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Abstract 

The study deals with the parallelization of finite element based 
Navier-Stokes codes using domain decomposition and state-of-
art sparse direct solvers. There has been significant improvement 
in the performance of sparse direct solvers. Parallel sparse direct 
solvers are not found to exhibit good scalability. Hence, the 
parallelization of sparse direct solvers is done using domain 
decomposition techniques. A highly efficient sparse direct solver 
PARDISO is used in this study. The scalability of both Newton 
and modified Newton algorithms are tested. 
Key words: finite element, PARDISO solver, distributed 
computing, domain decomposition, Newton method. 

1. Introduction 

Three dimensional finite element problems pose severe 
limitations in terms of computational time and memory 
requirement. The choice of a direct solver or an iterative 
solver for large problems is not trivial. Iterative solvers are 
considered to be highly memory efficient, especially for 
larger problems. However, it is observed that the choice of 
an iterative solver is highly problem specific. For 
problems involving highly ill conditioned matrices, 
iterative solvers do not perform well. Direct solvers on the 
other hand are considered to be very robust and problem 
independent. However, they are seriously limited by large 
memory requirements. Memory issue for direct solvers is 
being addressed through several ways. The advent of 
multifrontal solvers [1] coupled with highly efficient 
ordering techniques has greatly increased the 
computational efficiency and reduced the memory 
requirement for direct solvers. The superior performance 
of Multifrontal solvers has been successfully demonstrated 
both in the context of finite volume problems [2-4], finite 
element problems [5-6] and in power system simulations 

[7-9]. For three dimensional problems the memory 
requirement is still a limitation for larger problems. To 
circumvent this problem, a 64-bit machine with a larger 
RAM can be used for computation, an out-of-core sparse 
direct solvers can be used which have the capability of 
storing the factors on the disk during factorization or the 
direct solvers can be used in a distributed computing 
environment. This paper specifically deals with the 
application of sparse direct solvers in a distributed 
computing environment.  
Recently a parallel direct solver, MUltifrontal Massively 
Parallel Solver (MUMPS) [10-12] in a distributed 
environment [6] has been studied for both two 
dimensional and three dimensional problems. It has been 
reported that by using MUMPS solver, larger problems 
can be solved in a parallel environment as the memory is 
distributed amongst the different processors. However it 
has also been reported that the scalability of MUMPS 
solver [6] is not very high. In order to obtain good 
scalability, instead of using a parallel sparse direct solver, 
the problem itself is split amongst the different processors 
using domain decomposition [13] and a highly efficient 
sparse direct solver is used in each of subdomain 
problems. An efficient sparse direct solver PARDISO [14-
16] is being used in this study.   
Laminar flow through a rectangular channel has been 
chosen as a benchmark problem for studying the 
scalability of domain decomposition techniques in a 
distributed environment. The system of non-linear 
equations obtained from the discretization of Navier-
Stokes equations is solved using Newton's method. The 
system of linear equations obtained during each Newton 
iteration is solved in parallel using additive Schwarz 
domain decomposition algorithm [13]. The grid is divided 
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into many overlapping subdomains (equal to the number 
of processors being used) and each processor solves its 
local subdomain problem using an efficient sparse direct 
solver. Figure 1 shows a typical overlapping subdomain 
for additive Schwarz algorithm. In additive Schwarz 
algorithm, the values at the interfaces are updated only 
after a complete cycle of subdomain solution is computed.  
In using direct solvers, factorization of the left hand side 
matrix is the most time consuming step. To avoid repeated 
factorization in the subdomains, advantage is taken of the 
resolution facility of the direct solvers (i.e. the previously 
computed LU factors are reused in the solve phase). A 
modified version of the additive Schwarz algorithm is also 
proposed which is computationally very efficient.  
 

 
Figure 1: Typical overlapping subdomain division for additive 
Schwarz algorithm 

2. Mathematical Formulation 

   The governing equations for laminar flow through a 
three-dimensional rectangular duct [6] are presented below 
in the non-dimensional form. In three-dimensional 
calculations, instead of the primitive u,v,w formulation, 
penalty approach is used to reduce the memory 
requirements. 
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(4) 
where , ,u v w  are the x, y and z components of velocity,  
the bulk flow Reynolds number, Re=ρU0D/µ, U0 being the 
inlet velocity, ρ the density, L the channel length,  µ is the 
dynamic viscosity and λ is the penalty parameter.  
Velocities are non-dimensionalized with respect to U0. 
The boundary conditions are prescribed as follows: 
(1)  Along the channel inlet: 

1; 0; 0.u v w= = =     (5) 

(2)  Along the channel exit: 

0; 0; 0.u v w
x x x
∂ ∂ ∂

= = =
∂ ∂ ∂

   (6) 

(3) Along the walls: 
0;   0;   0.u v w= = =     (7) 

3. Newton’s Algorithm 

   The above set of differential equations (Eq. 1-4) is 
discretized using Galerkin finite element formulation 
(GFEM). This results in a set of non-linear equations 
which is solved using Newton’s iterative algorithm. 
Let ( )kX

%
 be the available vector of field unknowns for the 

(k+1)th iteration.  Then the update is obtained as 
( ) ( ) ( )1k k kX X Xαδ+ = +

% % %
,    (8) 

where α  is an under-relaxation factor, and ( )kXδ
%

 is the 
correction vector obtained by solving the linearized 
system 
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and { }( )kF  is the residual vector. Newton’s iteration is 

continued till the infinity norm of the correction vector 
( )kXδ

%
 converges to a prescribed tolerance of 610− .   

  

4. Domain Decomposition 

The solution of linear equations (Eq. 9) resulting during 
each Newton step is the most time consuming time step. It 
is both computationally expensive and memory 
consuming. To handle the computational burden, Eq. (9) is 
solved in a parallel distributed environment using additive 
Schwarz domain decomposition technique.  The domain is 
split into approximately equal size (similar to Figure 1) 
subdomains (equal to the number of processors) and 
distributed amongst the different processors. Each 
processor solves it own subdomain problem. The 
partitioning of the domain into subdomains is done by 
using METIS [17] partitioning routine. The additive 
Schwarz procedure [13] is similar to the block-Jacobi 
iteration and consists of updating all the block components 
from the same residual. The basic additive Schwarz 
iteration is given below in brief. 
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Here Ri is the restriction operator, which restricts a given 
vector of global domain Ω to a local subdomain Ωi. Ri

T  is 
a prolongation operator which takes a variable from local 
subdomain Ωi to global domain Ω.  Each instance of the 
loop redefines different components of the new 
approximation and there is no data dependency between 
the subproblems involved in the loop. Each subproblem is 
solved on a different processor. Instead of solving the 
whole problem (eq. 9) on a single processor, the problem 
is divided into subdomain problems (step 3 of eq. 11) 
which each processor can solve independently. Each 
subdomain problem is solved using an efficient sparse 
direct solver, PARDISO. α is the under-relaxation factor. 
The value of under-relaxation factor is chosen as 1 for 
updating all variables at the interior nodes of the 
subdomain and 0.6 for updating the variables at the 
subdomain interface nodes. The system is solved using 
two iteration loops. The first in the outer Newton iterative 
loop and the second is the inner iterative loop for solving 
the system of linear equations (Eq. 9) using additive 
Schwarz algorithm (Eq. 11). This algorithm is being 

referred in this paper as Newton based additive Schwarz 
algorithm (NAS). 
To improve the computational efficiency of the NAS 
algorithm, a modified Newton based additive Schwarz 
algorithm (MNAS) is proposed. The algorithm is 
presented below. 
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In essence, it solves the same system of equations as the 
NAS algorithm, since A and b are the same. Consequently 
the quadratic Newton convergence is retained. The 
difference is that the step 3 of additive Schwarz iterative 
loop uses a different left hand side matrix. The 
subdomains do not update the left hand side matrix during 
Newton iterations. It uses the same matrix that was 
generated during the first Newton iteration. The advantage 
with that is that the LU factors are computed (most time 
consuming step) only once and are repeatedly reused for 
all the inner and the outer iterative loops. This will 
increase the number of inner additive Schwarz iterations 
but nevertheless saves computational time. 
 

5. PARDISO Solver 

   PARDISO package (part of Intel MKL library) is a 
high-performance, robust, memory efficient and easy to 
use software for solving large sparse symmetric and 
unsymmetric linear systems. The solver uses a 
combination of left- and right-looking Level-3 BLAS 
supernode techniques. PARDISO uses a Level-3 BLAS 
update and pipelining with a combination of left- and 
right-looking supernode techniques [14-16]. Unsymmetric 
permutation of rows is used to place large matrix entries 
on the diagonal. Complete block diagonal supernode 
pivoting allows dynamical interchanges of columns and 
rows during the factorization process. The level-3 BLAS 
efficiency is retained and an advanced two-level left–right 
looking scheduling scheme is used to achieve higher 
efficiency. The goal is to preprocess the coefficient matrix 
A so as to obtain an equivalent system with a matrix that is 
better scaled and more diagonally dominant. This 
preprocessing reduces the need for partial pivoting, 
thereby speeding up the factorization process. METIS and 
Minimum degree ordering options are available within the 
solver.  
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6. Numerical Implementation 

 The solution of non-linear system of equations involves 
two iterative loops. One is the outer Newton's iterative 
loop (outer loop) and the other is the inner additive 
Schwarz domain decomposition loop (inner loop) to solve 
the linear system of equations (Eq. 9) simultaneously on 
different processors. Each subdomain problem in the inner 
loop is solved by a direct solver. Since the left hand matrix 
is not updated during the inner iterations, the resolution 
facility of direct solvers can be used to skip the 
factorization phase (i.e. only the solve phase is invoked). 
The inner iterations are continued till the error norm is 
within tolerance. In the outer iterative loop for Newton, 
the Jacobian is updated. Hence the factorization phase is 
invoked in each of the subdomain during the first inner 
iteration of all outer iterations. In the case of modified 
Newton, the Jacobian is not updated during the outer 
iterations. Consequently, the subdomains need not invoke 
the factorization phase during the first inner iteration loop 
of all the outer iterations. In summary, for the modified 
Newton algorithm, each of the subdomains perform LU 
factorization only once and all other subsequent calls to 
the solver invokes only the solve phase. In the case of 
Newton algorithm, each of the subdomains invokes the LU 
factorization during the first inner iteration of all the outer 
iterations. The performance of both Newton and modified 
Newton are examined in this paper. All the simulations are 
carried out on Ohio Supercomputing Cluster “Glenn”. It is 
a cluster of AMD opteron multi-core, 2.6 GHZ, 8GB 
RAM machines. 

7. Results and Discussion 

   Preliminary experiments have shown that METIS 
ordering performs better in terms of computational time 
and memory requirements. Hence METIS is used for 
ordering the entries of the matrix. Table 1 shows the 
comparison of CPU times and memory requirement for 
solving a 100x20x20 mesh on two processors for 
minimum degree (MD) and METIS ordering. In table 1, 
dof refers to the number of degrees of freedom (or the 
total number of equations). Results indicate that METIS 
performs much better than the minimum degree algorithm. 
Based on this observation, METIS ordering is used for all 
subsequent calculations.  

Table 1 Performance of different orderings for PARDISO solver for a 
100x20x20 mesh on 2 processors 

Ordering #dof's 
CPU time 

(sec) 
Memory 

(GB) 

MD 44541 602 5.3 

METIS 44541 178 1.6 
 

Figure 2 shows the performance of NAS and NMAS 
algorithms on 2 processors for a 100x20x20 grid. The 
convergence rates of both the algorithms show Newton 
quadratic convergence. The residual norm is exactly 
similar for both the algorithms. The Newton based 
additive Schwarz algorithm takes 178 seconds and 
Modified Newton based additive Schwarz algorithm takes 
87 seconds for full convergence. The time taken for the 
first Newton iteration is the same for both the algorithms 
but NMAS algorithms takes much lesser time for the 
subsequent iterations.  
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Figure 2: Comparison of CPU time and residual norm for 
NAS and NMAS algorithms for 100x20x20 grid on 2 processors. 

 
 

Table 2 shows the performance of NAS and MNAS 
algorithms as a function of the number of processors.  
Excellent scalability is observed both for NAS and MNAS 
algorithms. For increase of processors from 2 to 12, the 
computational time reduced by a factor of 12.7 for NAS 
and a factor of 7.9 for MNAS algorithm. Figure 3 shows 
the pictorial representation of the scalability performance 
of the NAS and MNAS algorithms. Up to 8 processors, 
the scalability is good and beyond that the scalability 
decreases. For larger grids, it may be possible to obtain 
good scalability even beyond 8 processors. Note that the 
memory requirement for both the NAS and MNAS 
algorithms are exactly the same, since the size of the LU 
factors remain the same. It is observed that by increasing 
the number of processors from 2 to 12, the memory 
requirement on a single processor reduced by a factor of 
11. Hence domain decomposition techniques are highly 
memory efficient. Unlike the use of a distributed parallel 
direct solver like MUMPS [6], the scalability of domain 
decomposition method is quite high.  By using distributed 
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computing using domain decomposition algorithm, 
relatively much larger problems can be solved. The 
memory limitation of direct solvers can be well addressed 
using domain decomposition technique by running the 
problem on a large number of processors. 
 

Table 2: Comparison of the performance of NAS and MNAS for a 
100x20x20 mesh  

# of 
processors 

NAS 
CPU 
time 
(sec) 

MNAS 
CPU 
time 
(sec) 

max 
memory 
on one 

processor 
(MB) 

2 178 87 685 
4 65.8 35.1 282 
6 41 22 157 
8 26 15 116 

10 19 12 88 
12 14 11 62 
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Figure 3: Scalability performance of NAS and MNAS on a 
100x20x20 mesh 

8. Conclusions 

Distributed parallel computing of finite element Navier-
Stokes code using additive Schwarz algorithm is 
demonstrated. An efficient sparse direct solver PARDISO 
is used for solving the subdomain problems. Two 
algorithms NAS and MNAS have been explored. It is 
observed that the MNAS algorithm can lead to significant 
savings in computational time. The additive Schwarz 
algorithm is found to scale well both in terms of 
computational time and memory requirement. It could of 
great value in large scale three dimensional computations.  
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