
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

472

 Dynamic Task-Scheduling in Grid Computing using
Prioritized Round Robin Algorithm

Sunita Bansal1, Bhavik Kothari1, Chittaranjan Hota2

1Computer Science & Information Systems Group
Birla Institute of Technology & Science

Pilani, Rajasthan, 333031, INDIA

2Computer Science & Information Systems Group
Birla Institute of Technology & Science, Pilani

Hyderabad Campus, Hyderabd, AP, INDIA

Abstract
Over the years, grid computing has emerged as one of the most
viable and scalable alternatives to high performance
supercomputing, tapping into computing power of the order of
Gigaflops. However, the inherent dynamicity in grid computing
has made it extremely difficult to come up with near-optimal
solutions to efficiently schedule tasks in grids. The present
paper proposes a novel grid-scheduling heuristic that adaptively
and dynamically schedules tasks without requiring any prior
information on the workload of incoming tasks. The approach
models the grid system in the form of a state-transition diagram,
employing a prioritized round-robin algorithm with task
replication to optimally schedule tasks, using prediction
information on processor utilization of individual nodes.
Simulations, comparing the proposed approach with the round-
robin heuristic, have shown the given heuristic to be more
effective in scheduling tasks as compared to the latter.

Keywords: Dynamic Scheduling, Grid Computing, Task
Replica, Round Robin, Prioritized Round Robin, Prediction
Information

1. Introduction

Grid computing is a form of distributed computing,
where a set of loosely coupled and heterogeneous
computing nodes donate their unused processor cycles to
create a pool of substantial processing capacity. In recent
years, grid computing has emerged as one of the most
feasible alternatives to process compute-intensive tasks,
using co-operating processing nodes of ordinary capacity.
The main advantage that grid computing offers, is that
inexpensive computing nodes are coupled together to
produce resource capacity comparable to high-end
supercomputers, albeit at a lower cost. The major
bottleneck that grids face is that individual processors
might not be well connected to one another and thus, the
model is more suited to applications which can be broken

into several independent and atomic sub-tasks, without
any requirement to communicate intermittent results
between the grid nodes.

The principal challenge involved in any distributed
computing environment, is that optimal scheduling of tasks
dynamically entering the grid, becomes an NP-hard problem.
Efficient grid scheduling is one of the key factors for achieving
high performance in gird environments. Several heuristics [1,
2, 3, 4, 5] have been proposed in literature to schedule the tasks
efficiently to the most suitable node present in the grid. A
majority of these heuristics show satisfactory results in static
grid environments. However, they cannot be directly applied in
dynamic environments where tasks are continuously arriving in
the grid at regular intervals.

The principal motivation of the present paper is to develop a
scalable task-scheduling algorithm which can operate efficiently
without the services of a full-fledged prediction system
providing prior information on workload of incoming tasks. The
paper proposes an enhancement of the existing round-robin
heuristic [2], where we exploit information on the capacity of
individual grid nodes, to prioritize tasks currently in execution,
such that tasks currently allocated to slower machines are
preferred for replication purpose over jobs executing on
comparatively faster machines. The approach facilitates
replication of tasks, hitherto assigned to execute on slower
machines, on machines with higher processing capacity.

2. Related Work

There has been significant research in the past to study the
classic problem of optimal job assignment in distributed
environments such as grids. Heuristics, dedicated to scheduling
tasks optimally in a grid environment, can be broadly
categorized into the following classes.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

473

A. Batch Mode Mapping Heuristics
Tasks are queued and collected into a set when they arrive in
the batch mode [1]. They will be scheduled or mapped to their
respective machines afterwards at a specific interval by the
scheduling algorithm. In Min-min scheduling algorithm, each
job will be always assigned to the resource which can complete
it the earliest in order to spend less time completing all jobs.
The Max-min scheduling algorithm is similar to Min-min
scheduling algorithm except that it gives the highest priority to
the job with the maximum earliest completion time. The
Sufferage heuristic is based on the idea that better mappings can
be generated by assigning a machine to a task that would
“suffer” most in terms of expected completion time if that
particular machine is not assigned to it.

B. On-line Mode Mapping Heuristics

Tasks are scheduled as soon as they arrive [1]. All the machines
in the grid need to be referred to in order to decide the optimal
machine that needs to be mapped to the incoming task. The
MCT (minimum completion time) heuristic assigns each task to
the machine that results in the task’s earliest completion time.
The MET (minimum execution time) heuristic assigns each task
to the machine that performs the task’s computation in the least
amount of execution time. The mapping algorithm takes O(m)
time (where m is the number of machines in the grid) to map a
task to its optimal machine. If a task arrives in the Grid while
the mapping algorithm is underway, it has to wait until the
previous mapping is complete.

C. Ringed Round Robin Algorithm
The algorithm assumes no prediction information is available
either for the task length or the processor capability [2]. Tasks
arriving in the Grid are assigned to idle machines in a FCFS
(First come Fist serve) manner. Task replication is performed
later on, in a ringed round robin fashion, to achieve better
resource utilization in the Grid. Both the task allocation and
task replication routines are executed randomly without any
basis or optimization criteria.

D. Scheduling Algorithm for Bag-Of-Tasks using
Multiple Queues with duplication

The strategy of the algorithm is to schedule tasks according to
their workloads and computing power of resources available
[6]. The machines in the Grid are ranked according to their
processing speed and are allocated tasks that are most
compatible to their processing capacity. In addition, it adopts a
duplication scheme in order to achieve optimal utilization of the
machines available and to avoid undesirable scheduling
decisions. The algorithm is static in nature as compared to the
inherent dynamic nature of grid systems where tasks are
continuously submitted to the system and get optimally
scheduled on the machines available in the grid.

E. Self-Adaptive Scheduling System for
Heterogeneous Computing

Ming Wu and Xian-He Sun [7] propose a prediction model
based on probabilistic approach for long-term, application-level
based task scheduling system in a distributed heterogeneous
computing environment. The architecture of the distributed
model comprises of a task allocator, scheduler and predictor, all
integrated together, to form the GHS scheduling system. A self-
adaptive task scheduling algorithm, based on probabilistic
approach, is put forth to improve the accuracy of the GHS
scheduling system for efficiently scheduling the meta-tasks.

F. Economic Task Replication for Scheduling in
Distributed Systems

Amit Agarwal and Padam Kumar [8] attempt to minimize the
number of task replications without affecting the overall
makespan of the meta-task submitted to the grid, by proposing
two workflow scheduling algorithms, namely, Reduced
Duplication for homogeneous systems (RD) and Heterogeneous
Economical Duplication (HED) for heterogeneous systems
respectively. The proposed algorithms aim at optimizing the
overall processor consumption, by removing some duplicated
tasks in the schedule whose removal does not affect the
makespan adversely, thereby producing scheduling holes in the
system, which can, in turn, be used to schedule other distributed
applications in the grid.

G. Task Duplication based Scalable Scheduling
Algorithm for Symmetric Multiprocessors

Oh-Han Kang and Dharma P. Agrawal [11] present a task
duplication based scalable scheduling algorithm for Symmetric
Multiprocessors (SMP), referred to as the S3MP (Scalable
Scheduling for SMP), to schedule the tasks of a DAG onto a
bus-based SMP environment, facilitating duplication of certain
critical tasks, so as to reduce the overall schedule length, by
pre-allocating communication resources so as to avoid
communication conflicts later on during scheduling.

H. Miscellaneous Heuristics
Bin Zeng et al. [3] propose a negotiation based model, where

adaptive learning agents, representing individual resources and
tasks, co-operate among themselves to help achieve a near-
optimal schedule. N.Malarvizhi and V.Rhymend Uthariaraj [4]
describe a scalable grid-architecture involving a Grid Resource
Manager, assuming the role of a resource broker to select
computational resources based on job requirements and the
capacity of grid resources, so as to minimize the time to process
each application along with transmission time associated with it.
D. P. Spooner et al. [5] develop a multi-tiered scheduling
architecture (TITAN) that uses a performance prediction system
(PACE), along with brokers that are involved in distribution of
jobs in the grid, to meet deadlines and significantly increase the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

474

efficiency of resource utilization. The paper [9] presents a novel
load balancing approach in a heterogeneous distributed
environment. The scheduler takes into account the threshold
value, based on the ratio of service rates, along with the queue
length to determine whether it is beneficial to migrate a given
local task to another node in the system or not. Markov process
model is used to describe the behavior of the heterogeneous
distributed system under the proposed policies. Ruay-Shiung
Chang et al. [10] propose an Adaptive Scoring Job Scheduling
algorithm (ASJS) for a distributed grid environment to reduce
the completion time of submitted jobs, by assigning jobs to
resources after looking into recent scheduling history of every
available resource and then choosing the most optimal one.
Computing intensive jobs and data intensive jobs are handled
differently, and local and global updates are used to obtain the
most recent status of grid resources to schedule jobs more
effectively in real time. System ModelSyed Nasir Mehmood
Shah et al. [12] propose an algorithm for CPU scheduling of a
modern multiprogramming operating system, design and
development of new CPU scheduling algorithms (the Hybrid
Scheduling Algorithm and the Dual Queue Scheduling
Algorithm) with a view to minimize overall task schedule. The
following paper extends this prioritized round robin heuristic
from a single system multiprogramming environment, onto a
multi-processor distributed architecture.

3. System Model

We consider a Grid system comprising of distributed computing
nodes, and a central server for task allocation purpose. The Grid
is modeled in the following state transition diagram, to be
oscillating between the 4 given states. The system comprises of
two queues to store records of the tasks currently in the Grid,
namely the Waiting Queue and the Execution Queue. The
Waiting Queue comprises of tasks in the Grid which are yet to
be mapped to their respective machines, while the Execution
Queue contains all the tasks which are currently in execution on
at least one of the machines in the Grid.

 The proposed model works under the following assumptions:
 1. The model assumes that the tasks arriving in the Grid are
atomic (cannot be broken into further sub-tasks) and are
independent of one another.

2. It is assumed that the transportation costs involved, when
tasks are mapped to their respective machines, are considered to
be negligible.

3. It is assumed that we have no information available on the
workload of the incoming tasks as it is not practically feasible
to derive information regarding the same without the services of
a full-fledged Prediction System.

4. The approach assumes that the processing speed of
individual computing nodes is available to us. The initial
processing speed of nodes is provided and the processing
capacity of machines is then updated from time to time on the
basis of the last application executed (workload) and the time
taken.

4. Proposed Solution

We represent the heuristic as a state transition diagram (Given
at fig-1.) with the grid occupying one of the four states at any
given time. The waiting queue, comprising of tasks waiting to
be mapped and executed on their respective machines, is
implemented as a First in, First out (FIFO) queue where the task
with the earliest arrival time is at the head of the queue and
allocated an idle machine before other tasks waiting in the
queue. The execution queue, consisting of tasks currently in
execution, is implemented as a circular queue where each task
in the queue has a specific order, and no task has the same order
as any other task. The Execution Queue makes use of three
pointers to scan the circular list in a Ringed Round Robin
fashion. The current pointer is used to point to the task
currently having the highest priority in the Execution Queue.
The next pointer is used to point to the task with the second
highest priority, which is nothing but the task lined next to the
current task, one step in the clockwise direction. The last
pointer is used to point to the task with the least priority in the
Execution Queue, which is precisely the task placed besides the
current task, a step in the anti-clockwise direction. The
following is the description of the four states occupied by the
grid system, during the course of time.

State I

Initial phase: State I is represented by an idle scheduler
waiting for tasks to arrive in the grid. Incoming tasks are lined
up in the waiting queue. Both the Waiting Queue and the
Execution are initially empty. When the number of tasks in the
Waiting Queue becomes more than the threshold value, a
transition is made to State II.

State II

Initial phase: The Execution Queue is initially empty while
the Waiting Queue comprises of a number of incoming tasks in
the Grid. We maintain a list comprising of idle machines in the
system. Initially all the machines are idle in State II, and hence
the list contains all the machines in the Grid.

The tasks from the head of the Waiting queue and mapped one
by one to the machines in the idle list. As soon as a task from
the Waiting queue gets mapped to a machine, the given machine
is subsequently removed from the idle list, while the task is

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

475

removed from the head of the Waiting Queue and inserted into
the Execution Queue as explained in the System Model. The
logic behind the mode of insertion is to give the highest priority
to a task which has been assigned the slowest processor and
vice-versa. The task with the highest priority in the Execution
Queue would be the first one to get replicated because it is
essentially the task with the slowest processors dedicated to it
and hence replicating such a task would lead to a very high
probability of the new machine executing the task before the
machines already assigned to it.

State III

Initial phase: The waiting Queue is initially empty while the
Execution Queue consists of tasks that are in execution in the
Grid.

If a machine completes the execution of a task, the processor

list of that particular task is referred to, and all the machines
dedicated to executing the given task are released and made free
while the task is removed the Execution Queue and the current,
next and last pointers are updated if required. We update the
processing power of the newly freed machine based upon the
number of instructions that the machine executed for the
previous task and the time it took to finish its execution. If the
processing speed of the machine is greater than that of the
maxProcSpeed of the task pointed to by the current pointer,
then the given machine is required to execute the replica of the
task pointed to by the current pointer.

Also, the current, next and last pointers are updated as

follows. The current pointer becomes the last pointer, the next
pointer becomes the current pointer and the next pointer would
now be pointing to the task that was one step in the clockwise
direction to the task pointed to by the erstwhile next pointer.
Also, if the machine assigned to execute the replica of a task
has a processor speed greater than that of maxProcSpeed of that
task then the value needs to be updated to the processing speed
of the given machine. We also keep track of the number of
machines executing replicas and the number of tasks in the
Waiting Queue, the information of which is exploited in State
IV of the heuristic. At this point of time, we also check if there
are any other idle machines present in the Grid from the idle list
and assign tasks from the Execution Queue in the same way as
described above, one by one, to these idle machines which are
then subsequently removed from the idle list.

However, if a machine is found to have its updated processing

speed to be less than that of the maxProcSpeed of the current
task, then we do not assign the machine to execute the task
replica for the simple reason that in all probability, the task
would be accomplished faster on one of the machines already
assigned to it as compared to the given machine. The machine is
then inserted at the tail of the list containing the idle machines
present in the Grid.

There are three scenarios, eventually possible, in State III.
Case I: All the tasks in the Execution Queue are successfully

completed while the Waiting Queue is still empty. In this case,
we traverse back to State I.

Case II: All the tasks in the Execution Queue are successfully
completed while the number of tasks in the Waiting Queue is
still less or equal to the threshold. In this case, we traverse back
to State II.

Case III: The number of tasks in the Waiting Queue has

exceeded the threshold before all the tasks in the Execution
Queue could be completed. In this case, we traverse to State IV.

State IV

Initial Phase: Both the Waiting and the Execution Queue are

initially non-empty. Two scenarios are possible at this point of
time.

Case I: The number of machines executing replicas is less

than the number of tasks in the Waiting Queue.

Case II: The number of machines executing task replicas is

more than the number of tasks in the Waiting Queue.

The tasks in the Execution Queue are traversed in an anti-

clockwise manner one by one, starting from the task pointed to
by the last pointer (the least priority task) and if a task has more
than one machine allocated to it, the machine at the tail end of
the processor list is taken out of the list, freed from the task it
was currently executing and assigned the task at the head of the
Waiting Queue (after removing the task from the queue).

In Case I, we stop the traversal as soon as all the tasks in the

execution queue are being run on one and only one machine and
transition to State II. In Case II, we stop traversing the linked
list as soon as all the machines in the Waiting Queue are
assigned a machine, and then subsequently transition to State
III.

5. Simulation

Simulation consists of a grid network comprising of a fixed
number of computing nodes. Both, the number of machines as
well as their processing capacity, are chosen randomly over a
pre-defined range. Tasks enter the grid at random intervals
within the range of 10 units and are assigned to the scheduler
for allocation as soon as they arrive.

The simulation code defines one time unit as a single
iteration, where we check for the current state of the grid system
and accordingly perform the amount of work the scheduler can
do in a single time unit when the grid is in that particular state.
We run the simulation for as many steps as required to complete
all the jobs submitted to the grid over the span of time. For our
simulation purpose, we have considered the four test cases
based on the degree of heterogeneity in node capacity and task
workload entering the grid. In each case, we have considered 5
input cases with the following number of tasks-40, 80, 120, 160,
200. The following the four test cases in consideration. We have
considered the overall turnover time as our yardstick to test the
performance of the proposed heuristic against the round-robin
algorithm.

Case I: Low heterogeneity in both processing capacity and

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

476

task workload,

Case II: High heterogeneity in processing capacity and low

heterogeneity in task workload.

Case III: Low heterogeneity in node capacity and high

heterogeneity in task workload.

Case IV: High heterogeneity in both node capacity and task

workload.

In Case I, since the heterogeneity in node capacity is low ,

our proposed approach does not perform significantly better
than the existing round-robin heuristic. The following graph
compares the performance of round-robin heuristic and the
proposed approach.

In Case II, though there is low heterogeneity in the task

workload in the gird, but since the node capacities vary over a
comparatively wide range, we observe significant improvement
in results when we compare our approach with that that of the
former heuristic.

In Case III, though there is high heterogeneity in the task

workload but without a high heterogeneity in the node capacity
in the gird, again, the algorithm does not show much
improvement over the round-robin algorithm.

In Case IV, due to high variation in individual node

capacities as well as in workloads of tasks arriving in the gird,
we see a marked improvement of our heuristic in comparison
the round-robin algorithm as high variation in processing speeds
means that we can exploit faster available machines to replicate
tasks which are currently running on comparatively slower
machines.

Fig. II. Compares RR(Round Robin) and PRR (Prioritized Round
Robin) for Case I.

Fig. III. Compares RR with PRR for Case II.

Fig. IV. Compares RR and PRR for Case III.

Fig. V. compares RR and PRR for Case IV.

6. Conclusions

The following paper describes a novel approach to schedule
tasks efficiently in a grid environment, without having prior
information on workload of incoming tasks. We propose an
enhancement to the existing round-robin heuristic by
prioritizing tasks eligible for replication. The approach is based
on exploiting information on processing capability of individual

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

477

grid resources and applying replication on tasks assigned to the
slowest processors. Future work will focus on designing a
scalable architecture for scheduling tasks on grids comprising of
nodes of the order of thousands, helping us to assess the
performance of the heuristic to a better extent. In the present
approach, we have ignored the costs involved in transporting
tasks to their designated machines. To take the communication
costs involved into account, along with the obvious processing
costs of these tasks, is intended to be taken up as a subject for
our future work.

References
[1] Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D.,

Freund, R.F.: Dynamic Matching and Scheduling of a
Class of Independent Tasks onto Heterogeneous
Computing Systems. In: Proceedings of the HCW '99
Proceedings of the Eighth Heterogeneous Computing
Workshop, pp. 30-30, IEEE Computer Society
Washington, DC, USA (1999)

[2] Lee, L.T., Liang, C.H., Chang, H.Y.: An Adaptive Task
Scheduling System for Grid Computing. In: Proceedings of
the Sixth IEEE conference on Computer and Information
Technology, CIT’06, pp. 57-57, IEEE Computer Society
(2006)

[3] Zeng, B., Wei, J., Liu, H.: Dynamic Grid Resource
Scheduling Model Using Learning Agent. In: Proceedings
of the 2009 IEEE International Conference on Networking,
Architecture, and Storage, NAS’09, pp. 67-73, IEEE
Computer Society Washington, DC, USA (2009)

[4] Malarvizhi, N., Uthariaraj, V.R.: A Minimum Time To
Release Job Scheduling Algorithm in Computational Grid
Environment. In: Proceedings of the Fifth International
Joint Conference on INC, IMC AND IDC, 2009, NCM’09,
pp. 13-18, IEEE Computer Society (2009)

[5] Spooner, D.P., Jarvis, S.A., Caoy, J., Sainiz, S., Nudd,
G.R.: Local Grid Scheduling Techniques using
Performance Prediction. IEE Proceedings-Computers and
Digital Techniques 150 (2) (2003) 87–96

[6] Lee, Y.C., Zomaya, A.Y.: Scheduling Algorithm for Bag-
Of-Tasks using Multiple Queues with duplication. In:
Proceedings of the 5th IEEE/ACIS International
Conference on Computer and Information Science and 1st
IEEE/ACIS International Workshop on Component-Based
Software Engineering,Software Architecture and Reuse
(ICIS-COMSAR'06), pp. 5-10, IEEE Computer
Society(2006).

[7] Wu, M., Sun, X. H.: A General Self-adaptive Task
Scheduling System for Non-dedicated Heterogeneous
Computing. In: Proceedings of the Fifth IEEE International
Conference on Cluster Computing, 2003 (CLUSTER'03),
pp. 354-354, IEEE Computer Society(2003)

[8] Agarwal, A., Kumar, P.: Economical Duplication Based
Task Scheduling for Heterogeneous and Homogeneous
Computing Systems. In: Proceedings of the Advance
Computing Conference, 2009(IACC’ 09), pp. 87-93, IEEE
Computer Society(2009)

[9] Wang, J.L., Lee, L.T., Hunag, Y.J.: Load Balancing
Policies in Heterogeneous Distributed Systems. In:
Proceedings of the 26th Southeastern Symposium on

System Theory, 1994, pp. 473-477, IEEE Computer
Society(1994)

[10] Chang, R.S., Lin, C.Y., Lin, C.F.: Scheduling Jobs in Grids
Adaptively. In: Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing with
Applications, 2009, pp. 19-25, IEEE Computer Society

[11] Kang, O.H., Agrawal, D.P.: S3MP: A Task Duplication
Based Scalable Scheduling Algorithm for Symmetric
Multiprocessors. In: Proceedings of the 14th International
Parallel and Distributed Processing Symposium, 2000
(IPDPS 2000), pp. 451-456, IEEE Computer Society(2000)

[12] Shah, S., Mahmood, A., Oxley, A.: Hybrid Scheduling
and Dual Queue Scheduling. In: Proceedings of the 2nd
IEEE International Conference on Computer Science and
Information Technology, 2009 (ICCSIT 2009), pp. 539-
543, IEEE Computer Society (2009).

Sunita Bansal received the M Sc (Computer Science) and
M Tech (Computer Science) degrees from the Banasthali
Vidyapith, Banasthali of India in 2003 and 2005,
respectively. After completed her M Tech she joined Mody
Institute of Technology and Science, Laxamangarh (Sikar) of
India in July, 05 and left Sept, 05 and join Birla Institute of
Technology & Science, Pilani of India. She is currently a Ph
D scholar and faculty in Birla Institute of Technology and
Science, Pilani of India. She is nuclear member and web
administrator of Research and Consultancy Division, Birla
Institute of Technology and Science, Pilani of India. Her
papers are published in Springer-Verlag, Berlin, Heidelberg,
IEEE and Academy Publishers, Finland. She is the Life
member of the Computer Society of India, Indian Society for
Technical Education, New Delhi (India), The Indian Science
Congress Association, Kolkata (India) and International
Association of Engineers (IAENG), USA and International
Association of Computer Science and Information
Technology, Singapore.

Bhavik Kothari received Bachelor degree in Computer
Science from Birla Institute of Technology and Science,
Pilani of India in 2010.

Chittaranjan Hota is currently Associate Professor and
Head, Computer Science and Information Systems
department at Birla Institute of Technology and Science,
Pilani Hyderabad Campus, Hyderabad. He is with BITS,
Pilani since the year 2000. He was the Faculty In-Charge
of Information Processing and Business Intelligence Unit at
BITS-Hyderabad for a period of first two years where he
was instrumental in Campus Network design and
implementation. He has worked in various Indian
universities at different levels over past 20 years. He had
several visiting researcher and visiting professor
assignments (from two months to a semester at each
place) at International academic and research institutes like,
School of Computer Science and Engineering, University of
New South Wales, Sydney, Australia; Helsinki Institute of
Information Technology, Helsinki, Finland;
Telecommunications Software and Multimedia Laboratory,
Helsinki University of Technology, Helsinki, Finland, and
City University, London over past several years. He has
published extensively in national and international
conferences and journals. He is a life member of ISTE, and
IE, India. His research interests are in the areas of Traffic
Engineering in IP Networks, Security and Quality of Service
issues over the Internet, Peer-to-Peer Overlays, Mobile
Wireless Networks, and Cloud Computing

