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Abstract

Reconstruction of image and video from sparse observations
attract a great deal of interest in the filed of image/video com-
pression, feature extraction and denoising. Since the color
image and video data can be naturally expressed as a ten-
sor structure, many methods based on tensor algebra have
been studied together with promising predictive performance.
However, one challenging problem in those methods is tuning
parameters empirically which usually requires computational
demanding cross validation or intuitive selection. In this pa-
per, we introduce Bayesian Tucker decomposition to recon-
struct image and video data from incomplete observation. By
specifying the sparsity priors over factor matrices and core
tensor, the tensor rank can be automatically inferred via vari-
ational bayesian, which greatly reduce the computational cost
for model selection. We conduct several experiments on im-
age and video data, which shows that our method outperforms
the other tensor methods in terms of completion performance.
Keywords: Image completion, Tensor completion, Bayesian
Tucker decomposition.

1. Introduction

Image or video completion, which is to reconstruct a full
image/video from only sparsely observed information, plays
an important role in image processing field. Image data
can be naturally expressed as a 3rd-order tensor of size
height × width × color channel, while the video data
can be represented as 4th-order tensor of size height ×
width × color × time. Tensor is an extension of vectors
and matrices to the high order case, which enables us to
represent the structured data. The traditional way to handle
such data is firstly transforming the data into the vector or
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matrix form, then many existing algorithms based on matrix
analysis can be employed for image and video processing.
However, the adjacent structure information of original data
will be lost [1] due to the matricization operations. To over-
come this limitation, tensor analysis methods are the emerg-
ing technology, which attracts a great deal of attentions in
recent years. By using multilinear algebra, tensor decompo-
sition can efficiently exploit the intrinsic high order structure
information within the data and provide better interpretabil-
ity. The most popular models of tensor decomposition are
Tucker decomposition [2] and CANDECOMP/PARAFAC
(CP) decomposition [3–5]. Moreover, tensor method has
been applied in various research field such as: image com-
pletion [6–14], signal processing [15–21], brain machine
interface (BMI) [22–24], image classification [25, 26], face
recognition [27], machine learning [28], etc. Basically, there
are two type of methods for tensor completion. One type is
based on minimization of the convex relaxation function of
tensor rank by using nuclear norm of tensor. The nuclear
norm can be defined in several different ways related to the
different tensor decomposition models. By applying the ap-
propriate optimization algorithm, we can find the optimal
low-rank tensor as the approximation of full tensor. Another
type is based on tensor decomposition of incomplete tensor.
The specific algorithm must be developed to find latent fac-
tors under the specific tensor decomposition model by using
partially observed entries. It is necessary to predefine the
tensor rank, which is considered as a model selection prob-
lem. Although cross-validation can be used to determine an
optimal tensor rank, it is quite computational demanding.
Especially, when the Tucker decomposition is considered, the
number of possibilities of tensor rank increases exponentially
to the order of tensor.

To overcome these limitations, we introduce a Bayesian ten-
sor decomposition method to perform image and video com-
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Fig. 1: First, second, thrid-order tensor

pletion. Our methods can automatically adapt model com-
plexity and infer an optimal multilinear rank by the principle
of maximum lower bound of model evidence. Experimen-
tal results and comparisons on image and video data demon-
strate remarkable performance of our models for recovering
the groundtruth of multilinear rank and missing pixels.

The remainder of this paper is organized as follows. Section
II briefly overviews the Tucker decomposition and CANDE-
COMP/PARAFAC (CP) decomposition. Section III describes
the Bayesian Tucker decomposition method and the corre-
sponding inference algorithm. Section IV shows the exper-
imental results on real-world image and video data. Finally,
we summarize our paper in Section V.

2. Tensor decompositions

Tensor is a multidimensional array which is a generaliza-
tion of vectors and matrices to higher dimensions. First-order
tensor is a vector, second-order tensor is a matrix, and third
or higher order tensor is higher-order tensor. First, second,
third-order tensor are shown in Fig. 1. Tensor decomposi-
tions originated from Hitchcock [29] [30]. Under the work of
Tucker [31] [32] [2], Carroll and Chang [3], Harshman [4],
Appellof and Davidson [33], the tensor theory and tensor
decompositions (factorizations) algorithms have been suc-
cessfully applied to various fields, examples include signal
processing, computer vision and etc.

2.1 Notation

The order of a tensor is the number of dimensions [34].
Tensor of order one (vector) is denoted by boldface lower-
case letters, e.g., a, the i-th element of a one-order tensor
is denoted by ai. Tensor of order two (matrix) is denoted
by boldface capital letters, e.g., A, the (i, j) element of a
two-order tensor is denoted by aij . Tensor of order three

or higher (higher-order tensor) is denoted by boldface Euler
script letters, e.g., XXX , the (i, j, k) element of a three-order
tensor is denoted by xijk. Indices typically range from 1 to
their capital version, e.g., i = 1, ..., I .

2.2 CP decomposition

CANDECOMP/PARAFAC (CP) decomposition method is
proposed by Carroll and Chang [3] and PARAFAC (paral-
lel factors) proposed by Harshman [4]. Usually, we refer
to the CANDECOMP/PARAFAC decomposition as CP [5].
CP decomposition is to represent a tensor as the sum of R
rank-one tensors. For example, given a third-order tensor
XXX ∈ RI×J×K , we wish to represent it by (1) (2).

XXX =
R∑
r=1

ar ◦ br ◦ cr = [[A,B,C]]. (1)

xijk =

R∑
r=1

airbjrckr,

∀ i = 1,..., I,∀ j = 1, ..., J,∀ k = 1, ...,K.

(2)

where ar ∈ RI , br ∈ RJ and cr ∈ RK , ∀r = 1, . . . , R.
The rank of a tensor XXX , denoted by R = rank(XXX ), is define
as the smallest number of rank-one tensors that can exactly
representXXX . The scheme of CP decompositions is illustrated
in Fig. 2.

2.3 Tucker decomposition

The Tucker decomposition is proposed firstly in 1963 [35],
and refined in subsequent articles by Levin [33] and Tucker
[2, 32]. Tucker decomposition can be considered as a form of
higher-order PCA (Principal Components Analysis), which
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Fig. 2: CP decomposition of a third-order tensor

decomposes a tensor into a core tensor multiplied (or trans-
formed) by several matrices along each mode. For instance,
given a third-order tensorXXX ∈ RI×J×K , we have

XXX = GGG ×1 A×2 B×3 C

=
P∑
p=1

Q∑
q=1

R∑
r=1

gpqr ◦ ap ◦ bq ◦ cr

= [[GGG; A,B,C]].

(3)

Eq. (3) can be also written by the element-wise form, which
is

xijk ≈
P∑
p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr,

∀ i = 1, ..., I,∀ j = 1, ..., J,∀ k = 1, ...,K.

(4)

Here, A ∈ RI×P , B ∈ RJ×Q and C ∈ RK×R are the factor
matrices, which are usually orthogonal, and can be thought
of as the principal components in each mode. Tensor GGG ∈
RP×Q× R is called the core tensor and its entries show the
level of interaction between the different components. The
last equality in (3) uses the shorthand [[GGG; A,B,C]] which was
introduced in [34]. The scheme of Tucker decompositions is
illustrated in Fig. 3.

3. Bayesian Tucker decompositions

In this section, we introduce Bayesian Tucker decomposi-
tion for tensor completion. Let YYY be an incomplete tensor
with missing entries, andOOO is a binary tensor which indicates
the observation positions. Ω denotes a set of N -tuple indices
of observed entries. The value ofOOO is defined by{

Oi1···iN = 1 if (i1, . . . , iN ) ∈ Ω,

Oi1···iN = 0 if (i1, . . . , iN ) /∈ Ω.
(5)

YYYΩ is a tensor which only include observed entries. The gen-
erative model is assumed as

YYYΩ = XXXΩ + ε, (6)

where the latent tensor XXX is represented exactly by a Tucker
model with a low multilinear rank and ε denotes i.i.d. Gaus-
sian noise.

Given an incomplete image tensor, Bayesian Tucker model
only considers the observed data, thus the likelihood function
can be represented by

p
(
YYYΩ

)
=

∏
(i1,i2,i3)∈Ω

NNN
(
Yi1i2i3

∣∣∣ Xi1i2i3 , τ−1
)
. (7)

Since the latent tensor XXX can be decomposed exactly by a
Tucker model, we can thus represent the observation model
as that ∀(i1, i2, i3),

Yi1i2i3
∣∣∣ {u

(n)
in

}
, GGG, τ ∼

NNN
((⊗

n

u
(n)T
in

)
vec(GGG), τ−1

)Oi1i2i3
.

(8)

where n = 1, 2, 3. u
(n)
in

is the in-th row of the factor matrix
U(n),OOO is the indicator of missing points. τ is the precision
of Gaussian noise.

To employ sparsity priors, we can specify the hierarchical
prior distributions by

τ ∼ Ga
(
aτ0 , b

τ
0

)
,

vec(GGG)
∣∣∣ {λ(n)

}
, β ∼ NNN

{
0,
(
β
⊗
n

Λ(n)
)−1)

,

β ∼ Ga
(
aβ0 , b

β
0

)
,

u
(n)
in

∣∣∣ λ(n) ∼ NNN
(
0, Λ(n)−1

)
, ∀n,∀in.

Λ(n)
rn ∼ Ga

(
aλ0 , b

λ
0

)
, ∀n,∀rn,

(9)
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Fig. 3: Tucker decomposition of a third-order tensor

where β is a scale parameter related to the magnitude of GGG,
on which a hyperprior can be placed. The hyperprior for λ(n)

play a key role for different sparsity inducing priors. We pro-
pose the hierarchical prior corresponding to the Student-t dis-
tribution for group sparsity. Note that Λ(n) = diag(λ(n)).

For Tucker decomposition of an incomplete tensor, the prob-
lem is ill-conditioned and has infinite solutions. The low-rank
assumption play an key role for successful tensor completion,
which implies that the determination of multilinear rank sig-
nificantly affects the predictive performance. However, stan-
dard model selection strategies, such as cross-validation, can-
not be applied for finding the optimal multilinear rank be-
cause it varies dramatically with missing ratios. Therefore,
the inference of multilinear rank is more challenging when
missing values occur.

As shown in (9), we employ a hierarchical group sparsity
prior over the factor matrices and core tensor with aim to seek
the minimum multilinear rank automatically, which is more
efficient and elegant than the standard model selections by re-
peating many times and selecting one optimum model. By
combining likelihood model in (8), we propose a Bayesian
Tucker Completion (BTC) method, which enables us to infer
the minimum multilinear rank as well as the noise level solely
from partially observed data without requiring the tuning pa-
rameters.

To learn the BTC model, we employ the VB inference frame-
work under a fully Bayesian treatment. In this section, we
present only the main solutions. As can be derived, the vari-
ational posterior distribution over the core tensor GGG is given
by

q(GGG) =NNN
(

vec(GGG)
∣∣∣ vec(G̃GG), ΣG

)
, (10)

where the posterior parameters can be updated by

vec(G̃GG) = E[τ ]ΣG
∑

(i1,i2,i3)∈Ω

(
Yi1i2i3

3⊗
n=1

E
[
u

(n)
in

])
. (11)

ΣG =

{
E[β]

⊗
n

E
[
Λ(n)

]
+

E[τ ]
∑

(i1,i2,i3)∈Ω

3⊗
n=1

E
[
u

(n)
in

u
(n)T
in

]}−1

.

(12)

Since the variational posterior distribution over
{
U(n)

}
can

be factorized as

q
(
U(n)

)
=
∏
in

NNN
(
u

(n)
in

∣∣∣ ũ(n)
in
,Ψ

(n)
in

)
, n = 1, . . . , 3. (13)

the posterior parameters are updated by

ũ
(n)
in

= E[τ ]Ψ
(n)
in

E
[
G(n)

]
∑

(i1,i2,i3)∈Ω

(
Yi1i2i3

⊗
k 6=n

E
[
u

(k)
ik

])
.

(14)

Ψ
(n)
in

=

{
E[Λ(n)] + E[τ ]E

[
G(n)Φ

(n)
in

GT
(n)

]}−1

. (15)

Φ
(n)
in

=
∑

(i1,...,iN )∈Ω

⊗
k 6=n

u
(k)
ik

u
(k)T
ik

. (16)

The summation is performed over the observed data locations
whose mode-n index is fixed to in. In other words, Φ

(n)
in

rep-
resents the statistical information of mode-k (k 6= n) latent
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factors that interact with u
(n)
in

. In (15), the complex posterior
expectation can be computed efficiently by

vec
{
E
[
G(n)Φ

(n)
in

GT
(n)

]}
=

E
[
G(n) ⊗G(n)

]
vec
(
Φ

(n)
in

)
.

(17)

The variation posterior distribution over {λ(n)} is i.i.d.
Gamma distributions due to the conjugate priors, which is
∀n = 1, . . . , 3,

q
(
λ(n)

)
=

Rn∏
rn=1

Ga
(
λ(n)
rn

∣∣ ã(n)
rn , b̃

(n)
rn

)
. (18)

where the posterior parameters can be updated by

ã(n)
rn = aλ0 +

1

2

(
In +

∏
k 6=n

Rk

)
,

b̃(n)
rn = bλ0 +

1

2
E
[
u

(n)T
·rn u

(n)
·rn

]
+

1

2
E[β]E

[
vec(GGG2

···rn···)
T
]⊗
k 6=n

E
[
λ(k)

]
.

(19)

Finally, the predictive distributions over missing entries,
given observed entries, can be approximated by using varia-
tional posterior distributions q(Θ) as follows

p
(
Yi1i2i3

∣∣ YYYΩ

)
=

∫
p
(
Yi1i2i3 | Θ)p

(
Θ | YYYΩ) dΘ

≈NNN
(
Yi1i2i3

∣∣∣ Ỹi1i2i3 , E[τ ]−1 + σ2
i1i2i3

)
.

(20)

where the posterior parameters can be obtained by

Ỹi1i2i3 =

(⊗
n

E
[
u

(n)T
in

])
E
[
vec(G)G)G)

]
,

σ2
i1i2i3 = Tr

(
E
[
vec(GGG)vec(GGG)T

]⊗
n

E
[
u

(n)
in

u
(n)T
in

])

−E
[
vec(GGG)

]T(⊗
n

E
[
u

(n)
in

]
E
[
u

(n)T
in

])
E
[
vec(GGG)

]
.

(21)

Therefore, our model can provide not only predictions over
missing entries, but also the uncertainty of predictions, which
is quite important for some specific applications.

4. Experiments Results

We verified the proposed method experimentally and com-
pared it with related methods, i.e., high accuracy low rank

tensor completion (HaLRTC) [8]. Alternating Direction
Method of Multipliers (ADMM) [36] algorithm, developed
in the 1970s, was employed by HaLRTC to solve the nuclear
norm optimization problems with multiple non-smooth terms.
HaLRTC algorithm using ADMM framework is based on
simple low rank tensor completion (SiLRTC) algorithm [8].
By replacing the dummy matrices Mis by their tensor ver-
sions, the algorithm is shown in Algorithm (1).

Algorithm 1 HaLRTC Algorithm

1: Input: XXX withXXXΩ = TTT Ω,p and K
2: Output: XXX
3: SetXXXΩ = TTT Ω andXXXΩ = 0
4: for k = 0 to K do
5: for i = 1 to n do

6: MMMi = foldi

[
Dαi

ρ

(
XXX (i) +

1

ρ
YYYi(i)

)]
7: end for

XXXΩ =
1

n

(∑n
i=1MMMi −

1

ρ
YYYi
)

Ω

YYYi = YYYi − ρ(MMMi −XXX )

8: end for

4.1 MRI Completion

Magnetic resonance imaging (MRI) is a medical imaging and
widely used in the clinical diagnosis [37]. We evaluate our
method by using MRI data (http://brainweb.bic.mni.mcgill.ca/
brainweb), this dateset contains a set of realistic MRI data
volumes produced by an MRI simulator. Because MRI data
is high-dimensional, the completion from sparse observa-
tions becomes very challenging. So we separate the high-
dimensional tensor data into low-dimensional small tensors.
Hence, our method can be applied to small tensors com-
pletion. In experiment, we use the size of small tensors in
50× 50× 50.

We use missing ratio (20% - 50%) and consider the noises in
MRI data, and evaluation the algorithms using Peak Signal to
Noise Ratio (PRSN) and RRSE. The result are shown in Table
1, and the visual quality is shown in Fig. 4. As we can see
that the proposed method can effectively recover the missing
values with high performance.

4.2 Video Completion

The video data is natural representation by a tensor as shown
in Fig. 5. We evaluate the performance of the proposed
method on a video sequence corrupted by additive Gaussian
noise. The video sequence is downloaded from the bench-
mark data in [38]. We consider the noise standard deviation
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Table 1: The Performance of MRI Completion Evaluated by PSNR and RRSE

Missing 50% Missing 40% Missing 30% Missing 20%
Methods Original Noisy Original Noisy Original Noisy Original Noisy

PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE
BTC-T 27.27 0.11 26.42 0.12 27.84 0.10 27.12 0.11 28.12 0.10 27.55 0.11 28.38 0.10 27.83 0.10

HaLRTC 24.19 0.16 23.17 0.18 26.73 0.12 25.00 0.14 29.57 0.085 26.69 0.12 32.93 0.057 28.22 0.099

of 0.03, 0.15, 0.27 and missing ratio of 20% - 50%. The
results are shown in Table 2.

Fig. 5: Tensor representation of a video sequence

Table 2: The Performance of Video Completion Evaluated by
RRSE

Missing
60% 50% 40% 30% 20%

Noise RRSE RRSE RRSE RRSE RRSE
0.03 0.645 0.559 0.476 0.397 0.325
0.15 0.646 0.561 0.480 0.402 0.336
0.27 0.650 0.564 0.483 0.408 0.344

5. Conclusion

In this paper, we proposed a image completion method based
on Bayesian Tucker decomposition. By using variational
bayesian inference, we can avoids the computational de-
manding rank selection procedure. We apply the proposed
method to image and video with 20-50 % missing voxels,
the experimental results demonstrate that our method can
effectively recover the whole data with a high predictive
performance.
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