
F-Rep Designer 2.0 – Everything is a Code

Alexander Penev

 Faculty of Mathematics and Informatics, University of Plovdiv “Paisii Hilendarski”
Plovdiv, Bulgaria

Abstract
This article discusses the visualization approach applied to the
experimental geometric modeling system F-Rep Designer 2.0.
This system uses the Functional Representation (F-Rep) scheme
in order to describe the model. In our approach the scene/model,
the ray tracing algorithm, the shading model, and all that is
necessary for the visualization are compiled into executable code
for the selected target platform (CPU, GPGPU, etc.), and the
execution of this code generates the final image. This is done
through a multistep process, as the changes of the model lead to
an optimized process of change in the various intermediate
representations wherever possible.
Keywords: Computer Graphics, F-Rep, Visualization, Model
Compilation, Retargeting.

1. Introduction

Computer graphics have many applications in different
spheres of today's world. Geometric modeling systems
have been developing for years and nowadays there are
many systems with different capabilities and application
areas.

Most modern geometric modeling systems use
combinations of the well-known representation schemes
Boundary representation (B-Rep), Constructive Solid
Geometry (CSG) and others. One of their main advantages
– the existence of hardware implementation of the
visualization – is becoming less important with the
development of modern graphics hardware (mainly
GPGPU). This opens up the possibility of using more
powerful and informationally complete models such as
Function representation (F-Rep) [5] scheme for modeling
and interactive work with geometric modeling systems
based mainly on such class of model representations.

The project F-Rep Designer [1] was created to provide a
base for exploring the theory and practice of systems with
this kind of scene representation. Unlike most other
systems the main model of scene representation is only F-
Rep. It also aims to create an entirely mesh-free geometric
modeling system. F-Rep Designer 2.0 is a logical

continuation of the principles in the previously described
work [1].

The problems in the first implementation of the F-Rep
based system are mainly related to productivity. This was
due to the transformation and the interpretation of the
whole model (because of the limitations of existing
GPGPU compilers), and the incomplete use of modern
graphics hardware. The second version of the system
overcomes much of these performance issues. The system
has improved interactivity due to:

 an incremental compilation of the entire model,
the visualization algorithm, and everything that is
needed to visualize the modeled scene;

 a suitable caching scheme for intermediate
results;

 a better load of graphic hardware.

While working on the first version of F-Rep Designer, we
noticed that much of the model as well as the other
elements of the system can be combined and compiled
together (to an executable code). This is not accidental,
and in practice it can be extended even further so that
everything that is necessary for the visualization is
combined and compiled. It is due to the fact that the scene/
model has a well-defined semantics which defines a
2D/3D images. Algorithms for visualization interpret this
semantics and “execute” it by constructing this image. The
model semantics and the visualization algorithm define a
calculation whose result is the final image. Therefore, all
of these calculations can be combined and compiled (for
another more specific and less abstract processor) and
executed on a physical (or virtual) machine based on CPU,
GPGPU, FPGA, ASIC, Quantum Computer, or any other
future hardware.

2. Related Works

In recent years, due to the increasing computational power
of computers, more and more geometric modeling systems

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346021 7

2018 International Journal of Computer Science Issues

are created based on powerful representation schemes.
Most of them are research systems, but in the past few
years they have inspired several commercial systems that
fill some gaps in the market of 3D modeling software.
Only visualization the surface of the models or the
presence of a constructive tree is no longer enough. For
example, in order to materialize a solid with a 3D printer
one needs more than its 3D triangle mesh. On the other
hand, the classical representation schemes for volume
description are often difficult to the user, do not provide
powerful algorithms for transformation and editing, have
low quality, take up too much memory, etc.

There is much theoretical and applied research that uses
powerful representation schemes for volume description,
3D textures, etc. Most of it is based on modifications of
implicit surfaces, signed distance functions, and other
similar approaches that apply mathematical real functions
for describing the volume of solids. The goal is to use
these functions to perform all the classic set-theoretic
operations and easily to expand the set of operations
performed over the solids.

One of the most well-known systems is HyperFun [6]. It is
a system based on F-Rep, having its own scene description
language (SDL) and scene visualization algorithms. One
of the main ideas is to include in F-Rep other
representations (homogeneous hybridity) such as Voxels,
Implicit surfaces, CSG (by using the so-called R-
functions), Sweeping, etc.

Another modern system is Symvol for Rhino [7]. It is a
commercial plugin relying on F-Rep as a basic concept for
the construction and visualization of scenes based on the
description of volumes. A constructive tree whose leaves
are F-Rep functions is used, and R-functions are used for
the constructive operations. There is also a variety of other
operations, bounded blending, non-linear transformations
(twist, taper, bend) and others.

Many other commercial plugins for creating FX effects
work with internal geometry representations that are more
complex than B-Rep, but in most cases they are converted
to B-Rep so that the system fits in the host geometric
modeling system.

3. F-Rep Basic Concepts

The Function representation schemes (F-Rep) are used for
describing geometric objects (solids). F-Rep [5] represents
a geometric object by a real continuous function f defined
in a Euclidean space.

A real continuous function f, which describes a solid, is
defined by:

f : X →R , X ∈En (1)

This function induces a point set

SG={X ∈E n| f (X)≥0 } in En (2)

A special case of the function f is when it gives the signed
distance from a point X to the surface of the solid SG .

Modeling by using such a function is more restrictive, but
it also has some advantages (mainly for developing fast
visualization algorithms like Sphere tracing [8], [19]).

There are many operations on objects of F-Rep [5]: set-
theoretic, blending, offsetting, Cartesian product,
metamorphosis, bijective and linear mapping, projection,
etc. A fundamental advantage of F-Rep is its openness
(extensibility) in view of the possibility for adding new
primitives, operations, and relations. Among its big
advantages is also the easy implementation of non-linear
transformations and other complicated operations.

All geometric operations in F-Rep can be defined
analytically. For example, the set-theoretic operations are
implemented by using the so-called R-functions [2], [3],
[4], [5] (see (3)-(5), for example). The use of the R-
functions makes F-Rep more powerful. R-functions [2],
[3] are real functions of real variables which inherit some
properties of the logical functions (binary or ternary
logic). For example, the conjunction is called the logical
friend of the R-function

f 1∧a f 2≡
1

1+a
⋅(f 1+ f 2−√ f 1

2+ f 2
2−2a⋅ f 1⋅ f 2) (3)

Analogous functions exist for all other set-theoretic
operations, for example:

f 1∨a f 2≡
1

1+a
⋅(f 1+ f 2+√ f 1

2+ f 2
2−2a⋅ f 1⋅ f 2) (4)

¬ f ≡− f (5)

In practice we use the special cases a=1 (min(f 1 , f 2)
for conjunction and max (f 1 , f 2) for disjunction) and

a=0 (f 1+ f 2−√ f 1
2+ f 2

2 and f 1+ f 2+√ f 1
2+ f 2

2 , respec-
tively).

The contribution of R-functions to computer graphics, and
F-Rep in particular, is the possibility for composing
practical arbitrary solids (functions) based on other

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346021 8

2018 International Journal of Computer Science Issues

simpler and already constructed functions or primitives as
spheres, cylinders, cones, etc. In general, F-Rep provides
an easy opportunity to incorporate elements from other
representation schemes (not only ones from CSG by R-
functions, but models can be parameterized easily, etc.) in
itself. This means that F-Rep provides an approach for the
realization of homogenized hybrid representations [9]. The
inclusion of new operations and transformations
(including non-linear) is also uniform and smooth.

4. F-Rep Designer 2.0 System

As we have already said, the F-Rep Designer 2.0 is a
logical evolution/continuation of our previously described
work [1].

4.1 Requirements and Implementation

F-Rep Designer 2.0 system is a prototype of an
experimental geometric modeling system based entirely on
the F-Rep representation scheme.

As a continuation of the previous work, it has the same
goals and meets the same requirements. Geometric
modeling system F-Rep Designer must be (and to a high
degree is already implemented):

 interactive;

 F-Rep based – using only F-Rep for the scene
model description;

 ray tracing based – using only Ray tracing for
visualization;

 a hybrid system – using CPU/GPGPU/etc.
simultaneously for visualization and other
algorithms;

 mesh-free (in model, visualization, and user
interaction) – triangle-mesh, B-Rep or similar
structures are not used in any system operation
stage;

 SDL-free – using neither its own SDL nor other
well-known SDL;

 platform independent – this is achieved mainly by
using platform-independent programming
languages, libraries and systems such as C#,
GTK#, Mono/MS.NET, OpenCL, etc.;

 plugin based, open, and extensible – all important
subsystems are implemented as plugins that use

well-designed programming interfaces. The
system maintains lists of items that are registered
in it. If necessary, the user chooses which ones to
use at a given time.

The system architecture is organized similarly to the one
in [9]. It is a system based on plugins and numerous
interacting services.

The current realization (see Fig. 1 and Fig. 2) develops
and complements the implementation of the previous
version of the system. In Fig. 1 we see a model that
contains three spheres and one R-function based
intersection of two spheres (in the center of screen), and at
the bottom right the visualization algorithm can be
selected from the available ray tracing algorithms. On Fig.
2 we see a scene with a single sphere and a custom
primitive defined by the user by an arithmetic expression.

Fig. 1 F-Rep Designer’s MVC based GUI

During the implementation we used object-oriented
programming and some classic design patterns, such as
Composition [17], Strategy [17], and architectural meta-
pattern as Model-View-Controller (MVC) [18], etc.

In F-Rep Designer a dialect of F-Rep is used that we
called F-Rep*. The difference is that we use f (X)≤0 for
the interior and the surface of the solids (which imposes a
similar change of sign when using R-Function, etc.), and
we require that the solids be described by a distance
function. For example, to describe a sphere we use
x2+ y2+z2−r2≤0 . The R-function for intersection is

max, instead of min and vice versa.

The model is currently a composition of real functions of
real parameters defined analytically. At this stage a
constructive tree is not used on purpose, since the
composition of functions carries enough information to
construct such a tree, if necessary.

We created a simple application with GUI using GTK#
and MVC design pattern. The View part of the system

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346021 9

2018 International Journal of Computer Science Issues

visualizes the model from the user point of view.
Visualization is performed by ray tracing. The calculation
of the F-Rep function is performed by compiling functions
to IL or by retargeting to OpenCL/CUDA/etc., compiling
and executing on CPU/GPGPU/etc. (See Section 4.2 for
more details)

An important feature of the implementation is that the
visualization of the scene and the user interaction with it
occur without polygonization and is fully mesh-free (B-
Rep is not used in any form). This is done in order to
simplify the system and to avoid possible problems arising
from the B-Rep characteristics.

Fig. 2 One sphere and one custom primitive.

User interaction is based on the ray tracing algorithm used
for visualization, working in ray casting mode. This allows
selection of elements of the model and their
transformation, removal, composition of the model
elements by means of R-functions, and so on. The user can
perform basic navigation through the scene.

4.2 Visualization Approach

The classical scheme of work in geometric modeling
systems is shown in Fig. 3. During implementation, the
MVC design pattern is often used. The Model describes a
scene containing different geometric primitives (and other
elements) and their visual characteristics (attributes,
shaders, etc.). The final image is obtained by an algorithm
called Visualization that crawls the Object space of the
model or the Screen space of the image or both, analyzes
them, and produces the image that the user sees on an
output device (most often the computer system monitor).
When the user want to changes some aspect of the image,
he/she sends commands to the system (via the computer
input devices) and the Controller(s) modifies the Model.
This change leads to a new visualization process, and so
on.

This classic approach has been proven in practice. It is
applicable to different types of models, different
visualization algorithms, and for different types of result

images. It is very similar to “Interpreter” if we speak in
terms of the Programming Languages – the “Interpreter” is
the visualization algorithm that interprets/executes the
model by applying its semantics in order to obtain the
result of execution – the final image. This is done
repeatedly. Various acceleration structures and techniques
can be applied (most often at the expense of using more
memory) to optimize the visualization process. This,
however, has many disadvantages (which in case of the F-
Rep model are essential). This approach is also useful if
the graphic hardware is not programmable (but now most
modern graphic hardware are highly programmable). In
this case, the bulk of the calculations and algorithms are
performed by the CPU, but the trend over the last 10 years
is, if possible, to offload these calculations into a
specialized graphics hardware.

Model

Image

Visualization User

Fig. 3 Classic approach to visualization – an Interpreter.

Here are some arguments that let us to the visualization
approach shown in Fig. 4.

First, F-Rep is based on an implicit representation of
primitives, R-functions for set-theoretic operations, and
others. Not all functions are known in advance and are
often input as analytic expressions. This often requires an
evaluation of these expressions on runtime. In the first
realization of the F-Rep designer, we partially solved this
problem by compiling the expressions into an executable
code for the respective processor (CPU, GPGPU). Any
change to the model, however, leads to a new compilation
of the whole model, which in case of larger and more
complicated models can lead to a delay and performance
problems.

Second, the visual features such as color and other
physical features are defined by shaders, which are once
again functions. This fits in the previous case (for
geometry). Shader features can be compiled for and

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346021 10

2018 International Journal of Computer Science Issues

executed by a processor (CPU/GPGPU/etc.). They can be
further optimized (domain-specific optimization) [10].

Third, the calculation of the various properties required for
the visualization algorithms and the shading model, such
as normal vectors, can be processed by the F-Rep model
(functions). Moreover, these properties may be obtained in
advance from the functions describing the geometry by
automatic differentiation (AD). This produces a
computable function that can be calculated by the graphics
hardware or other processor.

Fourth, the visualization algorithm is also an executable
code that can be compiled for the corresponding processor
(CPU, GPGPU, etc.).

Fifth, combining all elements into one code allows
optimization (including global optimization) to be applied
to all system components (something that is almost
impossible in the classic scheme). The visualization,
geometry, shaders and etc., can also be optimized. The
merging of the model with the visualization algorithm
allows for optimizations on both of them simultaneously,
for example, inlining of the geometry functions in the
visualization algorithm, etc.

Sixth, acceleration structures, if needed, may also be
wrapped or implemented in the form of an additional
algorithms. This allows them to be easily changed to
different target architectures (for better performance).

Seventh, an execution in a heterogeneous environment can
be achieved through retargeting of the code. Different
parts of the system are targeted to different processors.

Eight, some platforms may have a very different
architecture than the CPU and GPGPU, even much
different than the CPU and the GPGPU. The memory
model may be different, even there might be no memory
in the classical sense. The model and complexity of
parallelism might be different. For example, we may use
FPGAs or ASICs, even Quantum Computers or any other
future (currently non-existent) hardware (including one
whose architecture is not clarified). These differences in
architectures can be overcome in two ways: either we
rewrite (by hand) an algorithms specific for each platform,
or we make a module that automatically transforms the
algorithms into the new architectures. The second
approach is more forward-looking (and more suited to
research), and so we chose it in the new version of F-Rep
Designer. This variant includes the first one, so its choice
is not self-aiming.

All this led to the realization of our system with the
architecture shown in Fig. 4.

When we changing the model, the visualization algorithm
is triggered. The action of the algorithm is as follows:

1. Stage “Generate/Combine” – the F-Rep model
(this is not an essential limitation and can be
applied to other representations) is transformed
into C# functions. Shaders are converted to C#
functions. Other functions necessary for the
visualization algorithm, such as the private
derivatives of the model functions, are generated
to calculate the normal vectors at different
geometry points. The ray tracing algorithm is
generated and combined with the other generated
elements. All this is what we call Code-as-a-
Model and on it is based whole “Compiler”
approach;

2. Stage “Compile” – the C# code model is
compiled to an intermediate .NET IL code;

F-Rep
Model

(Geom&Shaders)

Image

Generate/Combine

User

Ray Tacer
Model

Differentiator
Model

Compile

C# Code Model

Execute

CUDA

Retarget

.Net IL

OpenCL Js, ...x86

Fig. 4 Our approach to visualization – a Compiler.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346021 11

2018 International Journal of Computer Science Issues

3. Stage “Retargeting” – if the target platform is
not .NET, the intermediate code is analyzed and
is retargeted to the appropriate platform (special
classes from plugins are responsible for
transferring this code to an equivalent Target
Platform code). Retargeting subsystem uses
various auxiliary libraries and compilers
(SolidOpt [12], CUDAfy.NET [13], Cloo [14],
Bridge.NET [15], Cling [11], etc.). This stage
may require additional compilation for the target
platform by using its optimizing compilers;

4. Stage “Execute” – the native compiled code is
executed, which generates the final image.

At any stage, an item may not be modified and may
already exist (in cache) from a previous visualization. In
this case, it is used by the cache.

In case of user commands, the parts of the system that
change the F-Rep model are executed. Besides the other
models that are generated by the F-Rep model are
changed. This is done through special incremental
controllers that only change parts of the compiled models
at all stages of the visualization. For example, if we
change only the color (or shader of an element of
model/scene) it is not necessary to regenerate and
recompile the entire scene. Only functions dependent on
the modified features are regenerated. The remaining parts
are kept the same and if necessary the caches of different
levels are used. Also, if we add a new element to the scene
– the incremental controller only adds a newly-generated
function (if they do not yet exist), and an eventually
existing incremental compiler recompile the required
code. This is not yet available on all target platforms – for
example Cling is an interactive compiler, but OpenCL
platforms do not yet have similar tools. In this case, it is
possible to work directly with the SPIR [16]
representation, but this complicates the realization much
more and at this stage it is envisaged that this opportunity
will be experimented and realized in the future.

The retargeting subsystem offers an easy way to add new
target platforms. The creation of transforming/retargeting
algorithms is not difficult, because the generated code
does not contain platform-dependent parts, i.e. we use
only arithmetic expressions, simple data structures, and
base control-flow statements. However, in general,
creating a maximally effective mapping between two
platforms is not a trivial task.

5. Results

The main result was the realization of a prototype of the

system F-Rep Designer 2.0, which has the wanted
characteristics and meets the our requirements. This
proves that the proposed approach is possible and has
some features and benefits that deserve further analysis,
research and development.

The main advantages of new system are: F-Rep based
model; Mesh-free implementation; Hybrid CPU/GPU/etc.
implementation (many target platforms are supported by
retargeting using simple transformation plugins).

A central feature of the implementation is that it uses the
approach in which are combined and compiled the model
(F-Rep, geometry), the functions for calculating the
normal vectors, the shading model, and the ray tracer
algorithm. Once this is done retargeting to OpenCL,
CUDA, x86, etc. and from there to the executable code.
This provides some significant advantages. For now, the
main difficulty for this approach is that still there are some
limitations in the use of OpenCL/CUDA due to the large
generated programs, the slow compilation, etc.

6. Conclusions

F-Rep Designer is a system with high potential for
research and applications. Some of the problems and
weaknesses in the F-Rep Designer prototype that we
became aware of are in the process of removal, but others
still require the development and improvement of other
systems (such as OpenCL, CUDA, etc.) and are not a
subject of this study.

The Code-as-a-Model and Compilation approach gives
great flexibility, expansion and power to the geometry
modeling system. The F-Rep provides users with great
expressive power.

Even though we have achieved some important results, for
the development and application of F-Rep Designer there
is still much to be done. In future we plan to extend and
develop F-Rep Designer in several ways:

 Expansion of the retargeting subsystem with the
new platforms (FPGA and others); improving
existing plugins in order to make better use of the
appropriate platforms/architectures;

 Expansion of ray tracing plugins and adding new
visualization capabilities. Adding “preview” and/
or “progressive view” options to all available
visualization algorithms to maximize interactivity
while using the system;

 Add an incremental compilation for all platforms.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346021 12

2018 International Journal of Computer Science Issues

Acknowledgment

This work was partially supported by project FP17-FMI-
008 of the Scientific Research Fund at University of
Plovdiv “Paisii Hilendarski”.

References
[1] A. Penev, "F-Rep Designer", in International Conference

"From DeLC to Velspace", 2014, pp. 239-247.
[2] V. Rvachev, Geometrical application of logic algebra, Kiev,

Technika, 1967. (in Russian)
[3] V. Rvachev, R-Function theory and its applications, Kiev,

Naukova Dumka, 1982. (in Russian)
[4] V. Shapiro, "Theory of R-functions and applications: a

primer", Computer Science Technical Reports, TR91-1219,
Cornell University, New York, 1991.

[5] A. Pasko, and V. Adzhiev, and A. Sourin, and V. Savchenko,
"Function representation in geometric modeling: concepts,
implementation and applications", The Visual Computer, Vol.
11, Issue 8,1995, pp. 429-446, doi:10.1007/BF02464333.

[6] V. Adzhiev, and R. Cartwright, and E. Fausett, and A.
Ossipov, and A. Pasko, and V. Savchenko, "Hyperfun
project: a framework for collaborative multidimensional f-
rep modeling", Implicit Surfaces, Vol. 99, 1999, pp. 59-69.

[7] Uformia, "Symvol for Rhino",
http://www.uformiaworld.com/products/symvol-for-rhino,
(visited 15 June 2018).

[8] A. Penev, "One approach to describe geometric information",
M.S. thesis, Faculty of Mathematics and Informatics, Plovdiv
university “Paisii Hilendarski”, Plovdiv, Bulgaria, 1996. (In
Bulgarian).

[9] A. Penev, "Open hybrid systems for geometric modelling",
Ph.D. thesis, Faculty of Mathematics and Informatics,
Plovdiv university “Paisii Hilendarski”, Plovdiv, Bulgaria,
2013. (In Bulgarian).

[10] H. Lesev, "Optimizing shading process in photorealistic
graphic systems", in Proceedings of International scientific
conference Informatics in the scientific knowledge, 2010, pp.
211-219.

[11] V G. Vassilev, and Ph. Canal, and A. Naumann, and P.
Russo, "Cling – The New Interactive Interpreter for ROOT
6", Journal of Physics Conference Series 396(5), Volume:
396, 2012, DOI: 10.1088/1742-6596/396/5/052071.

[12] V. G. Vassilev, and A. Penev, and M. Vassilev, "SolidOpt – A
Multi-Model Software Optimization Framework",
International Journal of Computer Science Issues, Vol. 12,
Issue 2, 2015, pp. 32-41.

[13] CUDAfy, "CUDAfy.NET",
http://www.hybriddsp.com, (visited 20 April 2016).

[14] Cloo, "Cloo",
 https://sourceforge.net/projects/cloo/, (visited 15 June 2018).

[15] Object.NET Inc., "Bridge.NET",
 https://bridge.net, (visited 15 June 2018).

[16] Kronos Group Inc., "The SPIR Specification",
https://www.khronos.org/registry/SPIR/specs/spir_spec-
2.0.pdf, (visited 15 June 2018).

[17] E. Gamma, and R. Helm, and R. Johnson, and J. Vlissides,
"Design patterns: elements of reusable object-oriented
software", Boston MA, Addison-Wesley Longman
Publishing Co. Inc., 1995.

[18] G. Krasner, and S. Pope, "A cookbook for using the model-
view controller user interface paradigm in Smalltalk-80",
Journal of Object-Oriented Programming, August/September,
1988, pp. 26-49.

[19] J. Hart, "Sphere tracing: a geometric method for the
antialiased ray tracing of implicit surfaces", The Visual
Computer, Vol. 12, Issue 10, 1996, pp. 527–545.

Alexander Penev received his PhD degree in Computer Science
at the University of Plovdiv “Paisii Hilendarski”, Bulgaria. In 1996,
he completed his MSc degree in “Mathematics – specialization
Informatics” at the same institution. Alexander has over 20 years
work experience at University of Plovdiv as an assistant professor.
Currently, his research interests are in the area of computer
graphics, visual programming languages design and
implementation, software optimization, and others.

IJCSI International Journal of Computer Science Issues, Volume 15, Issue 4, July 2018
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org https://doi.org/10.5281/zenodo.1346021 13

2018 International Journal of Computer Science Issues

