initial

Form

Middle

Form

End

Form

Isolated

Form
Unicode

 0636 ض ـض ـضـ ضـ

The challenging part of contextual shaping is that, for all the

different glyphs, there is only one defined code point in

different encoding standards. Layout and rendering

mechanisms should determine (at run time) the proper

glyph to be used from the font tables, depending on the

context.

3.3 Ligatures

For Latin script, there is a direct one-to-one mapping
between a character and its glyph. (For example, the

character “s” is always rendered by the same glyph “s”). For

complex scripts, groups of two or sometimes three

characters linked together to form a new glyph independent

of the original characters [15, 17]. An example of the “lam-

alif” ligature is illustrated in Table 2:

Table 2: “lam-alif” ligature

4. Challenges of Localizing a Mobile App

The most important issues in localizing software to

bidirectional languages can be solved during the design

phase of the mobile app itself. Mobile apps should ideally

be designed with features that will authorize them to be

adapted into as many locales as possible without great

engineering changes. Here are the main challenges

encountered in localizing apps into bidirectional languages.

Character encoding: The mobile apps should be able to

display bidirectional languages characters as well as accept

languages input from users. It is highly recommended to use
Unicode scheme.

Right-to-left and vertical text: Right-to-left text for

languages like Arabic, Persian, Urdu and Hebrew, and

vertical text for Asian languages, need specific UI layout.

The right-to-left script will also require mirroring of

direction-sensitive graphics, while vertical script consumes

more screen space. In addition, mixed languages’ strings

(for example, as a result of brand names or hyperlinks,

which usually remain in English) or bidirectionality require

extensive extra adaptation to support these languages.

Mobile phone screen size: One of the most important

challenges presented by mobile phones is the limited screen

size. Due to this issue, mobile apps’ text should be very

minimal and developers, UI designers, and translators
should take into consideration the short user interface

strings.

Font style for mobile applications: Localized product

might have various UI fonts’ types than the original

products. Local users will use the best font type according

to the font capabilities of the particular target language.

Font styles for text are discouraged in layout design such as

special fonts, italic, or bold, because they may affect the

readability of complex characters in some languages.

Sometimes, specific fonts are too small and may require

being increased in size for reading-clearness. On the other

hand, some fonts are too big and may require being
decreased. There can also be a critical issue with special

characters, for example, umlauts, cedillas and other

characters, not rendering correctly.

Text expansion: The software designer should leave

enough space to allow for text expansion. Translation into

Arabic and other bidirectional languages cause

approximately a 30% text expansion [8]. A layout

flexibility of most dialog boxes and screens is necessary.

One of the reasons for the text expansion is that when the

source strings containing abbreviations which do not have

parallel abbreviations in the target languages, for instance
in English language M/F abbreviations stand for

Male/Female and there are no parallel abbreviations in the

Arabic language for Male/Female, the same for the

abbreviations such as (GUI, DPI, GB).

Regional standards: Mobile applications should support

bidirectional languages locale standards as dates, times,

currency, addresses, phone numbers and addresses formats

and calendar settings, as well as sorting and indexing rules.

Search and replace: There are special search rules that are

specific to bidirectional languages (for example, Hamza, a

character in Arabic orthography used to represent the sound

of a glottal stop, transliterated in English as an apostrophe).

Icons, symbols, and images: Although the use of graphics

and icons instead of text can create a more international

look and feel, it can also create some problems in

localization. For instance, icons represent fingers such as an

OK sign or V-sign may mean different things to different

cultures. Indeed not all icons, symbols or images have a

broad meaning. Special consideration must be given to the

Characters

in Arabic
Contextual Unicode

values
Isolated Form

 لا 0627+0644 ل + ا

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 4

2017 International Journal of Computer Science Issues

meaning of each icon/symbol/image and even color in the

target culture and make sure they are culturally appropriate.

5. Visual Programming Environment for

Children: Catrobat

Catrobat is a set of creativity tools for smartphones, tablets,

and mobile browsers. Through Catrobat, computational

thinking skills, as well as the free and open source software

philosophy, are promoted in a fun and engaging way on a
worldwide scale. Catrobat and the software developed by

the Catrobat team are inspired by, but distinct from, the

Scratch programming system developed by the Lifelong

Kindergarten Group at the MIT Media Lab. Catrobat itself

is an independent free and open source software project [3,

5].

Catrobat provides an easy possibility for the children and

teenagers to learn to program without any programming

knowledge, and enables them to program and wirelessly

control Lego EV3, Phiro, and Arduino via Bluetooth [18].

In fact, Catrobat is created for children. Since it is created
for children, it is very easy to learn and use. They can create

animations. For older children or teenagers, they can create

Catrobat games with single-level or multi-levels. In

addition, teachers and students in schools can use Catrobat

to design effective education programs such as math quiz,

physics simulation, and educational videos [5, 6].

The version of Catrobat which is developed for Android

smartphones is named Catroid and is available on Google’s

Play Store as “Pocket Code”. Pocket Code allows children

to create and execute Catrobat programs on Android, iOS,
and Windows Phone 8 smartphones as well as on HTML5

capable mobile browsers. Catrobat’s programs written on

one platform can be directly run on all other platforms as

well and can be shared via the Pocket Code sharing website.

The Android version of Pocket Code currently works well

on devices up to 7". The iOS, Windows Phone, and HTML5

versions are still under development [18].

Similar to Scratch, programs in Pocket Code are created by

snapping together command blocks which are called

“bricks” (see Fig. 3). The bricks are arranged in “scripts”
which can run in parallel allowing concurrent execution.

Broadcast messages are used to ensure sequential execution

of scripts [6].

The language elements are organized into the categories

“Event”, “Control”, “Motion”, “Sound”, “Looks”, “Pen”,

“Data”, “Lego EV3”, “Phiro”, and “Arduino”. Each

language element contains a set of bricks as shown below

[19]:

Fig. 3 Example of Catroid program.

Event: Elements of this category are used to sense events,

which trigger scripts to execute. Event’s bricks are needful

for every project without these bricks from this category, a

project would not be able to start. By using bricks of this

category broadcast messages can be sent and received, and
events can be caught.

Control: Elements of this category are responsible for the

program’s flow, condition and loops can be defined.

Motion: Elements of this category are used to control

an object's movement such as modify the position and the

orientation of an on-screen object and can be used to set the

gravity and mass for objects.

Sound: These elements play or stop a predefined sound file

(sounds may also be recorded via the internal sound
recorder) and alter the volume. Google’s speak engine is

used to read out some text.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 5

2017 International Journal of Computer Science Issues

https://pocketcode.org/
http://catrob.at/pc
https://wiki.scratch.mit.edu/wiki/Event_Based_Programming
https://wiki.scratch.mit.edu/wiki/Script
https://wiki.scratch.mit.edu/wiki/Project
https://wiki.scratch.mit.edu/wiki/Sprite

Looks: The visual appearance of objects can be defined

with these elements, the bricks are used to control

an object's appearance. The size of an object can be set as

well as transparency, brightness, and color. The elements of

this category can be used to switch between the

backgrounds. Also controlling some device peripherals is
possible with elements of this category such as camera and

flashlight.

Pen: The Pen category allows an object to draw shapes, plot

colored pixels. The elements are used to change the size of

the pen by a chosen number, set the size of the pen to a

chosen number, and draw a copy of the object on the stage.

Data: Setting and changing the value of a variable is

possible with elements of this category. The elements of this

category also can be used to perform data manipulation

operations over lists.

Lego EV3: Elements of this category are used to program

Lego Mindstorms EV3 robot.

Phiro: Elements of this category can be used to program

and control Phiro (educational robot) via Bluetooth.

6. Localization Catrobat into Bidirectional

Languages

Smartphone apps localization has still not reached its full

potential. One of the reasons why there are many

smartphone’s apps in App Stores are not localized is due to

the developing rate of this field. Every day more and more
apps loaded to the market, and companies which want to

keep up do not enough consider internationalization and

localization activities during the product development

phase.

In this section, we provide all the challenging aspects of

localization Catrobat into bidirectional languages and

achieve comprehensive solutions to the many and

correlated challenges presented by such languages.

Software localizers understand the challenges of changing

an LTR VPE into RTL. Therefore, we work carefully to

comply with bidirectionality design guidelines and provide
a consistent right-to-left look and feel product that suits the

children needs and expectations. In particular, visually

appealing, easy-to-use UI and graphics are our default

objectives in localizing Catrobat into bidirectional

languages.

6.1 Mirroring Bricks’ Background

The direction of reading and writing influences how

information should be drawn on the screen (i.e. mirroring

awareness). Layout mirroring is a term used to describe the

ability of an app to reorder the UI elements to match the

right to left rendering for bidirectional locales. This

requires, not only the text alignment and text reading order

flow from right to left, but also the UI elements layout. The

requirement for mirroring occurs since the text in such

languages is read and written from right-to-left rather than
left-to-right [12].

The background’s graphic for each brick in Pocket Code

communicates direction as shown in Fig. 4 (a). Hence, to

provide a consistent right-to-left look and feel to the brick

layout features, the background should be automatically

mirrored when its layout direction is right-to-left. In

particular, the brick’s layout is displayed flowing from right

to left (see Fig. (b)), and the following variations occur.

1. Curved area flows from RTL.

2. Touch target is aligned to the right.

(a)

(b)

Fig. 4 Screenshots for bricks (a) LTR (b) RTL.

Enabling mirroring in resources: The background for

each brick should reverse its horizontal orientation for right-

to-left layouts; developers can include the mirrored images

in a drawable-ldrtl/ resource directory. Particularly, in

Pocket Code, the background for each brick is a 9-patch

drawable. A 9-patch drawable enables the user to create

bitmap images that automatically change the size to

accommodate the views’ contents and the size of the

smartphone’s screen [20]. The border is used to define the

stretchable and static sections of the image. A stretchable

section is defined by drawing one (or more) 1-pixel-wide
black line(s) on the left and top part of the border (the other

border pixels should be fully transparent or white) [20] as

shown in Fig. 5. Therefore, due to these special attributes

for the 9-patch drawable, the localization for drawable files

(i.e. creating the custom version of drawable) in Pocket

Code is an infeasible solution.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 6

2017 International Journal of Computer Science Issues

https://wiki.scratch.mit.edu/wiki/Sprite
https://wiki.scratch.mit.edu/wiki/Stage

Fig. 5 Example of 9-patch drawable in Pocket Code.

Enabling mirroring in XML file: The (scaleX) property is

used to scale of the view in the x direction. When X scale

factor equals -1 (i.e. x values increase from right to left), UI

element will be flipped horizontally. In XML file which

defines the layout of brick, the (scaleX) property is

configured as shown in the below XML code:
<org.catrobat.catroid.ui.BrickLayout

 android:id="@+id/brick_broadcast_layout"

 style="@style/BrickContainer.Control.Medium"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="horizontal"

 app:horizontalSpacing="@dimen/brick_flow_layout_horizontal_spacing"

 app:verticalSpacing="@dimen/brick_flow_layout_vertical_spacing"

 android:scaleX="-1"

 >

The main drawback of this solution is that, for each

implemented brick layout, localizers need to create an

alternative resource file and place it within specially named

subdirectories of the Pocket Code. Manually repeating this

for each implemented or new brick would be error prone

and a waste of time. To gain more flexibility, the second
way - mirroring in source code - is used instead.

Enabling mirroring in source code: There is a bug in 9-

patch drawable with auto-mirroring, where it breaks the

transformation matrix for drawing the child view afterward.

The challenging aspect here is to mirror the background for

each brick without mirroring the UI elements. Therefore,

the Java class file which defines the layout of brick should

be modified. The source code enables the localizers to get

the background only and then perform the mirroring

technique. Practically, we need to detect the reverted

matrix, reset it, mirror the background of brick and then
draw it again.

The following snippet of code illustrates how the matrix is

detected and reset, and the dispatchDraw () method shows

how the mirroring and drawing methods are implemented.

By keeping in mind that this method is used when the

Android version is prior to KITKAT.

@Override

protected void onDraw(Canvas canvas) {

 float[] values = new float[10];

 canvas.getMatrix().getValues(values);

 if (values[0] < 0.0f)

 canvas.setMatrix(new Matrix());

 super.onDraw(canvas);

}

@Override

protected void dispatchDraw(Canvas canvas) {

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1 &&

 Build.VERSION.SDK_INT < Build.VERSION_CODES.KITKAT &&

 getLayoutDirection() == LAYOUT_DIRECTION_RTL) {

 Drawable background = getBackground();

 int color = getResources()

 .getColor(R.color.application_background_color);

 canvas.drawColor(color);

 canvas.save();

 canvas.translate(background.getBounds()

 .right - background.getBounds().left, 0);

 canvas.scale(-1.0f, 1.0f);

 background.draw(canvas);

 canvas.restore();

 }

 super.dispatchDraw(canvas);

}

Android 4.4 (KITKAT) offers a new feature for drawable

mirroring for RTL layout. In practice, the system can
automatically mirror background images for all bricks by

calling setAutoMirrored (). When the smartphone’s

language is set to Arabic, the backgrounds will be

automatically mirrored - see Fig. 4 (b). The below snippet

of code illustrates how we can mirror the brick’s

background using the setAutoMirrored () method.

protected void onFinishInflate() {

 super.onFinishInflate();

 Drawable background = getBackground();

 if (background != null) {

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {

 background.setAutoMirrored(true);

 }

 }

}

6.2 Reordering View’s Children

The Android framework supports several default views but

a developer can also create their own custom views and call

them in their application. Views are typically created to

provide high user-interface capabilities and experience

which are not possible with the built-in views.

In Android, a view group is a special view that can hold

other views. Sometimes, because of specific nature of

requirements, the standard layout managers are not enough

or developers are not satisfied with the existing

functionality of any of the available layout managers.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 7

2017 International Journal of Computer Science Issues

https://developer.android.com/reference/android/view/View.html#attr_android:scaleX
https://developer.android.com/reference/android/os/Build.VERSION_CODES.html#KITKAT

Therefore, developers need to extend the view group class

to create their own custom layout manager to suit their

needs [21].

Views are capable to measure, lay out and draw themselves

and their child elements (in a case of a view group). Views

are also providing the ability to save their UI state and
handle touch events [21]. Parents are drawn before their

children and children are drawn depending on the order

when they are called. Drawing custom layout manager is

done by passing three processes: measure, layout and draw

as shown in the below Fig. 6:

Fig. 6 The three processes for drawing custom layout manager.

For all these features seen so far, in Pocket Code, the brick

layout is implemented as a custom view since various

design experience and functionalities are needed as shown
in Fig. 7 (a).

User interface design is the most critical issue in

bidirectional languages app. However, when designing for

children and young people, developers often think that

highly visual interface, simple interaction is the way to grab

their interest [22]. For bidirectional languages, not only

does the text alignment and text reading order rendered

from right to left, but also the UI elements layout should

follow this natural direction of rendering. Of course, this

layout change would only apply to localized bidirectional

languages.

When mirroring the brick's layout, padding and margin

around UI elements and text also switch placement to match

RTL layouts. However, in Fig. 7 (b), the text view for

“Place at” is aligned to the right, and the size and position

requirements for the view and all of its children should

match the LTR version (see Fig. 7 (a)) as follow:

 Touch target height: (h) dp

 Screen edge margin before first UI element: (x) dp

 Text view bottom padding: (p) dp

 Text view left padding: (r) dp

 UI elements height: (m) dp

However, the onMeasure () method should be customized

to introduce new measurements that support child laying

out from right-to-left and adjust the brick’s children

alignment to the right. More specifically, the variable

(posX) that determines where is to start laying out should

be modified to handle both modes (LTR and RTL) based on

mobile device’s locale as shown in the below snippet of

code.

if (config.getLayoutDirection() == View.LAYOUT_DIRECTION_RTL) {

 posX = sizeWidth - lineLengthWithHorizontalSpacing;

} else {

 posX = getPaddingLeft() + lineLength - childWidth;

}

(a)

(b)

Fig. 7 LTR vs. RTL laying out for bricks.

In onLayout () we need to call layout method on each child

of this view group and provide desired position (relatively

to parent) for them using the sizes computed in the
onMeasure () as shown in the below snippet of code.

However, Fig.8 shows the Arabic localized version for

Fig.3.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 8

2017 International Journal of Computer Science Issues

@Override

protected void onLayout(boolean changed, int left,

 int top, int right, int bottom) {

 final int count = getChildCount();

 for (int i = 0; i < count; i++) {

 View child = getChildAt(i);

 LayoutParams layoutParams = (LayoutParams) child.getLayoutParams();

 child.layout(layoutParams.positionX, layoutParams.positionY,

 layoutParams.positionX + child.getMeasuredWidth(),

 layoutParams.positionY + child.getMeasuredHeight());

 }

}

Fig. 8 Example of localized BiDi program.

6.3 Bidirectional Characters Rendering

Bidirectional text such as Arabic requires special rendering

since there are different characteristics of scripts rendering

include bi-direction, shaping as per context, reordering and

linking characters [12, 17].

In Pocket Code, you can display text containing English,

German, French, and Spanish string all at once. But, there

are several scripts that need special processing to render and

edit since the characters are not laid out in a simple linear

progression from left to right, as most European scripts are.

These writing systems are referred to as “complex scripts.”

To investigate more in this issue, a program which contains

bricks for displaying text on the program’s stage is created.

In Fig. 9, the variable (text1) is initialized to the English
text, while the variable (text2) is initialized to Arabic.

However, when the program is executed, the stage correctly

displays the whole English text and oddly does not display

any Arabic text as shown in Fig. 10 (a). That is because

Pocket Code, unfortunately, does not support bidirectional

characters rendering on the stage and deliver its own font.

Therefore, to make Pocket Code work properly for complex

scripts when displaying typed text, the characters should not

be outputted one at a time, the text should be saved in a

buffer and then displayed as a whole on the screen.

Fig. 9 Screenshot for the set and show variable bricks with English and

Arabic strings.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 9

2017 International Journal of Computer Science Issues

(a)

(b)

Fig. 10 Screenshots for Pocket Code’s stage (a) displays Latin scripts (b)

displays Latin and BiDi characters.

In Pocket Code, the bitmap font is used to draw characters

on the stage. This technique does not support displaying of

complex scripts. When language scripts are rendered from

right to left, we might have to use other techniques than just

drawing characters next to each other on the screen to

produce something intelligible. In particular, to support

complex bitmaps font rendering such as Arabic, Urdu,

Persian, etc., we need some way to convert the bitmap

image that contains the text into texture object [23].
However, we use a single texture object to render all the

glyphs. In order to draw the bidirectional text, we load the

characters, upload them as a texture, and draw them at the

correct offset from the starting position. When smartphone

is set to the Arabic language, the Arabic version of Pocket

Code correctly displays the text on the stage with proper

morphology and directionality as shown in Figure 10 (b).

6.4 Bidirectional User Interface Mirroring

One of the most localization challenging issues is that some

UI elements are being drawn outside the desired area or

outside the UI canvas in localized version because its

coordinates are expecting the origin to be in the top-left of

the screen instead of the top-right. In Pocket Code, when

the Arabic user tries to show the details of sprites, no details
will be displayed on the screen. This defect due to the

localization process, all the views’ positions in Fig. 11 (a)

are changed to be drawn outside the screen and no details

will be shown.

To support RTL mode, we need to provide some specific

details view layout for any bidirectional languages, the

custom version of the layout is created and placed within

specially named subdirectories of the Pocket Code. Some

code snippet is needed to adjust and correctly reorder the

positions of text views by using the (layout_toLeftOf)

instead of (layout_toRightOf). Further, we use “start” and
“end” instead of “left” and “right” in style file to provide

some specific styles for the BiDi languages. Also, for more

precise control over the app UI in RTL mode, the attribute

for setting the direction of a components’ text is used:

textDirection="rtl".

In Fig. 11(b), title, icons, and UI elements are displayed

flowing from right to left, however, when a UI layout is

mirrored, these variations occur:

1. Back button points to the right.

2. Arabic text is right-aligned.

3. Menu button is left-aligned.
4. Icon appears to the right of text.

5. Scripts’ field appears to the right of value.

6. Play button is not mirrored since it reflects the

direction of the tape.

6.5 Generating Strings during Application Runtime

In the course of localizing software, all strings should be

declared as resources and separated from the source code

[8]. Typically, program size is expressed in units of

measurement (KB, MB, GB, etc.). On projects’ details
screen (see Fig.12 (a)) these units are implemented as a

hard-coded string since the size of each program should be

computed, and then mapped to the proper unit of

measurement at the program’s run time. On an RTL screen

(see Fig. 12 (b)), the placement of unit (“MB”) appears to

the left of value, further, the following localization issues

should be considered:

1. Size’s value is generated at the run time.

2. “MB” unit is a hard-coding string (i.e. untranslated).

3. Hindi digits are used for numbering style.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 10

2017 International Journal of Computer Science Issues

https://en.wikipedia.org/wiki/Units_of_measurement
https://en.wikipedia.org/wiki/Units_of_measurement

(a) (b)

Fig. 11 Screenshots for sprite-details screen (a) original version (b) RTL screen.

The developer has to be careful with strings that are

composed at the application’s runtime. To solve this issue,

all of the strings should be moved into resource file; the
content of the file can be retrieved by the software at the run

time to supply these elements to the users in their local

language. The following snippet of code is used to remove

the hard-coding string of measurement’s units.
public static String formatFileSize(long bytes, Context context) {

 final double unit = 1024;

 String fileSizeExtension[] = new String[]{

 context.getString(R.string.Byte_short),

 context.getString(R.string.kiloByte_short),

 context.getString(R.string.kiloByte_short),

 context.getString(R.string.GigaByte_short),

 context.getString(R.string.TeraByte_short),

 context.getString(R.string.PetaByte_short),

 context.getString(R.string.ExaByte_short)

 };

 if (bytes < unit) {

 return bytes + " " + fileSizeExtension[0];

 }

 int exponent = (int) (Math.log(bytes) / Math.log(unit));

 exponent = Math.min(exponent, fileSizeExtension.length - 1);

 String prefix = fileSizeExtension[exponent];

 return String.format(Locale.getDefault(), "%.1f %s", bytes /

 Math.pow(unit, exponent), prefix);

}

Fig.12 Screenshots for program-details screen (a) original version (b)

RTL screen.

(a)

(b)

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 11

2017 International Journal of Computer Science Issues

7. Analysis and Results

After the product localization, the bidirectional languages

localization testing framework, which was proposed by

Ayyal Awwad and Slany [8], is performed. The objective is

to ensure that the localized version of Pocket Code is fully

functional, cosmetically correct, linguistically accurate, and

culturally appropriate and that no issues have been
produced during the localization process.

Primarily, to verify whether the target VPE meets the

localization requirements or not, we need to check the

product in terms of complying with Material Design

guidelines for bidirectionality. Furthermore, during the

localization phase, translation may cause some GUI defects

(e.g. truncated strings, overlapping controls, and

misalignment). These defects should be considered during

the testing process as illustrated in Table 3.

Table 3: Bidirectional languages testing methods

Testing Methods Description Result

Localized strings validation (i.e. user-facing text
should be bidirectional scripts)

passed

Mirroring awareness: UI elements lay out from
RTL

passed

Text direction (text reading order go from RTL) passed
Complex scripts awareness (app render and edit

bidirectional scripts)
passed

Direction-sensitive graphics (such as undo and

redo)
passed

String truncation validation passed
UI overlapping validation passed

Views alignment (i.e. right-aligned elements) passed
Linguistic verification: check the semantic

correctness of the translations using product’s

screenshots

passed

Images and colors: issues of cultural
appropriateness

passed

The test methods are executed on the bidirectional

languages which are used as the reference. The methods had

been created to perform a round trip and visit every screen,

dialog, and menu. The test cases methods take screenshots

of the visited screens and extract text strings for analysis

purposes.

From Table 3, we can observe that Pocket Code complies
with the design guidelines for bidirectionality and not only

does the text alignment and text reading order rendered

from right to left, but also the UI elements layout follow this

natural direction.

For cultural appropriateness testing, all of the application’s

graphics should be culture-neutral, testing is performed at

two levels. Each individual view is tested and each screen

or layout is tested as a whole. For usability testing, two

representatives of each culture participate. The participants

check each view to determine whether or not there are any

peculiarities of that view that might be offensive or include

any attributes that use the idioms of a specific culture. If

anything is found unsatisfactory, that view should be
customized using the localization tool to be satisfactory.

8. Conclusion

In this paper, we localized a VPE on smartphones into

bidirectional languages and presented the challenging

aspects of the bidirectional languages (specifically Arabic

language) facing the software localization team. These

challenges stem from the fact that these languages differ
enormously in terms of their characters, contextual shaping,

and directionality from Western languages [17].

Our software localization process includes adapting

Catrobat to be used in the education system in primary and

secondary schools. That process means changing, for

example, custom and standard layout directions, text

rendering and locale formats to suit the new culture it is

being localized to. Our localization process also includes

changing the source code of Catrobat and in many cases

localizing icons to suit the local users’ needs and
expectations. The localization testing results show that the

product meets bidirectional requirements and complies with

bidirectionality design guidelines since it is cosmetically

correct, linguistically accurate, and culturally appropriate.

9. Future Work

There are some correlated challenging aspects for

localization of the major Asian languages (Chinese,

Korean, and Japanese) [15]. In particular, the peculiarities

of Japanese and Korean languages raise some issues during

the translation process for Catrobat. These challenges stem

from the fact that the verb comes last in such languages as

well as plural and singular are the same.

Our Future work is to propose a comprehensive solution

that is based on the idea of implementing all strings with the

placeholder for the parameters. This would allow translators
to better understand the context and decide at which place

the parameters should appear in the localized string.

However, the Android string resource system does not

support parameters, nor does localization management

platform.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 12

2017 International Journal of Computer Science Issues

Acknowledgments
The author would like to thank Professor Wolfgang Slany

and the Catrobat development team1.

References
[1] P. Smutný, “Visual Programming for

Smartphones”, 12th International Carpathian Control

Conference (ICCC), 2011, pp. 358-361.

[2] H. Tsukamoto et al., “Textual vs. Visual Programming

Languages in Programming Education for Primary

Schoolchildren”, IEEE Frontiers in Education

Conference (FIE), 2016, pp. 1-7.

[3] Wolfgang Slany, “A Mobile Visual Programming

System for Android Smartphones and Tablets”, IEEE

Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), 2012, pp. 265-266.

[4] Wolfgang Slany, Catrobat,

http://no1leftbehind.eu/pocket-code/, 2010-2017.
[5] Wolfgang Slany, Catrobat,

http://developer.catrobat.org/. 2010-2017.

[6] Wolfgang Slany, “Catroid: A Mobile Visual

Programming System for Children”, Proceedings of the

11th International Conference on Interaction Design and

Children, 2012, pp. 300-303.

[7] C. Williams, E. Alafghani, A. Daley, K. Gregory and M.

Rydzewski, “Teaching Programming Concepts to

Elementary Students”, IEEE Frontiers in Education

Conference (FIE), 2015, pp. 1-9.

[8] Aiman M. Ayyal Awwad, Wolfgang Slany, “Automated

Bidirectional Languages Localization Testing for
Android Apps with Rich GUI”, Mobile Information

Systems, Vol. 2016.

[9] Google, Material guidelines: Usability-Bidirectionality,

https://material.io/guidelines/usability/bidirectionality.h

tml. (visited on 10 April 2017).

[10] X. Xia, D. Lo, F. Zhu, X. Wang and B. Zhou,

“Software Internationalization and Localization: An

Industrial Experience”, 18th International Conference

on Engineering of Complex Computer Systems, 2013,

pp. 222-231.

[11] Admob; Google,
https://www.statista.com/statistics/296304/mobile-

app-abandoment-rate-due-to-lacking-localization/,

(visited on 10 January 2017).

[12] S. Abufardeh, K. Magel, “QA/Testing Bi-directional

Languages Software: Issues and Challenges”, 32nd

Annual IEEE International Computer Software and

Applications Conference, 2008, pp. 172-175.

[13] Elvis Hau, Manuela Aparício, “Software

Internationalization and Localization in Web Based

ERP”, Proceedings of the 26th Annual International

Conference on Design of Communication, “SIGDOC,
2008, pp. 175-180.

1 http://developer.catrobat.org/credits

[14] Nations Online, Countries and Languages,

http://www.nationsonline.org/oneworld/countries_by_

languages.htm, (visited on 20 January 2017).

[15] S.Abufardeh, K.Magel, “Software Localization: the

Challenging Aspects of Arabic to the Localization

Process (Arabization)”, in Proceedings of the IASTED
International Conference on Software Engineering

(SE’08), 2008, pp. 275-279.

[16] Arwa Alqudsi, Nazlia Omar, Khalid Shaker, “Arabic

Machine Translation: a Survey”, Artificial Intelligence

Review, Vol. 42, No. 4, 2014, pp. 549-572.

[17] T. A. El-Sadany, M. A. Hashish, “An Arabic

Morphological System”, IBM Systems Journal, Vol.

28, No. 4, 1989, pp. 600-612.

[18] Wolfgang Slany, “Pocket Code: a Scratch-Like

Integrated Development Environment for Your

Phone”, ACM SIGPLAN Conference on Systems,

Programming, and Applications: Software for

Humanity, 2014, pp. 35-36.

[19] Wolfgang Slany, Catrobat education,

https://edu.catrob.at/brick-documentation. 2010-2017.

[20] Android Developers, Create Resizable Bitmaps (9-

Patch files),

https://developer.android.com/studio/write/draw9patc

h.html, (visited on 10 December 2016).

[21] Android Developers, View,

https://developer.android.com/reference/android/view/

View.html (visited on 21 January 2017).

[22] B. DiSalvo, “Graphical Qualities of Educational

Technology: Using Drag-and-Drop and Text-Based

Programs for Introductory Computer Science”, IEEE

Computer Graphics and Applications, Vol. 34, No. 6,

2014, pp. 12-15.

[23] OpenGL, Texture Mapping,

https://www.opengl.org/archives/resources/faq/technic

al/texture.htm, (visited on 2 February 2017).

Aiman Mamdouh Ayyal Awwad is currently pursuing a Ph.D. in
Computer Science with research interests related to smartphone
applications. He received his B.Sc in Computer Science from Mutah

University in 2007 and his M.Sc in Computer Science from
University of Jordan in 2010. From February 2010 to September
2014, he was a lecturer at Computer Science and IT Department/

Tafila Technical University. He has more than 6 publications in
various international journals and conferences. His research
interests include mobile applications testing, image processing, and

cellular automata.

IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, May 2017
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.20943/01201703.113 13

2017 International Journal of Computer Science Issues

http://no1leftbehind.eu/pocket-code/
https://material.io/guidelines/usability/bidirectionality.html
https://material.io/guidelines/usability/bidirectionality.html
https://www.statista.com/statistics/296304/mobile-app-abandoment-rate-due-to-lacking-localization/
https://www.statista.com/statistics/296304/mobile-app-abandoment-rate-due-to-lacking-localization/
http://developer.catrobat.org/credits
http://www.nationsonline.org/oneworld/countries_by_languages.htm
http://www.nationsonline.org/oneworld/countries_by_languages.htm
https://edu.catrob.at/brick-documentation.%202010-2017
https://developer.android.com/studio/write/draw9patch.html
https://developer.android.com/studio/write/draw9patch.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
https://www.opengl.org/archives/resources/faq/technical/texture.htm
https://www.opengl.org/archives/resources/faq/technical/texture.htm

