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Abstract

Removing the noise from an image is vitally important in
many real-world computer vision applications. One of the
most effective method is block matching collaborative filter-
ing, which employs low-rank approximation to the group of
similar patches gathered by searching from the noisy image.
However, the main drawback of this method is that the stan-
dard deviation of noises within the image is assumed to be
known in advance, which is impossible for many real appli-
cations. In this paper, we propose a non-local filtering method
by using the low-rank tensor decomposition method. For ten-
sor decomposition, we choose CP model as the underlying
low-rank approximation. Since we assume the noise variance
is unknown and need to be learned from data itself, we em-
ploy the Bayesian CP factorization that can learn CP-rank as
well as noise variance solely from the observed noisy tensor
data, The experimental results on image and MRI denoising
demonstrate the superiorities of our method in terms of flex-
ibility and performance, as compared to other tensor-based
denoising methods.
Keywords: Tensor factorization, CP factorization, Image
denoising.

1. Introduction

Image denoising is an important task in image process-
ing field, many techniques try to solve this problem. Re-
cently, non-local filtering techniques have attracted a lot of
interest and demonstrated the superiority in terms of per-
formance [1–5]. The key technique in image denoising is
to infer the optimal bases from a group of similar patches.
More specifically, for any reference patch, the bases can be
learned from a set of patches selected within a specific distant
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range, which are similar to that patch. These image denoising
methods have been also extended to video denoising, which
enables the patches from adjacent video frames to be consid-
ered in gathering the similar patches. However, the existing
methods are all based on 2D patches, thus is not effective for
multiway data that is naturally represented as a tensor.

Multidimensional data is natural represent by tensor, com-
pared to matrix tensor factorization can capture the multi-
linear latent factors effectively and take the structure infor-
mation into account explicitly. The theory and algorithms of
tensor factorization have been widely studied during the past
decade and were successfully applied to many real-world ap-
plications, such as image completion [6–14], signal process-
ing [15–21], brain machine interface (BMI) [22–24], image
classification [25, 26], face recognition [27], machine learn-
ing [28], etc.

The higher order singular value decomposition (HOSVD) is
an extension of the matrix SVD technique to the multiway
tensor [29]. Recently, the HOSVD has been successfully ap-
plied to image and video denoising [4] [30] [31] as a multi-
linear transform basis. However, the limitations of HOSVD-
based denoising are that the noise standard deviation must be
known in advance, which results in difficulties in practical ap-
plications.

To solve this problem, we leverage the Bayesian approach
to learn the noise variance from original data without using
priori knowledge. In contrast to HOSVD model which is a
Tucker tensor decomposition model, we apply the CP decom-
position which has a more compact representation ability than
Tucker decomposition. Since the computation of CP Rank of
a tensor is proven to be a NP hard problem, we specify the
sparsity priors over the latent components, which can thus ob-
tain the minimum number of components via Bayesian infer-
ence. Similarly, we also place a non-informative hyper-prior
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over the noise precision parameter which leads to the possi-
bility of inferring it from data.

The rest of the paper is organized as follows. We first briefly
present some basic tensor operations and algebra in Section
II. Section III describes Bayesian CP factorization (BCPF)
based denoising method. The experimental results are shown
in Section IV. We summarize our method in Section V.

2. Tensor decompositions

Tensor is a multidimensional array which is a generaliza-
tion of vectors and matrices to higher dimensions. First-order
tensor is a vector, second-order tensor is a matrix, and third
and higher order tensor are called a tensor. The tensors of
first, second, third-order are shown in Fig. 1.

Tensor decompositions originated from Hitchcock [32] [33].
Under the work of Tucker [34] [35] [36], Carroll and Chang
[37], Harshman [38], Appellof and Davidson [39], the tensor
theory and tensor decompositions (factorizations) algorithms
have been successfully applied to various fields, the examples
include signal processing, computer vision and etc.

2.1 Notation

Tensor is a multidimensional array, the order of a tensor is the
number of dimensions [40]. Tensor of order one (vector) is
denoted by boldface lowercase letters, e.g., a, the i-th element
of a one-order tensor is denoted by ai. Tensor of order two
(matrix) is denoted by boldface capital letters, e.g., A, the
(i, j) element of a two-order tensor is denoted by aij . Tensor
of order three or higher (higher-order tensor) is denoted by
boldface Euler script letters, e.g.,XXX , the (i, j, k) element of a
three-order tensor is denoted by xijk. Indices typically range
from 1 to their capital version, e.g., i = 1, ..., I .

2.2 Tensor Algebra

The Frobeniusnorm of a tensor XXX ∈ RI1×I2×....×IN , is
the square root of the sum of the square of all elements (1)

‖XXX‖F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

x2
i1i2···iN . (1)

The inner product of two same sized tensors XXX , YYY ∈
RI1×I2×···×IN is defined by

〈XXX ,YYY〉 =

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

xi1i2···iN yi1i2...iN . (2)

It follows immediately that 〈XXX ,XXX〉 = ‖XXX‖2F .

The Hadamard product is an elementwise product between
two tensors that must be same sizes. Given A ∈ RI×J and
B ∈ RI×J , the Hadamard product is denoted by A ~ B ∈
RI×J , which is computed by

A ~ B =


a11b11 a12b12 · · · a1Jb1J
a21b21 a22b22 · · · a2Jb2J
a31b31 a32b32 · · · a3Jb13

· · · · · · · · ·
aI1bI1 aI2bI2 · · · aIJbIJ

 . (3)

The Hadamard product of N ≥ 3 items is defined as

~Nn=1A
(n) = A(1) ~ A(2) ~ · · ·~ A(N). (4)

The Kronecker product of matrices A ∈ RI×J and B ∈
RK×L becomes a matrix of size IK×JL, denoted by A⊗B
and computed by
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A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB
a31B a32B · · · a3JB
· · · · · · · · ·
aI1B aI2B · · · aIJB

 . (5)

The Khatri − Rao product of matrices A ∈ RI×K and
B ∈ RJ×K is a matrix of size IJ ×K, denoted by A � B.
In particular, the Khatri-Rao product of N ≥ 3 matrices in a
reverse order is defined by

N⊙
n=1

A(n) = A(N) �A(N−1) � · · · �A(1). (6)

The Khatri-Rao product of a group of matrices, except the nth
matrix is denoted by A(\n) and computed by

N⊙
k=1,k 6=n

A(k) = A(N) � · · · �A(n+1)

�A(n−1) � · · · �A(1).

(7)

2.3 CP decompositions

CANDECOMP/PARAFAC (CP) decomposition method is
proposed by Carroll and Chang [37] and PARAFAC (par-
allel factors) proposed by Harshman [38]. Usually, we
refer to the CANDECOMP/PARAFAC decomposition as
CP [41]. CP decomposition is to represent a tensor as a sum
of rank-one tensors. For instance, given a third-order tensor
XXX ∈ RI×J×K , we wish to represent it by

XXX =
R∑
r=1

ar ◦ br ◦ cr = [[A,B,C]]. (8)

The element-wise form of (8) is written as

xijk =
R∑
r=1

airbjrckr,

∀ i = 1,..., I,∀ j = 1, ..., J,∀ k = 1, ...,K.

(9)

where ar ∈ RI , br ∈ RJ and cr ∈ RK , ∀r = 1,...,R. The
rank of a tensor XXX , denoted R = rank(XXX ), is define as the
smallest number of rank-one tensors that can exactly repre-
sent XXX . The scheme of CP decompositions is illustrated in
Fig. 2.

2.4 Tucker decompositions

The Tucker decomposition was proposed in 1963 [42], and re-
fined in subsequent articles by Levin [39] and Tucker [35,36].
Tucker decomposition can be considered as an extension of
PCA (Principal Components Analysis) to a high order ten-
sor, which decomposes a tensor into a core tensor multiplied
(or transformed) by several matrices along each mode. For
instance, given a three-way tensor XXX ∈ RI×J×K , Tucker
decomposition is written as

XXX = GGG ×1 A×2 B×3 C

=
P∑
p=1

Q∑
q=1

R∑
r=1

gpqr ◦ ap ◦ bq ◦ cr

= [[GGG; A,B,C]].

(10)

The element in tensor can thus be computed and represented
by

xijk =
P∑
p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr,

∀ i = 1, ..., I,∀ j = 1, ..., J,∀ k = 1, ...,K.

(11)

Here, A ∈ RI×P , B ∈ RJ×Q and C ∈ RK×R are the fac-
tor matrices (which are usually orthogonal) and can be con-
sidered as the principal components in each mode. Tensor
GGG ∈ RP×Q× R is called the core tensor and its entries show
the level of interaction between the different components. The
last equality in (10) using the shorthand [[GGG; A,B,C]] was in-
troduced in [40]. The scheme of Tucker decompositions is
illustrated in Fig. 3.

3. Bayesian CP factorization based tensor de-
noising

3.1 Non-local Tensor Denoising

We consider a given tensor TTT corrupted by Gaussion noise
NNN (0, σ), our objective is to recover the underlying clean
tensor VVV . The main procedure includes three steps that are

• At each tensor element and for a fixed sub-tensor size, a
group of similar sub-tensors is selected and constructed
to be a higher order tensor.

• The proposed Bayesian CP factorization is employed
for each stack to obtain an estimate of a denoised stack.

• The sub-tensors are reassembled in original location to
obtain a denoised tensor.

Given a reference sub-tensor PPP from the noisy tensor TTT , we
choose other sub-tensors in the tensor TTT that are similar toPPP .
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Fig. 3: Tucker decomposition of a third-order tensor

The similarity can be simply measured by Euclidean distance.
There are two choices for selecting similar sub-tensors. One
is to use a distance threshold τd = 3σ2s, where σ2 denotes
the noise variance and s denotes the size of each sub-tensor.
The other one is to use a fixed number of sub-tensors ordered
by the distance with the reference sub-tensor. Assume that
there are K such sub-tensors (includingPPP) which are labeled
as {PPPi} where 1 ≤ i ≤ K. These sub-tensors were assumed
to be noise corrupted versions ofPPP . If a set of sub-tensors are
similar to each another, denoising can be performed by lever-
aging this fact and filter them jointly. Based on this, we group
together similar sub-tensors and organize them as a higher or-
der tensor YYY = {PPPi|i = 1, . . . ,K}.

Now we consider how the filtering of YYY can be performed.
The concept of jointly filtering multiple patches has been im-
plemented in the BM3D algorithm but with fixed bases. How-
ever, we extend this concept to learn the spatially adaptive
bases. By assuming that the group of similar sub-tensors were
generated from a same clean sub-tensor, we can easily iden-
tify the low-rank properties ofYYY . Therefore, the low-rank ten-

sor factorization can be employed to learn the bases indepen-
dently for each group of similar sub-tensors. One straightfor-
ward way is to apply HOSVD to solve this problem. However,
the truncated HOSVD method requires that the parameter for
thresholding the transform coefficients must be known in ad-
vance, which results in difficulties in the practical applica-
tions. Hence, in this paper, we propose a Bayesian tensor fac-
torization based on CP model and the low-rank assumption.
In addition, we assume that noise variance is unknown and
must be learned from noisy data automatically. After leaning
the latent multiliear factor matrices from Bayesian CP factor-
ization, we can reconstruct the group of similar sub-tensors
as the denoised results for YYY . Then, all the sub-tensors in YYY
are jointly denoised. This procedure will be repeated for each
reference sub-tensor PPPn in a sliding window fashion and the
denoised sub-tensors are averaged to obtain the denoised re-
sult for tensor TTT .

3.2 Bayesian Low-Rank Tensor Factorization
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We introduce the Bayesian CP factorization for jointly filter-
ing of multiple sub-tensors in YYY . Without loss of generality,
let YYY be an N th-order tensor of size I1 × I2 × · · · × IN .
We assume YYY is a noisy observation of true tensor XXX , that is,
YYY = XXX + εεε, where the noise term is assumed to be an i.i.d.
Gaussian distribution, i.e., εεε ∼

∏
i1,...,iN

NNN (0, τ−1), and the
latent tensorXXX is generated by a CP model, defined by

XXX =
R∑
r=1

a(1)
r ◦ · · · ◦ a(N)

r = [[A(1), . . . ,A(N)]]. (12)

where ◦ denotes the outer product of vectors and [[· · · ]] is
a shorthand notation, also termed as the Kruskal operator.
CP factorization can be interpreted as a sum of R rank-one
tensors, and the smallest integer R is defined as CP rank.
{A(n)}Nn=1 denote a group of factor matrices. For clarity, we
denote mode-n factor matrix A(n) ∈ RIn×R by row-wise or
column-wise vectors (13)

A(n) =
[
a

(n)
1 , . . . ,a

(n)
in
, . . . ,a

(n)
In

]T
=
[
a

(n)
·1 , . . . ,a

(n)
·r , . . . ,a

(n)
·R

]
.

(13)

The likelihood of CP model can be factorized over tensor el-
ements, which is given by (14)

YYYi1i2...iN
∣∣∣ {A(n)}, τ ∼

NNN
(〈

a
(1)
i1
,a

(2)
i2
, · · · ,a(N)

iN

〉
, τ−1

)
.

(14)

where τ is the noise precision, and
〈
a

(1)
i1
,a

(2)
i2
, · · · ,a(N)

iN

〉
is a

generalized inner-product among N vectors. The observation
model in (14) shows that Yi1···iN is represented by a group of
R-dimensional latent vectors

{
a

(n)
in

∣∣n = 1, . . . , N
}

, which
results in that the multilinear interactions can be considered.
As compared to matrix factorization, tensor factorization al-
lows us to model the multilinear structure by the inner product
of N ≥ 3 vectors.

The number of latent components, i.e., RankCP (XXX ) = R, is
a tuning parameter whose selection is very difficult in prac-
tical applications. To avoid manually adjusting this parame-
ter, we aim to develop an automatic model selection, which
can find the rank of the latent tensor XXX solely from the ob-
served dataYYY . Taking into account the low-rank property, the
number of latent components is desired to be minimal. There-
fore, we employ specific sparsity-inducing priors over latent
components and control the variance of each component by
individual hyperparameters. Through Bayesian inference, the
variance of unnecessary components can be reduced to zero.
This strategy is related to automatic relevance determination
(ARD) or sparse Bayesian learning. The difference lie in that
our method employs a group of sparsity-inducing priors over
each mode-n factors and the hyperparameters are common

among these priors. Hence, the low-rank constraint can be
imposed jointly to the factor matrices.

For each mode-n factor matrix, we specify a prior distribu-
tion that is governed by hyperparameters λ = [λ1, . . . , λR],
among which λr corresponds to rth component. The prior
distribution over latent factors is thus given by

a
(n)
in

∣∣ λ ∼NNN (a
(n)
in

∣∣ 0, Λ−1
)
,

∀n ∈ [1, N ], ∀in ∈ [1, In].
(15)

where Λ = diag(λ) is a diagonal matrix that is also called
the precision matrix. This precision matrix is jointly shared
by all latent factor matrices. Since the precision parameters λ
is unknown, and need to be learned automatically, we employ
the hyperprior over λ, given by

λr ∼ Ga(λr|cr0, dr0), ∀r ∈ [1, R]. (16)

where the Gamma distribution is given by Ga(x|a, b) =
baxa−1e−bx

Γ(a) . The number of components (i.e., R) is usually
initialized to be a maximum possible value. By employing a
Bayesian inference framework, the effective number of com-
ponents can be inferred automatically solely from observed
data. Because the hyperparameters of sparsity priors over all
factor matrices are common, the same number of components
can be obtained for each factor matrix, resulting in that the
minimum number of rank-one terms can be learned. Hence,
the CP rank of the tensor can be effectively inferred while
performing low-rank tensor factorization.

Since the noise variance is assumed to be unknown, we can
also specify a hyperprior over the noise parameter τ , which is
given by (17)

τ ∼ Ga(τ |a0, b0). (17)

To simplify the notations, we collect and denote all unknown
variables by Θ = {A(1), . . . ,A(N),λ, τ}. Finally, the joint
distribution of Bayesian low-rank tensor factorization model
can be written as (18)

p(YYY,Θ) =ρ
(
YYY
∣∣∣ {A(n)}Nn=1, τ

)
N∏
n=1

ρ
(
A(n)

∣∣∣ λp(λ)p(τ)
)
.

(18)

Generally, maximum a posteriori (MAP) estimation of Θ can
be obtained by optimizing. In contrast to the MAP estimation,
we aim to develop a Bayesian inference method to infer the
full posterior distribution of unknown variables in Θ, which
is computed by (19)

p(Θ|YYY) =
p(Θ,YYY)∫
p(Θ,YYY) dΘ

. (19)
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3.3 Bayesian Model Inference

Since the exact Bayesian inference in is obviously analyt-
ically intractable, we must resort to the approximate infer-
ence framework. In this section, we employ the variational
Bayesian (VB) inference strategy to perform model inference
for tensor factorization model.

We assume that q(Θ) is an approximation of the true posterior
distribution p(Θ|YYY), which is optimized by KL divergence
between them, which can be shown to be

KL
(
q(Θ)

∣∣∣∣∣∣ p(Θ | YYY)
)

=

∫
q(Θ) ln

{
q(Θ)

p(Θ|YYY)

}
dΘ

= ln p(YYY)−
∫
q(Θ) ln

{
p(YYY,Θ)

q(Θ)

}
dΘ.

(20)

where ln p(YYY) denotes the marginal likelihood, and LLL(q) =∫
q(Θ) ln

{
p(YYY,Θ)
q(Θ)

}
dΘ can be defined as its lower bound.

Therefore, instead of minimizing the KL divergence directly,
we can maximize the lower bound alternatively due to the fact
that the model evidence is a constant and not related to any
unknown variables.

By employing the mean-field approximation, we assume that
the variational distribution can be factorized as (21)

q(Θ) = qλ(λ)qτ (τ)
N∏
n=1

qn

(
A(n)

)
. (21)

Therefore, it can been shown that the posterior distribution of
factor matrices is also a Gaussian distribution and the distri-
butions corresponding to each row are independent, which is
written as

qn(A(n)) =

In∏
in=1

NNN
(
a

(n)
in

∣∣∣ ã(n)
in

V(n), ∀n ∈ [1, N ]
)
.

(22)

where the variational parameters are computed by

Ã(n) = Eq[τ ]YYY(n)Eq
[
A(\n)

]
V(n),

V(n) =
(
Eq[τ ]Eq

[
A(\n)TA(\n)

]
+ Eq[Λ]

)−1

,
(23)

where YYY(n) denotes the mode-n matricization of YYY and

A(\n) =
⊙
k 6=n

A(k), (24)

where the size of
⊙

k 6=n A(k) is
∏
k 6=n Ik × R. Thus,

Eq[A(\n)TA(\n)] denotes the expectation of covariance ma-
trix, while the covariance matrix corresponds to the Khatri-
Rao product of all factor matrices except the nth-mode.

Therefore, the parameters of posterior distribution over factor
matrices can be approximated by, which can be also used to
compute the posterior moments, such as ∀n,∀in, Eq

[
A(n)

]
,

and Eq
[
A(n)A(n)T

]
,Eq
[
A(n)TA(n)

]
.

For the inference of λ, we can derive that the posterior distri-
bution over λr,∀r ∈ [1, R] can be obtained by

qλ(λ) =
R∏
r=1

Ga(λr|crM , drM ), (25)

where the variational parameters are computed by

crM = cr0 +
1

2

N∑
n=1

In,

drM = dr0 +
1

2

N∑
n=1

Eq
[
a

(n)T
·r a

(n)
·r

]
.

(26)

The expectation term in above equations denotes the norm of
the rth component from mode-n matrix, which can be easily
computed by

Eq
[
a

(n)T
·r a

(n)
·r

]
= ã

(n)T
·r ã

(n)
·r + In

(
V(n)

)
rr
. (27)

For inference of hyperparameter τ , it can be derived that the
variational posterior is a Gamma distribution, given by

qτ (τ) = Ga(τ |aM , bM ), (28)

the variational parameters of the posterior distribution are
computed by

aM = a0 +
1

2

∏
n

In,

bM = b0 +
1

2
Eq
[∣∣∣∣∣∣ YYY − [[A(1), . . . ,A(N)]]

∣∣∣∣∣∣2
F

] (29)

3.4 Initialization of model parameters

In this probabilistic tensor decomposition model, it is im-
portant to initialize the hyperparameters. Specifically, c0,d0,
a0, b0 are set to 10−6 yielding a noninformative prior. The
mode-n factor matrices {A(n)}Nn=1 can be either randomly
drawn from N (0, I) or initialized by SVD method, i.e.,

A(n) = U(n)Σ(n)
1
2 , where U(n) is the singular vectors and

Σ(n) is the singular values matrix.

4. Experiments Results

4.1 Image Denoising
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We use color image (Lena, Peppers, Barbara) denoising to
evaluate our method BCPF. For the noise modelNNN (0, σ), we
select σ ∈ {0.4, 0.8, 1.2}. In the experiment, we use images
of size 256 × 256 × 3 consisting of R, G, B channels. The
method performance is evaluated by PSNR which is defined
by 10 log10(Max2

I/MSE) (MaxI is maximum possible
pixel value of the image, and MSE denotes the mean squared
errors).

The result are shown in Table 1 and the noisy and denoised
images are shown in Fig. 4. The size of sub-tensors is selected
to be 4×4×3 and the maximum number of similar sub-tensors
is set to 30. We observe that our method can obtain high
quality of denoised images when noise level is low, especially,
it can obtain a relatively good quality even when the noise
level is extremely high.

Table 1: The denoising performances evaluated by PSNR for
Lena, Peppers, Barbara images under three different noise
levels.

Lena Noise standard deviation

Methods 0.4 0.8 1.2

BCPF 32.90 32.39 31.72

HOSVD 30.70 30.54 30.46

Peppers Noise standard deviation

Methods 0.4 0.8 1.2

BCPF 31.37 30.89 30.77

HOSVD 30.73 30.49 29.84

Barbara Noise standard deviation

Methods 0.4 0.8 1.2

BCPF 30.32 30.89 30.78

HOSVD 30.55 30.54 30.36

4.2 MRI Denoising

Magnetic resonance imaging (MRI) is a medical imag-
ing which is widely employed in the clinical diagnosis
[43]. Because of the movements of the subject or elec-
tronic interference, MRI data always contain noise, the
denoising of MRI data is thus important for the diagnosis
quality. In this experiment, we use the public MRI data
(http://brainweb.bic.mni.mcgill.ca/brainweb/), the size of
MRI data is 181 × 217 × 165, and we use the sub-tensor
size in 4 × 4 × 4 and the maximum number of similar sub-
tensors is set to 30. The result are shown in Table 2 and the

noisy and denoised images are shown in Fig. 5.

Table 2: The denoising performances evaluated by PSNR for
MRI denoising under three different noise levels (0.05, 0.1,
0.15).

Noise standard deviation

Methods 0.05 0.10 0.15

BCPF 35.97 33.81 33.00

HOSVD 36.64 33.71 32.86

5. Conclusion

In this paper, we propose a Bayesian tensor factorization
based denoising framework and apply it to image and MRI
denoising tasks. In contrast to most existing denoising meth-
ods, we use sub-tensors instead of 2D patches. Moreover, the
transform bases of a group of sub-tensors can be learned by
the probabilistic CP factorization with a low-rank assump-
tion. As compared to other methods, our method enables
us to infer automatically the noise variance, which indicates
that our method is more practical. Experimental results show
that our method can outperform HOSVD based denoising
method.
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