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Abstract 

Harmony Search (HS) algorithm, a relatively recent meta-
heuristic optimization algorithm based on the music 
improvisation process of musicians, is applied to one of today’s 
most appealing problems in the field of Computer Science, Tetris. 
Harmony Search algorithm was used as the underlying 
optimization algorithm to facilitate the learning process of an 
intelligent agent whose objective is to play the game of Tetris in 
the most optimal way possible, that is, to clear as many rows as 
possible. The application of Harmony Search algorithm to Tetris 
is a good illustration of the involvement of optimization process 
to decision-making problems. Experiment results show that 
Harmony Search algorithm found the best possible solution for 
the problem at hand given a random sequence of Tetrominos. 
Keywords: Harmony Search algorithm, Tetris, Intelligent Agent, 
Artificial Intelligence 

1. Introduction 

Problems and challenges have always been part of human 
life and of the human civilization itself. They define the 
difference between what is currently in existence and of 
what could be, after a goal has been achieved. In 
Computer Science, researchers are concerned with the 
search for solutions to computational problems and these 
problems may be categorized into two main classes: P-
problems and NP-problems.  
 
P-problems, otherwise known as Polynomial-time 
problems are problems whose solutions may easily be 
identified, that is, the procedure for finding the solution is 
already known. On the other hand, NP-problems are 
problems whose solutions have no proven optimal way of 
acquisition. NP-problems are also called “I know it when I 
see it problems” because of the fact that the validity of 
their solution may only be verified when tried and 
evaluated [4,5]. A good example of such problem is the 
creation of an intelligent agent for Tetris [5]. 
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Tetris is a puzzle computer game originally created by 
Alexey Pajitnov [6]. An intelligent agent for Tetris is a 
program whose goal is to be able to play the game in the 
most optimal way possible. In such a case, we only know 

the quality of the agent by assessing its performance when 
it has already played the game. To deal with such 
problems, where too little detail is known on the nature of 
a problem’s solution, computer scientists use a different 
approach in the form of meta-heuristic algorithms. 
 
Meta-heuristic algorithms are a primary sub-field of a 
larger class of algorithms and techniques called stochastic 
optimization [4]. They are called stochastic optimization 
because they employ some degree of randomness in 
searching for a solution. In other words, they are solving 
problems through a series of intelligent guesses. The 
primary ideas for achieving the series of intelligent 
guesses of existing meta-heuristic algorithms are driven by 
natural occurrences like biological processes and animal 
behaviors. 
  
The popularity of Tetris has intrigued mathematicians and 
computer scientists to study its non-trivial nature and 
reveal its NP-Complete characteristics [5] triggering the 
motivation for the creation of an intelligent agent. A Tetris 
intelligent agent is an Artificial Intelligence (AI) program 
which plays or simulates the game with the goal of 
clearing as many rows as possible. In fact, in the past years 
scientists have successfully created intelligent agents using 
Evolutionary Algorithms [1,2] and Ant Colony 
Optimization [3]. 
 
Harmony Search (HS) algorithm is a meta-heuristic 
algorithm developed in 2001 by Geem et al [7]. It is 
modeled after the musical improvisation process, wherein 
a band of musicians continuously tries to create better 
harmony. This algorithm and its variants [8-9] have been 
applied to a wide array of real-life optimization problems 
such as structural design, ecological conservation, 
industrial operation and musical composition [7], [10-13]. 
The HS algorithm is a powerful optimization tool because 
of its ability to discover the high performance regions of 
the solution space in a reasonable amount of time. In 
addition, other characteristics enable the HS algorithm to 
increase its flexibility and produce better solutions, and 
these are [14]: 

1. HS imposes fewer mathematical requirements. 
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2. HS uses stochastic random searches thus any 
derivative information is unnecessary. 

3. HS creates a new solution vector after 
considering all of the existing solution vectors. 

 
Since the Harmony Search algorithm has demonstrated its 
strength on various fields of discipline and has been 
successfully applied to many problem domains, this study 
explores the feasibility of using the Harmony Search 
algorithm in decision-making optimization problems, that 
is, to use the HS algorithm as the underlying optimization 
algorithm in facilitating the learning process of the Tetris 
intelligent agent. 
 
The paper is organized as follows. A brief description 
about Tetris is presented in Section 2. Section 3 introduces 
the Harmony Search algorithm followed by a discussion 
on the proposed HS-based Tetris intelligent agent in 
Section 4. The experimental results are shown in Section 5 
while Section 6 contains the conclusion. 

2. The Tetris Game 

Tetris is a game originally invented and programmed by 
Alexey Pajitnov in June 6, 1984 while working in 
Dorodnicyn Computing Center of the Academy of Science 
of the USSR in Moscow [6]. It is one of the most popular 
and most successful games to hit the market. In fact, Tetris’ 
success as a computer game led to the creation of many 
other variants, sporting slightly different game play. The 
Tetris game and its variants are basically composed of two 
main components, the game pieces called Tetrominos and 
the game board. 
 
The standard Tetris game board has a dimension of 10 x 
20 and there are seven Tetrominos or game pieces, as 
shown in Figure 1and these are O, J, L, I, S, T and Z. The 
game pieces differ significantly by the maximum number 
of rows that they are able to clear simultaneously. In fact, a 
simple analysis of the game pieces reveals that all are 
capable of clearing one and two rows. But only pieces “I”, 
“J” and “L” are capable of clearing three rows and 
ultimately, only the “I” Tetromino is capable of clearing 
four rows (called “Tetris”)[1]. 
 
 
 
 
 
 
 

Fig. 1 Tetris Game Pieces-Tetrominos 
 
In Tetris, Tetrominos fall from the top of the game board 
one at a time and aside from the current Tetromino being 

manipulated, an advance view of the next piece is 
provided to the player. This is to enable the player to 
manipulate and position the current Tetromino in the game 
board such that one or more gapless row(s) of block is 
created. When such a scenario happens, the gapless row is 
cleared and all existing blocks above that row descend n 
units, where n is the number of rows cleared which is 
between 1 and 4. In addition, manipulation of a Tetromino 
can only be performed in two ways, either by doing a 90 
degree rotation or a sideways movement while the 
Tetromino has not yet reached the bottom of the game 
board, at which case it fixes itself into position [1]. 
 
However, unlike most games, Tetris does not have a win 
condition, so the game continues until the stack of blocks 
in the game board disallows the entry of succeeding 
Tetrominos. This means that the only goal in the game is 
to be able to clear as many rows as possible for better and 
longer game play. As a result, staying in the game solely 
depends upon the number of rows cleared. 

3. The Harmony Search (HS) Algorithm 

Computer scientists have found a significant relationship 
between music and the process of looking for an optimal 
solution. This interesting connection led to the creation of 
the Harmony Search algorithm. It is a new kind of meta-
heuristic algorithm mimicking a musicians’ approach to 
finding harmony while playing music. When musicians try 
to create music, they may use one or a combination of the 
three possible methods for musical improvisation which 
are as follows: (1) playing the original piece, (2) playing in 
a way similar to the original piece, and (3) creating a piece 
through random notes.  
 
In 2001, Geem et al [7] saw the similarities between the 
music improvisation processes and finding an optimal 
solution to hard problems and formalized the three 
methods as parts of the new optimization algorithm, the 
Harmony Search algorithm (HS); (1) harmony memory 
consideration (2) pitch adjustment and (3) randomization. 
These three methods are the main parameters of the 
algorithm and play a vital role in the optimization process 
[7], [10-13]. 
 
For musicians, one of the ways of producing good music is 
considering existing compositions and playing them as 
they are. In the Harmony Search algorithm, this is also the 
case, the use of harmony memory is vital as it ensures that 
potential solutions are considered as elements of the new 
solution vector. The second way of coming up with good 
music is by playing something similar relative to an 
existing composition, in HS this is called the pitch 
adjustment mechanism and may be referred to as the 
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exploitation mechanism in the Harmony Search algorithm; 
it is responsible for generating slightly varying solution 
from existing solutions. It is comparable to the mutation 
mechanism in genetic algorithms. Randomization, the last 
of the methods ensures that the search for solution is not 
isolated to the local optima. It makes the solution set more 
diverse by not limiting the search for solution in a 
confined area and is referred to as the exploration 
mechanism of the Harmony Search algorithm [7], [10-13]. 
 
So, in the Harmony Search algorithm, each musical 
instrument is represented as a decision variable. The value 
of each decision variable is set in a similar manner that a 
musician plays his instrument, contributing to the overall 
quality of the music created, thus the name Harmony 
Search. The pseudo-code of the Harmony Search 
algorithm as presented, shows that the optimization 
process is done on a per decision variable basis for each 
harmony (solution) in the harmony memory. 
 
Furthermore, based on the pseudo-code and as shown in 
Figure 2, the optimization process of the Harmony Search 
algorithm may be described in three main steps: 

1. Initialization: Program parameters are defined 
and the harmony memory is initialized by filling 
it up with random solutions; each harmony is 
evaluated using an evaluation or objective 
function. 

2. Harmony improvisation: A new solution is 
created. The three methods of the Harmony 
Search algorithm are used to decide on the value 
that will be assigned to each decision variable in 
the solution. 

a. Creation of a new solution: A new 
solution is created either (1) randomly 
with a probability of 1 - raccept or 
alternatively (2) by copying an existing 
solution in the harmony memory, with a 
probability equal to raccept

b. Adjustment: With a probability of r
.  

pa

c. Using the objective function, the new 
harmony is evaluated. 

, 
the elements of the new harmony are 
then modified. 

3. Selection: When a terminating condition is met, 
the best harmony (solution) in the harmony 
memory is selected. 

 
Also, there are several parameters that have to be defined 
before the start of the optimization process. 

(1) Maximum number of cycles or iterations – is 
the basis for terminating the optimization process. 

(2) Harmony memory size – refers to the number of 
harmonies that will be stored in the harmony 
memory. 

(3) Number of decision variables – each harmony is 
composed of several decision variables. 

(4) Harmony Memory Consideration rate (raccept

(5) Pitch Adjustment rate (r

) 
– determines the rate at which decision variables 
in the harmony are considered as elements of the 
new harmony that will be created. 

pa

 
Begin 
  Define objective function f(x), x = (x

) - defines the 
probability for adjusting the values of decision 
variables copied from an existing harmony in the 
harmony memory by adding a certain value. 

1, x2… xd) T 

  Define harmony memory accepting rate (raccept) 
  Define pitch adjusting rate (rpa) and other parameters 
  Generate Harmony Memory (HM) with random harmonies 
       While (t < max number of iterations) 
           While (i <= number of variables) 
                  If(rand < raccept)  
             Choose a value from HM for the variable i 
                            If(rand < rpa

 
Fig. 2 The Harmony Search Optimization Process 

4. HS-based Tetris Intelligent Agent 

When a human first plays a Tetris game, he/she may play 
the game with no more than the goal of clearing as many 
rows as possible. However, as the game progresses or as 
he/she continues to play the game repeatedly, it becomes 
obvious that like every decision-making process in life, in 
choosing the best move for a game piece in Tetris, there 
are several factors to put into consideration for the 
maximization of the number of rows cleared.  
 

)  
                Adjust the value by adding certain amount 
             End if 
                 Else  
                           Choose a Random Value 
                 End if 
          End while 
          Accept the new harmony (solution) if better 
       End while 
       Find current best solution 
End 
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Through the efforts of previous researches [1-3], [5], these 
factors were transformed into forms that can be 
implemented in computers and are called feature functions. 
Also, similar to the decision-making process in life, we 
assign weights to each of these factors to symbolize its 
significance or bearing to the final decision. Ultimately, 
the best move for a current piece is chosen using a linear 
(summation) combination of these feature functions with 
their corresponding weights, called the state-evaluation 
function, as shown in Eq. (1). 
 

   (1) 
 
where s is the state (board configuration), wi represents 
each of the weights of the ith feature function fi(s) and fi(s) 
is a function that maps a state (a board configuration) to a 
real value. The goal of the optimization process is to be 
able to find an optimal set of weights that will result in the 
most number of cleared rows.  
 
The 19 feature functions identified and used in this 
research are as follows: (1) pile height, (2) holes, (3) 
connected holes, (4) removed rows, (5) altitude difference, 
(6) maximum well depth, (7) sum of all wells, (8) landing 
height, (9) blocks, (10) weighted blocks, (11) row 
transitions, (12) column transitions, (13) highest hole, (14) 
block above highest hole, (15) potential rows, (16) 
smoothness, (17) eroded pieces, (18) row holes, and (19) 
hole depth.  
 
Thus, the solutions generated by the program will come in 
the form of a vector of 19 weights, that is, w1 to w19

(1) the solution optimizer, and  

. 
Feature functions 1-12 are from [2], 13-16 are taken from 
[3] and 17-19 are from [1]. A description of the feature 
functions is presented in Section 4.1. 
 
As illustrated in Figure 3, the proposed HS-based Tetris 
intelligent agent called Harmonetris, is divided into two 
main parts;  

(2) the Tetris game simulator.  
 
The solution optimizer comprises the Harmony Search 
algorithm part of the program while the Tetris game 
simulator is composed of our Tetris agent as well as the 
Tetris game itself.  
 
The solution optimizer generates harmonies or solutions in 
the form of a set of weights; normally, to . Each of 
this set of weights is passed to the Tetris game simulator, 
which plays one complete game of Tetris using the 
weights provided and a randomly generated sequence of 
Tetrominos. After playing the game, the game simulator 
returns the number of rows cleared by the agent based on 
the current assigned weights to the solution optimizer. The 

number of cleared rows serves as the objective function, 
where more cleared rows means a better agent 
performance. When a terminating condition has been met, 
the solution optimizer then outputs the best solution 
created so far. 
 
The Tetris game simulator uses the state-evaluation 
function in Eq. (1) to evaluate on a per Tetromino move 
basis for each feature function while the objective function 
rates an entire Tetris game in the form of maximum 
number of rows (lines) cleared which is the basis for the 
solution optimizer to determine the objective function 
value of each harmony. 
 
The main idea behind this set up is to use the Harmony 
Search algorithm as the solution optimizer’s underlying 
optimization algorithm.  
 

 
Fig. 3 The Harmonetris Overall Program Flow 

4.1 The Feature Functions 

A description of each of the feature functions, fi

1. Pile Height: The row of the top most Tetromino 
in the board. Each of the filled cells reached 
directly from the top are compared and the row 
value of the topmost filled cell is the pile height. 
In Figure 4 the pile height is 13. 

, used in 
this research is presented in this section. 
 

 
2. Holes: The number of all gaps with at least one 

occupied cell above them.  In Figure 5(a), the 
holes in the board are marked with “1”. The 
number of holes in the board is 10. 
 

3. Connected Holes: Similar to Holes, however, 
counts vertically connected gaps as one. Figure 5 
shows the difference between Holes and 
Connected Holes. Connected Holes has a value of 
7 with each connected hole in the board marked 
with “1”. 
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Fig. 4 The Feature Function: Pile Height 

 
 

 
Fig. 5 Difference between Holes and Connected Holes 
 

4. Removed Rows: The number of rows cleared by 
the last step. This is the number of rows that was 
cleared in order to arrive at the new board 
configuration.  
 

5. Altitude Difference:  The difference between the 
lowest gap directly reachable from the top and the 
highest occupied cell. Figure 6 has an altitude 
difference of 8. 
 

6. Maximum Well Depth: The depth of the deepest 
well on the board. This is 4 in Figure 7. 
 

 
Fig. 6 The Feature Function: Altitude Difference 

 
7. Sum of all Wells: The sum of all wells on the 

game board. The board in Figure 7 has a value of 
6. 

 

 
Fig. 7 The Feature Function: Sum of Wells 

 
8. Landing Height: The height at which the last 

Tetromino has been placed. Figure 8 shows that 
the landing height of piece ‘I’ is 9. 

 
9. Blocks: The number of cells that has been 

occupied in the board. 
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Fig. 8 The Feature Function: Landing Height 

 
10. Weighted blocks: Same as Blocks, however 

counting from the bottom to the top, blocks 
located at row n count n-times as much as the 
blocks in row 1. Figure 9 illustrates the weight of 
each of the blocks. 

 

 
Fig. 9 The Feature Function: Weighted Blocks 

 
11. Row Transitions: The sum of all occupied or 

unoccupied transitions. Each arrow in Figure 10 
counts as one row transition. 
 

12. Column Transitions: Same as Row Transitions, 
however, it only counts vertical transitions. 
Figure 11 provides a clear illustration of the 
column transitions in the board. 

 
Fig. 10 The Feature Function: Row Transitions 

 
13. Highest Holes: The height of the topmost hole on 

the game board. This is 8 in Figure 5(a). 
 

14. Blocks Above Highest Hole: The number of 
blocks on top of the Highest Hole. In Figure 5(a) 
the highest hole in the board is at 8, so the 
number of blocks above it is 2. 
 

 
Fig. 11 The Feature Function: Column Transitions 

 
15. Potential Rows: The number of rows located 

above the Highest Hole and in use by more than 8 
cells. This is 0 in Figure 5(a). 
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16. Smoothness: The sum of all absolute differences 
of adjacent column height, as well as the 
difference of the first and last column. Using the 
board in Figure 11, Table 1 illustrates how the 
value of smoothness is computed. 

Table 1: Sample Computation: Smoothness 
Columns Column Heights Value 

1, 2 |9-5| 4 
2, 3 |5-9| 4 
3, 4 |9-13| 4 
4, 5 |13-13| 0 
5, 6 |13-10| 3 
6, 7 |10-9| 1 
7, 8 |9-7| 2 
8, 9 |7-9| 2 

9, 10 |9-12| 3 
10, 1 |12-9| 4 

Smoothness 27 
 
17. Eroded Pieces: The number of rows cleared in 

the last move multiplied with the number of cells 
of the last piece that were eliminated in the last 
move. 
 

18. Row Holes: The number of rows with at least one 
hole. Figure 12 shows how the value for row 
holes is computed. In the said figure, the value is 
7. 

 
Fig. 12 The Feature Function: Row Holes 

 
19. Hole Depth: The number of filled cells on top of 

each hole. Table 2 shows how to compute for the 
hole depth based on Figure 13. 

 
Fig. 13 The Feature Function: Hole Depth 

 
Table 2: Sample Computation: Hole Depth 

Hole Filled Cells 
a 5 
b 5 
c 5 
d 5 
e 8 
f 3+2=5 
g 2 
h 3 
i 3 
j 5 

4.2 The Tetris Game Simulator 

Every generated harmony of the solution optimizer in the 
form of a vector of weights is fed to the Tetris Game 
Simulator. The simulator performs a simulation of the 
game using the feature functions as basis for determining 
the best move, and then it returns the maximum number of 
cleared rows, which is the objective function value of the 
harmony. 

The Tetris Game Simulator has two main components: (1) 
Tetris Game and (2) Tetris Agent. The Tetris Game 
defines the logical characteristics of the game and the rules 
on how it must be played. The Tetris Agent plays the 
Tetris Game until a termination condition is satisfied and 
then returns the required result. The agent always selects 
the move that will yield the best outcome, which in turn 
maximizes the result. The simulation will only terminate if 
the current state of the game satisfies a termination 
condition. There are two ways to end the simulation. One 
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is by limiting the number of pieces spawned and the other 
is waiting for the game to be over. 

4.3 The Tetris Agent 

In a Tetris Game, one piece is being played at a time. The 
player has to select from among the 10 possible 
translations (positions), that is, where to place the current 
piece. Also, the player may change the orientation (can be 
up to 4 possible orientations) of the game piece depending 
on how beneficial this move may be. Once the player has 
made the choice, it then moves the piece to the desired 
position and orientation. Afterwards, another piece will be 
spawned and the player has to repeat the same process. 
This will continue until the next piece can no longer be 
spawned, which means that the top row of the Tetris board 
is already occupied, or the maximum number of spawned 
pieces has been reached. In a Standard Tetris Game, only 
the current piece is known. Some other versions provide a 
preview of the next piece.  

 
Fig. 14 The Tetris Agent Two-Piece Decision-making Process 

 

In the case of knowing in advance the next piece, known 
as a two-piece strategy, the player may consider it in 
deciding for the next move. In this case, the player has to 
enumerate all the possible combinations of translations and 
orientations of the next piece for each of the derived game 
state of the current piece’s possible moves. Then after that, 
the board is evaluated based on the preferences of the 
player. In this case, the state evaluation function is used. 
To ensure that the game will not end early, the player must 
select the move that has the highest state value. In this 
scenario, the player is performing a greedy strategy, in 

which the player always selects the move with the highest 
reward (state value). Figure 14 provides a graphical view 
of the decision-making process. 

5. Experiment Results and Discussion 

The goal of the experiments is to determine the efficiency 
of the Harmony Search algorithm as the underlying 
optimization algorithm for the Tetris intelligent agent and 
to test the ability of the intelligent agent, Harmonetris, in 
finding the best possible solution with respect to the 
spawned game pieces. Each setup was subjected to 30 
runs to make sure that the results are statistically 
acceptable. In this experimental setup, the following 
parameters are defined: 
• Memory Improvisation (Number of Cycles) = 100 
• Harmony Memory Size (Musical Pieces) = 5 
• Harmony Consideration / Acceptance Rate = 0.95 
• Pitch Adjustment Rate = 0.99 

The results of our first experimental setup determined the 
performance of Harmony Search algorithm as the 
underlying optimization algorithm. After executing 120 
runs in all, it has been observed that the maximum number 
of rows that the Tetris agent can clear is determined by Eq. 
(2).  

 
 (2) 

  
According to C. Fahey [6], the theoretical best case for a 
Tetris game is to be able to clear one row using 2.5 
numbers of spawned pieces. Such special case is illustrated 
in Figure 15 wherein a sequence of five “O” Tetrominos is 
able to clear two rows, thus the computed ratio of 
5(spawned pieces) / 2(cleared rows) = 2.5. 
 

 
Fig. 15 The Optimal Tetris Case 

 
This theory is taken from the fact that the Tetris board is 
10 cells wide and a Tetromino has 4 cells each. This case 
however, is only applicable in instances wherein the 
number of spawned pieces is not random, which violates 
one of the basic specifications of Tetris.  
 
Figure 16 to Figure 19 show the maximum number of 
cleared rows with respect to number of cycles over 30 runs 
with 100, 300, 500 and 1,000 spawned pieces, 
respectively.  
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Fig. 16 Maximum number of cleared rows for 100 spawned pieces 

 
The figures show the results of the experiments averaged 
over 30 runs. It is the average of the maximum number of 
cleared rows obtained by the best harmonies on all runs for 
a given cycle.  
 
It can be observed from Figure 16 that the number of 
cleared rows approaches but does not reach 40. Thus, the 
maximum number of cleared rows in 30 runs for the 100 
spawned pieces is 39. 
 

 
Fig. 17 Maximum number of cleared rows for 300 spawned pieces 

 
Figures 17 to 19 also confirm the validity of Eq. (2), that 
is, the maximum number of rows that the Tetris agent can 
clear is determined by the said equation. Table 3 
summarizes the experiment results obtained for the 
different setups. 
 

 
Fig. 18 Maximum number of cleared rows for 500 spawned pieces 

 
Fig.19 Maximum number of cleared rows for 1,000 spawned pieces 

 
Table 3: Spawned Pieces and Maximum number of Cleared Rows  

Total Number 
of Spawned 
Pieces (SP) 

Maximum number 
of Cleared Rows 

(CR) 

Eq. (2) 
(SP/2.5) - 1 

SP to CR 
Ratio 

100 39 39 2.56410 

300 119 119 2.52100 

500 199 199 2.51256 

1,000 399 399 2.50626 
 
Another experiment was conducted to determine the best 
configuration for the feature functions, thus the 
terminating condition was set to “Game Over” only, with 
no restriction on the number of cycles and spawned pieces.  

 
After allowing the program to run for two weeks straight, 
the Tetris agent was able to obtain the following 
harmonies, xi, on its 304th cycle of harmony improvisation. 
Table 4 shows the results obtained by the 5 harmonies on 
the 304th cycle. 
 

Table 4: The Performance of the Five Harmonies on the 304th

Harmony 

 cycle 
Maximum 
number of 

Cleared 
Rows (CR) 

Total 
Number of 
Spawned 

Pieces (SP) 

SP to CR Ratio 

X 291,087 1 727,751 2.500115085867 
X 300,277 2 750,723 2.50010157288 
X 337,254 3 843,168 2.500097849098 
X 348,047 4 870,151 2.50009625136 
X 416,928 5 1,042,354 2.50008154885 

 
As shown in Table 4, it can be observed that as solutions 
improve resulting to more cleared rows, the ratio of 
spawned pieces (SP) to cleared rows (CR) approaches the 
value of our theoretical best game play of 2.5.  
 
Furthermore, analysis on the harmonies (weight 
configurations) reveals that the Tetris agent, in its attempt 
to come up with a better solution, gave emphasis on 
reducing the weight values of the number of holes, wells, 
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column transitions and row transitions, and at the same 
time increasing the weight value of  potential rows.  

6. Conclusions 

In this paper, the researchers showed the efficiency of the 
Harmony Search algorithm as the underlying optimization 
algorithm for the Tetris intelligent agent and tested the 
ability of the intelligent agent in finding the best possible 
solution with respect to the random sequence of spawned 
game pieces. Experiment results reveal that the Harmony 
Search algorithm is an efficient optimization algorithm and 
the Harmonetris, the Tetris agent, is able to generate the 
best possible solution. 
 
The best harmony (weight configuration) found in a span 
of two weeks was able to clear 416,928 rows in 1,042,354 
spawned pieces yielding the Spawned Pieces to Cleared 
Rows ratio (SP/CR ratio) of 2.50008154885256.  Thus, it 
can be observed that as the number of cleared rows 
increases, the SP/CR ratio approaches the optimum value 
of 2.5. 
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