
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

368

From UML Activity Diagrams to CSP Expressions: A Graph
Transformation Approach using Atom3 Tool

Raida Elmansouri1, Houda Hamrouche2 and Allaoua Chaoui1

 1 MISC Laboratory, Department of Computer Science, University Mentouri Constantine, Constantine 25000, Algeria

2 Department of Computer Science, University of Skikda, Skikda, Algeria

Abstract
The Unified Modeling Language (UML) has become a
widely accepted standard in the object oriented
software development industry. However, the UML is
a semi-formal language which lacks precisely defined
constructs. On the other hand, CSP language is a
formal specification language. So, UML and CSP have
complementary features: UML can be used for
modeling while CSP can be used for analysis. In this
paper we propose an approach and a tool to transform
UML activity diagrams to CSP. Our approach is based
on graph transformation and uses ATOM3 tool. The
purpose of this transformation is to provide some
verification of properties ranging from simple deadlock
verification to more specific properties.

Keywords: UML activity diagram, CSP, Graph transformation,
ATOM3

1. Introduction

The Unified Modeling Language (UML) [2] has become a
widely accepted standard in the object oriented software
development industry. Some diagrams are used to model
the structure of a system while others are used to model the
behavior of a system. UML Statecharts and UML
collaboration diagrams are widely used to model the
dynamic behavior in UML. UML State chart diagrams
model the lifetime (states life cycle) of an object in
response to events. A UML collaboration diagram models
the interaction between a set of objects through the
messages (or events) that may be dispatched among them.
Activity diagrams are used to model workflow systems,
service oriented systems and business processes. Control
flow includes support for sequential, choice, parallel and
events. Activities may be grouped in sub-activities and can

be nested at different levels. However, the UML is a semi-
formal language which lacks rigorously defined constructs.
Communicating Sequential Processes (CSP) [3] is a
formal language for describing patterns of interaction in
concurrent systems. It is a member of the family of
mathematical theories of concurrency known as process
algebras, or process calculi. CSP was first proposed in 1978
by C. A. R. Hoare, but has since evolved substantially. CSP
has been practically applied in industry as a tool for
specifying and verifying the concurrent aspects of a variety
of different systems.
So, UML and CSP have complementary features: UML can
be used for modeling while CSP can be used for analysis.
Much research has been done about the integration of UML
and CSP. In [8], the authors present a case study of UML
activity diagram to CSP transformation using graph
transformation. In [9], the authors describe how an UML
activity diagram can be transformed into a corresponding
CSP expression by using the graph rewriting language
PROGRES. In [6], the authors exploited ATOM3 [1] [4] for
transforming UML statecharts diagrams and collaboration
diagrams to Colored Petri nets [5].
In this paper we propose an approach and a tool for
transforming UML activity diagrams to CSP expressions.
The main difference between our approach and the
previously cited approaches consists in the fact that we use
ATOM3 as graph transformation tool.
The rest of this paper is organized as follows. In section 2,
we review the main concepts of UML activity diagrams,
CSP, and graph transformation. In section 3, we describe
our approach that transform a UML activity diagram to CSP
code. In section 4, we illustrate our approach using an
example. The final section concludes the paper and gives
some perspectives.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

369

2. Background

2.1 UML activity diagrams
Activity diagrams are the object-oriented equivalent of flow
charts and data flow diagrams (DFDs) from structured
development. Figure 1 represents an example of an activity
diagram that depicts one way to model the logic of the
Enroll in University use case. Fill Out Enrollment Forms,
Enroll in University are examples of activities. For more
details, the reader is referred to [Booch99].

Fig. 1 Example of activity diagram

2.2 CSP

The theory of CSP itself is also still the subject of
active research, including work to increase its
range of practical applicability. CSP allows the
description of systems in terms of component
processes that operate independently, and interact
with each other solely through message-passing
communication. However, the "Sequential" part
of the CSP name is now something of a
misnomer, since modern CSP allows component
processes to be defined both as sequential
processes, and as the parallel composition of
more primitive processes. The relationships
between different processes, and the way each
process communicates with its environment, are
described using various process algebraic
operators. Using this algebraic approach, quite
complex process descriptions can be easily

constructed from a few primitive elements. For
more details, the reader is referred to [3].

2.3 Graph Transformation
Graph grammar [7] is a generalization of Chomsky grammar
for graphs. It is a formalism in which the transformation of
graph structures can be modeled and studied. The main idea
of graph transformation is the rule-based modification of
graphs as shown in Figure 3.

Fig. 2 Rule-based Modification of Graphs

Graph grammars are composed of production
rules; each having graphs in their left and right
hand sides (LHS and RHS). Rules are compared
with an input graph called host graph. If a
matching is found between the LHS of a rule and a
subgraph in the host graph, then the rule can be
applied and the matching sub-graph of the host
graph is replaced by the RHS of the rule. A
rewriting system iteratively applies matching rules
in the grammar to the host graph until no more
rules are applicable.
ATOM3 [1] is a visual tool for multi-formalism
modeling and meta-modeling. The two main tasks
of AToM3 are meta-modeling and model
transformation. Meta-modeling refers to modeling
formalism concepts at meta-level, using Entity
Relationship (ER) formalism or UML Class
Diagram formalism extended with the ability to
express constraints. Once we build the meta-
models for the interested models, ATOM3 can
generate automatically a visual modeling tool. For
Model transformation, AToM3 supports graph
rewriting system, which uses graph Grammar rules
to visually guide the procedure of the
transformation. For more details, the reader is referred to
[9].

3. The Approach
The proposed approach consists of transforming a
UML activity diagram to CSP. To reach this

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

370

objective, we have proposed a meta-model for
UML activity diagram and a graph grammar that
performs automatically the transformation of a
UML activity diagram. In the following, we give
in details these two steps.

3.1 Meta-Modeling Activity diagrams
To Meta-model activity diagrams, we proposed the meta-
model below containing seven classes linked by thirty three
associations as shown in figure 3.

Fig. 3 Activity diagram Meta-Model

Each association of this meta-model has an attribute of
type String. It links an instance of the class with a single
source instance of the Class Destination. Cardinalities for
each association are:
 - To target: 1 to 1.
 - From source: 1 to 1.
Some classes are described as follows:

Fig. 4 InitialNode Class

1. InitialNode Class: represents the beginning of an

activity diagram. Graphically it is represented by a
small solid circle. It has a constraint which prohibits
the existence of more than one outgoing arc. It can
be connected by one of the following associations:

 Initial2Action : with the class
ActionNode.

 Initial2Decision : with the class
DecisionNode.

 Initial2Fork : with the class ForkNode.
 Initial2Merge : with the class

MergeNode.

Fig. 5 ActionNode Class

 Generation of a tool for Activity diagrams

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

371

Fig. 7 Tool generated to model the Activity diagrams

Fig. 8 Graphical representation of the nodes of activity diagrams

 This figure graphically represents the nodes of activity
diagrams modeled by our tool. From left to right are: an initial
node, a node of action, a decision node, a node fusion, a node
bifurcation, a common node and end node.

Graph grammar for the transformation of UML activity
diagrams to CSP expressions

To generate CSP expressions from a UML activity diagram, we
have proposed Thirty nine rules. For lack of space we only
describe in the following some rules.

 Rule 1 : rule_Initial2Action (Priority 1) :
This rule is applied to locate a node of action

previously untreated, can be connected to the
initial node by an incoming labeled arc. The name
of the latter is assigned to the attribute 'input' node
of action will then be marked as "Visited" for the
first time.

Fig. 9 LHS and RHS of grammar rule 1

 Rule 2 : rule_ Action2Action (Priority 2) :
Used to locate two nodes connected by an arc
action, whose destination is not yet processed. The
name of the arc is kept as "output" at the source
node, and as "input" at the destination node. This
is marked as "Visited" for the first time.

Fig. 10 LHS and RHS of grammar rule 2

 Rule 3 : rule_ Action2Final (Priority 3) :
Applied to locate an arc previously untreated,
connecting a node of action (source) to an end
node (destination). The name of this arc is

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

372

assigned as the "output" of the source node and is
concatenated with "input" of the destination node.

Fig. 11. LHS and RHS of grammar rule 3

 Rule 4: rule_ Merge2Final (Priority 4) :
Applied to locate an arc previously untreated,
connecting a node merge (source) to an end node
(destination). The name of this arc is assigned to
"output" of the source node, and concatenated with
"input" of the destination node.

 Fig.12 LHS and RHS of grammar rule 4

3 Example
 We have applied our approach on the activity diagram
of figure 13, and obtained automatically the equivalent
CSP code of figure 15. An intermediate step of the
application of our approach is shown in figure 14.

Fig. 13 Example of an activity diagram created by our tool

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

373

Fig.14 An Intermediate step of execution of the graph grammar

Fig.15 CSP code equivalent to the activity diagram

 shown in Figure 13.

4 Conclusion
In this paper we proposed an approach and a tool for
transforming UML activity diagrams to CSP code. Our
approach is based on graph transformation and uses
ATOM3 tool. In a future work, we plan to transform other
UML diagrams to CSP expressions. We plan also to
perform some verification of properties using CSP.

References
[1] AToM3 Home page, version 3.00,
http://atom3.cs.mcgill.ca/
[2] G. Booch, Ivar Rumbaugh and Jim Jacobson: The
Unified Modeling Language
User Guide, Addison-Wesley, 1999.
[3] C.A.R. Hoare, Communicating Sequential Processes.
Prentice Hall International Series in Computer Science.
Prentice Hall (April 1985)
[4] J. De Lara and H. Vangheluwe: “AToM3: A Tool for
Multi-Formalism Modeling and Meta-Modeling”. LNCS
2306, pp.174-188. Presented also at Fundamental
Approaches to Software Engineering - FASE’02 , in
European Joint Conferences on Theory And Practice of
Software - ETAPS’02, Grenoble, France, 2002.
[5] K. Jensen: Coloured Petri Nets, Vol 1: Basic Concepts,
Springer-Verlag 1992.
[6] E. Kerkouche, A. Chaoui, E. Bourennane, O. Labbani. A
UML and Colored Petri Nets Integrated Modeling and
Analysis Approach using Graph Transformation. In Journal
of Object Technology, vol. 9, no. 4, 2010, pages 25–43.
Available at
http://www.jot.fm/contents/issue_2010_07/article2.html

[7] G. Rozenberg: Handbook of Graph Grammars and
Computing by Graph Transformation, World Scientific,
1999.
[8] D. Bisztray, K. Ehrig, and Reiko Heckel. Case Study:
UML to CSP Transformation. Available at
http://www.informatik.uni-marburg.de/~swt/agtive-
contest/UML-to-CSP.pdf

[9] E. Weinell and U. Ranger. Using PROGRES for
Transforming UML Activity Diagrams into CSP
Expressions. Available at www.se.rwth-
aachen.de/files/agtivetc/UML_to_CSP.pdf

Raida Elmansouri is with the department of computer science, Faculty of
Engineering, University Mentouri Constantine, Algeria. She received her
Master degree in Computer science in 1997 and her PhD degree in 2009
from the University of Constantine. Her field of interest include information
systems and formal methods.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

374

Houda Hamrouche is a Master student at the University of Skikda in
Algeria.

Allaoua Chaoui is with the department of computer science, Faculty of
Engineering, University Mentouri Constantine, Algeria. He received his
Master degree in Computer science in 1992 (incooperation with the
University of Glasgow, Scotland) and his PhD degree in 1998 from the
University of Constantine (in cooperation with the CEDRIC Laboratory of
CNAM in Paris, France). He has served as associate professor in
Philadelphia University in Jordan for five years and University Mentoury
Constantine for many years. During his career he has designed and taught
courses in Software Engineering and Formal Methods. Dr Allaoua Chaoui
has published many articles in International Journals and Conferences. He
supervises many Master and PhD students. His research interests include
Mobile Computing, formal specification and verification of distributed
systems, and graph transformation systems.

