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Abstract 
Over the years, grid computing has emerged as one of the most 
viable and scalable alternatives to high performance 
supercomputing, tapping into computing power of the order of 
Gigaflops. However, the inherent dynamicity in grid computing 
has made it extremely difficult to come up with near-optimal 
solutions to efficiently schedule tasks in grids. The present 
paper proposes a novel grid-scheduling heuristic that adaptively 
and dynamically schedules tasks without requiring any prior 
information on the workload of incoming tasks.  The approach 
models the grid system in the form of a state-transition diagram, 
employing a prioritized round-robin algorithm with task 
replication to optimally schedule tasks, using prediction 
information on processor utilization of individual nodes.  
Simulations, comparing the proposed approach with the round-
robin heuristic, have shown the given heuristic to be more 
effective in scheduling tasks as compared to the latter. 

Keywords: Dynamic Scheduling, Grid Computing, Task 
Replica, Round Robin, Prioritized Round Robin, Prediction 
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1. Introduction 
 
Grid computing is a form of distributed computing, 
where a set of loosely coupled and heterogeneous 
computing nodes donate their unused processor cycles to 
create a pool of substantial processing capacity. In recent 
years, grid computing has emerged as one of the most 
feasible alternatives to process compute-intensive tasks, 
using co-operating processing nodes of ordinary capacity. 
The main advantage that grid computing offers, is that 
inexpensive computing nodes are coupled together to 
produce resource capacity comparable to high-end 
supercomputers, albeit at a lower cost. The major 
bottleneck that grids face is that individual processors 
might not be well connected to one another and thus, the 
model is more suited to applications which can be broken 

into several independent and atomic sub-tasks, without 
any requirement to communicate intermittent results 
between the grid nodes.   
 

The principal challenge involved in any distributed 
computing environment, is that optimal scheduling of tasks 
dynamically entering the grid, becomes an NP-hard problem.  
Efficient grid scheduling is one of the key factors for achieving 
high performance in gird environments.  Several heuristics [1, 
2, 3, 4, 5] have been proposed in literature to schedule the tasks 
efficiently to the most suitable node present in the grid.  A 
majority of these heuristics show satisfactory results in static 
grid environments. However, they cannot be directly applied in 
dynamic environments where tasks are continuously arriving in 
the grid at regular intervals. 

 
The principal motivation of the present paper is to develop a 
scalable task-scheduling algorithm which can operate efficiently 
without the services of a full-fledged prediction system 
providing prior information on workload of incoming tasks. The 
paper proposes an enhancement of the existing round-robin 
heuristic [2], where we exploit information on the capacity of 
individual grid nodes, to prioritize tasks currently in execution, 
such that tasks currently allocated to slower machines are 
preferred for replication purpose over jobs executing on 
comparatively faster machines. The approach facilitates 
replication of tasks, hitherto assigned to execute on slower 
machines, on machines with higher processing capacity. 

 

2.   Related Work  
 
There has been significant research in the past to study the 
classic problem of optimal job assignment in distributed 
environments such as grids. Heuristics, dedicated to scheduling 
tasks optimally in a grid environment, can be broadly 
categorized into the following classes. 
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A. Batch Mode Mapping Heuristics 
Tasks are queued and collected into a set when they arrive in 
the batch mode [1]. They will be scheduled or mapped to their 
respective machines afterwards at a specific interval by the 
scheduling algorithm. In Min-min scheduling algorithm, each 
job will be always assigned to the resource which can complete 
it the earliest in order to spend less time completing all jobs. 
The Max-min scheduling algorithm is similar to Min-min 
scheduling algorithm except that it gives the highest priority to 
the job with the maximum earliest completion time. The 
Sufferage heuristic is based on the idea that better mappings can 
be generated by assigning a machine to a task that would 
“suffer” most in terms of expected completion time if that 
particular machine is not assigned to it. 

B.  On-line Mode Mapping Heuristics  

Tasks are scheduled as soon as they arrive [1]. All the machines 
in the grid need to be referred to in order to decide the optimal 
machine that needs to be mapped to the incoming task. The 
MCT (minimum completion time) heuristic assigns each task to 
the machine that results in the task’s earliest completion time. 
The MET (minimum execution time) heuristic assigns each task 
to the machine that performs the task’s computation in the least 
amount of execution time. The mapping algorithm takes O(m) 
time (where m is the number of machines in the grid) to map a 
task to its optimal machine. If a task arrives in the Grid while 
the mapping algorithm is underway, it has to wait until the 
previous mapping is complete. 

C. Ringed Round Robin Algorithm 
The algorithm assumes no prediction information is available 
either for the task length or the processor capability [2]. Tasks 
arriving in the Grid are assigned to idle machines in a FCFS 
(First come Fist serve) manner. Task replication is performed 
later on, in a ringed round robin fashion, to achieve better 
resource utilization in the Grid. Both the task allocation and 
task replication routines are executed randomly without any 
basis or optimization criteria. 

D. Scheduling Algorithm for Bag-Of-Tasks using 
Multiple Queues with duplication 

The strategy of the algorithm is to schedule tasks according to 
their workloads and computing power of resources available 
[6]. The machines in the Grid are ranked according to their 
processing speed and are allocated tasks that are most 
compatible to their processing capacity. In addition, it adopts a 
duplication scheme in order to achieve optimal utilization of the 
machines available and to avoid undesirable scheduling 
decisions. The algorithm is static in nature as compared to the 
inherent dynamic nature of grid systems where tasks are 
continuously submitted to the system and get optimally 
scheduled on the machines available in the grid. 

E. Self-Adaptive Scheduling System for 
Heterogeneous Computing  

Ming Wu and Xian-He Sun [7] propose a prediction model 
based on probabilistic approach for long-term, application-level 
based task scheduling system in a distributed heterogeneous 
computing environment. The architecture of the distributed 
model comprises of a task allocator, scheduler and predictor, all 
integrated together, to form the GHS scheduling system. A self-
adaptive task scheduling algorithm, based on probabilistic 
approach, is put forth to improve the accuracy of the GHS 
scheduling system for efficiently scheduling the meta-tasks. 

F. Economic Task Replication for Scheduling in 
Distributed Systems  

Amit Agarwal and Padam Kumar [8] attempt to minimize the 
number of task replications without affecting the overall 
makespan of the meta-task submitted to the grid, by proposing 
two workflow scheduling algorithms, namely, Reduced 
Duplication for homogeneous systems (RD) and Heterogeneous 
Economical Duplication (HED) for heterogeneous systems 
respectively. The proposed algorithms aim at optimizing the 
overall processor consumption, by removing some duplicated 
tasks in the schedule whose removal does not affect the 
makespan adversely, thereby producing scheduling holes in the 
system, which can, in turn, be used to schedule other distributed 
applications in the grid.  

G. Task Duplication based Scalable Scheduling 
Algorithm for Symmetric Multiprocessors  

Oh-Han Kang and Dharma P. Agrawal [11] present a task 
duplication based scalable scheduling algorithm for Symmetric 
Multiprocessors (SMP), referred to as the S3MP (Scalable 
Scheduling for SMP), to schedule the tasks of a DAG onto a 
bus-based SMP environment, facilitating duplication of certain 
critical tasks, so as to reduce the overall schedule length, by 
pre-allocating communication resources so as to avoid 
communication conflicts later on during scheduling.  

H.  Miscellaneous Heuristics  
Bin Zeng et al. [3] propose a negotiation based model, where 

adaptive learning agents, representing individual resources and 
tasks, co-operate among themselves to help achieve a near-
optimal schedule. N.Malarvizhi and V.Rhymend Uthariaraj [4] 
describe a scalable grid-architecture involving a Grid Resource 
Manager, assuming the role of a resource broker to select 
computational resources based on job requirements and the 
capacity of grid resources, so as to minimize the time to process 
each application along with transmission time associated with it. 
D. P. Spooner et al. [5] develop a multi-tiered scheduling 
architecture (TITAN) that uses a performance prediction system 
(PACE), along with brokers that are involved in distribution of 
jobs in the grid, to meet deadlines and significantly increase the 
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efficiency of resource utilization. The paper [9] presents a novel 
load balancing approach in a heterogeneous distributed 
environment. The scheduler takes into account the threshold 
value, based on the ratio of service rates, along with the queue 
length to determine whether it is beneficial to migrate a given 
local task to another node in the system or not. Markov process 
model is used to describe the behavior of the heterogeneous 
distributed system under the proposed policies. Ruay-Shiung 
Chang et al. [10] propose an Adaptive Scoring Job Scheduling 
algorithm (ASJS) for a distributed grid environment to reduce 
the completion time of submitted jobs, by assigning jobs to 
resources after looking into recent scheduling history of every 
available resource and then choosing the most optimal one. 
Computing intensive jobs and data intensive jobs are handled 
differently, and local and global updates are used to obtain the 
most recent status of grid resources to schedule jobs more 
effectively in real time. System ModelSyed Nasir Mehmood 
Shah et al. [12] propose an algorithm for CPU scheduling of a 
modern multiprogramming operating system, design and 
development of new CPU scheduling algorithms (the Hybrid 
Scheduling Algorithm and the Dual Queue Scheduling 
Algorithm) with a view to minimize overall task schedule. The 
following paper extends this prioritized round robin heuristic 
from a single system multiprogramming environment, onto a 
multi-processor distributed architecture. 

3. System Model 
 
We consider a Grid system comprising of distributed computing 
nodes, and a central server for task allocation purpose. The Grid 
is modeled in the following state transition diagram, to be 
oscillating between the 4 given states. The system comprises of 
two queues to store records of the tasks currently in the Grid, 
namely the Waiting Queue and the Execution Queue. The 
Waiting Queue comprises of tasks in the Grid which are yet to 
be mapped to their respective machines, while the Execution 
Queue contains all the tasks which are currently in execution on 
at least one of the machines in the Grid.  

 
 The proposed model works under the following assumptions: 
 1. The model assumes that the tasks arriving in the Grid are 
atomic (cannot be broken into further sub-tasks) and are 
independent of one another.  

2. It is assumed that the transportation costs involved, when 
tasks are mapped to their respective machines, are considered to 
be negligible. 

3. It is assumed that we have no information available on the 
workload of the incoming tasks as it is not practically feasible 
to derive information regarding the same without the services of 
a full-fledged Prediction System. 

4. The approach assumes that the processing speed of 
individual computing nodes is available to us. The initial 
processing speed of nodes is provided and the processing 
capacity of machines is then updated from time to time on the 
basis of the last application executed (workload) and the time 
taken.   
 

4. Proposed Solution 
 
We represent the heuristic as a state transition diagram (Given 
at fig-1.) with the grid occupying one of the four states at any 
given time. The waiting queue, comprising of tasks waiting to 
be mapped and executed on their respective machines, is 
implemented as a First in, First out (FIFO) queue where the task 
with the earliest arrival time is at the head of the queue and 
allocated an idle machine before other tasks waiting in the 
queue. The execution queue, consisting of tasks currently in 
execution, is implemented as a circular queue where each task 
in the queue has a specific order, and no task has the same order 
as any other task. The Execution Queue makes use of three 
pointers to scan the circular list in a Ringed Round Robin 
fashion. The current pointer is used to point to the task 
currently having the highest priority in the Execution Queue. 
The next pointer is used to point to the task with the second 
highest priority, which is nothing but the task lined next to the 
current task, one step in the clockwise direction. The last 
pointer is used to point to the task with the least priority in the 
Execution Queue, which is precisely the task placed besides the 
current task, a step in the anti-clockwise direction. The 
following is the description of the four states occupied by the 
grid system, during the course of time. 
 

 
 
State I 
 
Initial phase:   State I is represented by an idle scheduler 
waiting for tasks to arrive in the grid. Incoming tasks are lined 
up in the waiting queue. Both the Waiting Queue and the 
Execution are initially empty. When the number of tasks in the 
Waiting Queue becomes more than the threshold value, a 
transition is made to State II. 
 
State II 
 

Initial phase: The Execution Queue is initially empty while 
the Waiting Queue comprises of a number of incoming tasks in 
the Grid. We maintain a list comprising of idle machines in the 
system. Initially all the machines are idle in State II, and hence 
the list contains all the machines in the Grid.   

 
The tasks from the head of the Waiting queue and mapped one 
by one to the machines in the idle list. As soon as a task from 
the Waiting queue gets mapped to a machine, the given machine 
is subsequently removed from the idle list, while the task is 
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removed from the head of the Waiting Queue and  inserted into 
the Execution Queue as explained in the System Model. The 
logic behind the mode of insertion is to give the highest priority 
to a task which has been assigned the slowest processor and 
vice-versa. The task with the highest priority in the Execution 
Queue would be the first one to get replicated because it is 
essentially the task with the slowest processors dedicated to it 
and hence replicating such a task would lead to a very high 
probability of the new machine executing the task before the 
machines already assigned to it. 
 
State III 
 

Initial phase: The waiting Queue is initially empty while the 
Execution Queue consists of tasks that are in execution in the 
Grid. 

 
If a machine completes the execution of a task, the processor 

list of that particular task is referred to, and all the machines 
dedicated to executing the given task are released and made free 
while the task is removed the Execution Queue and the current, 
next and last pointers are updated if required. We update the 
processing power of the newly freed machine based upon the 
number of instructions that the machine executed for the 
previous task and the time it took to finish its execution. If the 
processing speed of the machine is greater than that of the 
maxProcSpeed of the task pointed to by the current pointer, 
then the given machine is required to execute the replica of the 
task pointed to by the current pointer.  

 
Also, the current, next and last pointers are updated as 

follows. The current pointer becomes the last pointer, the next 
pointer becomes the current pointer and the next pointer would 
now be pointing to the task that was one step in the clockwise 
direction to the task pointed to by the erstwhile next pointer. 
Also, if the machine assigned to execute the replica of a task 
has a processor speed greater than that of maxProcSpeed of that 
task then the value needs to be updated to the processing speed 
of the given machine. We also keep track of the number of 
machines executing replicas and the number of tasks in the 
Waiting Queue, the information of which is exploited in State 
IV of the heuristic. At this point of time, we also check if there 
are any other idle machines present in the Grid from the idle list 
and assign tasks from the Execution Queue in the same way as 
described above, one by one, to these idle machines which are 
then subsequently removed from the idle list. 

 
However, if a machine is found to have its updated processing 

speed to be less than that of the maxProcSpeed of the current 
task, then we do not assign the machine to execute the task 
replica for the simple reason that in all probability, the task 
would be accomplished faster on one of the machines already 
assigned to it as compared to the given machine. The machine is 
then inserted at the tail of the list containing the idle machines 
present in the Grid. 

 
There are three scenarios, eventually possible, in State III. 
Case I: All the tasks in the Execution Queue are successfully 

completed while the Waiting Queue is still empty. In this case, 
we traverse back to State I. 

 

Case II: All the tasks in the Execution Queue are successfully 
completed while the number of tasks in the Waiting Queue is 
still less or equal to the threshold. In this case, we traverse back 
to State II. 

 
Case III: The number of tasks in the Waiting Queue has 

exceeded the threshold before all the tasks in the Execution 
Queue could be completed. In this case, we traverse to State IV. 

 
State IV 
 
Initial Phase: Both the Waiting and the Execution Queue are 

initially non-empty. Two scenarios are possible at this point of 
time. 

 
Case I: The number of machines executing replicas is less 

than the number of tasks in the Waiting Queue. 
 
Case II: The number of machines executing task replicas is 

more than the number of tasks in the Waiting Queue. 
 
The tasks in the Execution Queue are traversed in an anti-

clockwise manner one by one, starting from the task pointed to 
by the last pointer (the least priority task) and if a task has more 
than one machine allocated to it, the machine at the tail end of 
the processor list is taken out of the list, freed from the task it 
was currently executing and assigned the task at the head of the 
Waiting Queue (after removing the task from the queue). 

 
In Case I, we stop the traversal as soon as all the tasks in the 

execution queue are being run on one and only one machine and 
transition to State II. In Case II, we stop traversing the linked 
list as soon as all the machines in the Waiting Queue are 
assigned a machine, and then subsequently transition to State 
III. 
 

5. Simulation 
 
Simulation consists of a grid network comprising of a fixed 
number of computing nodes. Both, the number of machines as 
well as their processing capacity, are chosen randomly over a 
pre-defined range. Tasks enter the grid at random intervals 
within the range of 10 units and are assigned to the scheduler 
for allocation as soon as they arrive.  
 

The simulation code defines one time unit as a single 
iteration, where we check for the current state of the grid system 
and accordingly perform the amount of work the scheduler can 
do in a single time unit when the grid is in that particular state. 
We run the simulation for as many steps as required to complete 
all the jobs submitted to the grid over the span of time. For our 
simulation purpose, we have considered the four test cases 
based on the degree of heterogeneity in node capacity and task 
workload entering the grid. In each case, we have considered 5 
input cases with the following number of tasks-40, 80, 120, 160, 
200. The following the four test cases in consideration. We have 
considered the overall turnover time as our yardstick to test the 
performance of the proposed heuristic against the round-robin 
algorithm. 

 
Case I: Low heterogeneity in both processing capacity and 
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task workload,  
 
Case II: High heterogeneity in processing capacity and low 

heterogeneity in task workload. 
 
 
Case III: Low heterogeneity in node capacity and high 

heterogeneity in task workload. 
 
Case IV: High heterogeneity in both node capacity and task 

workload.  
 
In Case I, since the heterogeneity in node capacity is low , 

our proposed approach does not perform significantly better 
than the existing round-robin heuristic. The following graph 
compares the performance of round-robin heuristic and the 
proposed approach. 

 
In Case II, though there is low heterogeneity in the task 

workload in the gird, but since the node capacities vary over a 
comparatively wide range, we observe significant improvement 
in results when we compare our approach with that that of the 
former heuristic. 

 
In Case III, though there is high heterogeneity in the task 

workload but without a high heterogeneity in the node capacity 
in the gird, again, the algorithm does not show much 
improvement over the round-robin algorithm. 

 
In Case IV, due to high variation in individual node 

capacities as well as in workloads of tasks arriving in the gird, 
we see a marked improvement of our heuristic in comparison 
the round-robin algorithm as high variation in processing speeds 
means that we can exploit faster available machines to replicate 
tasks which are currently running on comparatively slower 
machines. 

 

 

Fig. II.  Compares RR(Round Robin) and PRR (Prioritized Round 
Robin) for Case I. 

 

 
Fig. III. Compares RR with PRR for Case II. 

 
 

 
Fig. IV.  Compares RR and PRR for Case III. 

 
 

 
 

Fig. V. compares RR and PRR for Case IV. 
 

6. Conclusions 
 

The following paper describes a novel approach to schedule 
tasks efficiently in a grid environment, without having prior 
information on workload of incoming tasks. We propose an 
enhancement to the existing round-robin heuristic by 
prioritizing tasks eligible for replication. The approach is based 
on exploiting information on processing capability of individual 
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grid resources and applying replication on tasks assigned to the 
slowest processors. Future work will focus on designing a 
scalable architecture for scheduling tasks on grids comprising of 
nodes of the order of thousands, helping us to assess the 
performance of the heuristic to a better extent. In the present 
approach, we have ignored the costs involved in transporting 
tasks to their designated machines. To take the communication 
costs involved into account, along with the obvious processing 
costs of these tasks, is intended to be taken up as a subject for 
our future work. 
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