
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

600

Natural language Interface for Database: A Brief review

Mrs. Neelu Nihalani 1, Dr. Sanjay Silakari 2, Dr. Mahesh Motwani 3

1 Reader, Department of Computer Applications, UIT RGPV

Bhopal, MP India

2 Prof. & Head, Dept. of CSE UIT, RGPV
Bhopal, MP, India

3 Reader, Dept. of CSE, JEC, Jabalpur
Jabalpur, MP, India

ABSTRACT

Information is playing an important role in our lives. One of the
major sources of information is databases. Databases and database
technology are having major impact on the growing use of
computers. Almost all IT applications are storing and retrieving
information from databases. Retrieving information database requires
knowledge of database languages like SQL. The Structured Query
Language (SQL) norms are been pursued in almost all languages for
relational database systems. However, not everybody is able to write
SQL queries as they may not be aware of the structure of the
database. So this has led to the development of Intelligent Database
System (IDBS) . There is an overwhelming need for non-expert
users to query relational databases in their natural language instead of
working with the values of the attributes. As a result many intelligent
natural language interfaces to databases have been developed, which
provides flexible options for manipulating queries. The idea of using
Natural Language instead of SQL has prompted the development of
new type of processing called Natural language Interface to Database.
NLIDB is a step towards the development of intelligent database
systems (IDBS) to enhance the users in performing flexible querying
in databases. This paper is an introduction to Intelligent Database
System and Natural Language Interface to Databases. Then a brief
overview of NLIDB subcomponents is given and then discussion
then moves on to NLIDB architectures and various approaches for
the development of NLIDB systems.

Keywords: Databases, Database Management System
(DBMS), Structured Query Language (SQL), Natural
Language Interface for Databases (NLIDB), Intelligent
Database System (IDBS), Flexible Querying.

1. INTRODUCTION

Databases are gaining prime importance in a huge variety of
application areas employing private and public information
systems . Databases are built with the objective of facilitating
the activities of data storage, processing, and retrieval
associated with data management in information systems. Due
to the progress and in-deep applications of computer
technologies, the widespread applications of web technology

in several areas to be accurate, databases have become the
repositories of huge volumes of data In relational databases, to
retrieve information from a database, one needs to formulate
a query in such way that the computer will understand and
produce the desired output. The Structured Query Language
(SQL) norms are been pursued in almost all languages for
relational database systems. The SQL norms are based on a
Boolean interpretation of the queries. But some user
requirements may not be answered explicitly by a classic
querying system. It is due to the fact that the requirements’
characteristics cannot be expressed by regular query
languages. Many novel-generation database applications
stipulate intelligent information management necessitating
efficient interactions between the users and database. In recent
times, there is a rising demands for non-expert users to query
relational databases in a more natural language encompassing
linguistic variables and terms, instead of operating on the
values of the attributes.
Therefore the idea of using natural language instead of SQL
has prompted the development of new type of processing
method called Natural Language Interface to Database
systems (NLIDB). NLIDB is a step towards the development
of intelligent database systems (IDBS) to enhance the users in
performing flexible querying in databases.

2. Intelligent database System (IDBS)

An IDBS is endowed with a data management system able to
manage large quantities of persistent data to which various
forms of reasoning can be applied to infer additional data and
information. This includes knowledge representation
techniques, inference techniques, and intelligent user
interfaces – interfaces which extend beyond the traditional
query language approach by making use of natural language
facilities[1,2]. These techniques play important role in
enhancing databases systems : knowledge representation
techniques allow one to represent better in the DB the
semantics of the application domains, inference techniques

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

601

allow one to reason about data to extract additional data and
information, Intelligent user interfaces help users to make
requests and receive the replies.

Intelligent databases systems are the systems that manage
information in a natural way, making that information easy to
store, access and use. One of the main reasons for using
intelligent database system is that we live in a state of
information glut. To simply survive in today’s society, we
need to access and use this information. By using intelligent
databases system we can have better access to, and use of,
more kinds of information that they could otherwise. This
means intelligent databases systems should[2]

 Provide high-level intelligent tools that provide new
insights into the contents of the database by
extracting knowledge from data.

 Make information available to larger numbers of
people because more people can now utilize the
system due to its ease of use.

 Improve the decision making process involved in
using information after it has been retrieved by using
higher level information models

 Interrelate information from different sources using
different media so that the information is more easily
absorbed and utilized by the user.

 Use of knowledge and inference, making it easier to
retrieve, view and make decisions with information.

In recent times, there is a rising demands for non-expert users
to query relational databases in a more natural language
encompassing linguistic variables and terms, instead of
operating on the values of the attributes. Intelligent interface
for database systems, a promising approach, enhance the users
in performing flexible querying in databases. The research and
advancement of NLIDB, an important step towards the
development of intelligent databases system and it has
emerged as a new discipline and have fascinated the attention
to number of researchers.

3. Natural language interface to databases

(NLIDB)

Natural Language Interfaces is a hot area of research since
long. The purpose of Natural language Interface to Database
System is to accept requests in English or any other natural
language and attempts to ‘understand’ them or we can say
that Natural language interfaces to databases (NLIDB) are
systems that translate a natural language sentence into a
database query [3]. Although the earliest research has
started since the late sixties[3], NLIDB remains as an open
research problem.
A complete NLIDB system will benefit us in many ways.
Anyone can gather information from the database by using
such systems .Additionally, it may change our perception
about the information in a database. Traditionally, people
are used to working with a form; their expectations depend
heavily on the capabilities of the form. NLIDB makes the

entire approach more flexible, therefore will maximize the
use of a database.

There are many applications that can take advantages of
NLIDB. In PDA and cell phone environments, the display
screen is not as wide as a computer or a laptop. Filling a
form that has many fields can be tedious: one may have to
navigate through the screen, to scroll, to look up the scroll
box values, etc. Instead, with NLIDB, the only work that
needs to be done is to type the question similar to the SMS
(Short Messaging System).

3.1 Sub Components of NLIDB

Computing scientists have divided the problem of natural
language access to a database into two sub-components:

 Linguistic component

 Database component

 Linguistic Component
It is responsible for translating natural language input into a
formal query and generating a natural language response
based on the results from the database search.

Database Component
It performs traditional Database Management functions. A
lexicon is a table that is used to map the words of the natural
input onto the formal objects (relation names, attribute names,
etc.) of the database. Both parser and semantic interpreter
make use of the lexicon. A natural language generator takes
the formal response as its input, and inspects the parse tree in
order to generate adequate natural language response. Natural
language database systems make use of syntactic knowledge
and knowledge about the actual database in order to properly
relate natural language input to the structure and contents of
that database. Syntactic knowledge usually resides in the
linguistic component of the system, in particular in the syntax
analyzer whereas knowledge about the actual database resides
to some extent in the semantic data model used. Questions
entered in natural language translated into a statement in a
formal query language. Once the statement unambiguously
formed, the query is processed by the database management
system in order to produce the required data. These data then
passed back to the natural language component where
generation routines produce a surface language version of the
response.

4. Advantages and Disadvantages of NLIDB

This section discusses advantages and disadvantages of
NLIDB, most of them cited from[3] Advantages of
NLIDB

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

602

i. No Artificial Language
One advantage of NLIDBs is supposed to be that the user is
not required to learn an artificial communication language.
Formal query languages like SQL are difficult to learn and
master, at least by non-computer-specialists.

ii. Simple, easy to use

Consider a database with a query language or a certain form
designed to display the query. While an NLIDB system
only requires a single input, a form-based may contain
multiple inputs (fields, scroll boxes, combo boxes, radio
buttons, etc) depending on the capability of the form. In the
case of a query language, a question may need to be
expressed using multiple statements which contain one or
more sub- queries with some joint operations as the
connector.

iii. Better for Some Questions

It has been argued that there are some kind of questions (e.g.
questions involving negation, or quantification) that can be
easily expressed in natural language, but that seem difficult (or
at least tedious) to express using graphical or form-based
interfaces. For example, “Which department has no
programmers?” (Negation), or “Which company supplies
every department?” (Universal quantification), can be easily
expressed in natural language, but they would be difficult to
express in most graphical or form-based interfaces. Questions
like the above can, of course, be expressed in database query
languages like SQL, but complex database query language
expressions may have to be written.

iv. Fault tolerance

Most of NLIDB systems provide some tolerances to minor
grammatical errors, while in a computer system; most of the
time, the lexicon should be exactly the same as defined, the
syntax should correctly follow certain rules, and any errors
will cause the input automatically be rejected by the system.
In the case of incomplete sentences, most of computer
systems do not provide any support.

v. Easy to Use for Multiple Database Tables

Queries that involve multiple database tables like “list the
address of the farmers who got bonus greater than 10000
rupees for the crop of wheat”, are difficult to form in graphical
user interface as compared to natural language interface.

b. Disadvantages of NLIDB

i. Linguistic coverage is not obvious

Currently all NLIDB systems can only handle some subsets
of a natural language and it is not easy to define these
subsets. Even some NLIDB systems cannot answer certain
questions belong to their own subsets. This is not the case in
a formal language. The formal language coverage is obvious
and any statements that follow the given rules are guaranteed
to give the corresponding answer.

ii. Linguistic vs. conceptual failures

In the case of NLIDB system failures, it is often the case that
the system does not provide any explanation of what causes
the system to fail. Some users may try to rephrase the
question or just leave the question unanswered. Most of the
time, it is up to the users to determine of the causes the
errors.

iii. False expectations

People can be misled by an NLIDB system’s ability to
process a natural language: they may assume that the
system is intelligent .Therefore rather than asking precise
questions from a database, they may be tempted to ask
questions that involve complex ideas, certain judgments,
reasoning capabilities, etc, which an NLIDB system cannot
be relied upon.

5. Various Approaches Used for Development

of NLIDB Systems

Natural language is the topic of interest from computational
viewpoint due to the implicit ambiguity that language
possesses. Several researchers applied different techniques to
deal with language. Next few sub-sections describe diverse
strategies that are used to process language for various
purposes.

a. Symbolic Approach (Rule Based Approach)

Natural Language Processing appears to be a strongly
symbolic activity. Words are symbols that stand for objects
and concepts in real worlds, and they are put together into
sentences that obey well specified grammar rules. Hence for
several decades Natural Language Processing research has
been dominated by the symbolic approach [6].
Knowledge about language is explicitly encoded in rules or
other forms of representation. Language is analysed at various
levels to obtain information. On this obtained information
certain rules are applied to achieve linguistic functionality. As
Human Language capabilities include rule-base reasoning, it
is supported well by symbolic processing. In symbolic
processing rules are formed for every level of linguistic
analysis. It tries to capture the meaning of the language based
on these rules.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

603

b. Empirical Approach (Corpus Based

Approach)

Empirical approaches are based on statistical analysis as well
as other data driven analysis, of raw data which is in the form
of text corpora. A corpus is collections of machine readable
text. The approach has been around since NLP began in the
early 1950s. Only in the last 10 years or so empirical NLP has
emerged as a major alternative to rationalist rule-based
Natural Language Processing.

Corpora are primarily used as a source of information about
language and a number of techniques have emerged to enable
the analysis of corpus data. Syntactic analysis can be achieved
on the basis of statistical probabilities estimated from a
training corpus. Lexical ambiguities can be resolved by
considering the likelihood of one or another interpretation on
the basis of context.
Recent research in computational linguistics indicates that
empirical or corpus –based methods are currently the most
promising approach to developing robust, efficient natural
language processing (NLP) systems[4,5]. These methods
automate the acquisition of much of the complex knowledge
required for NLP by training on suitably annotated natural
language corpora, e.g. tree-banks of parsed sentences[7].

Most of the empirical NLP methods employ statistical
techniques such as n-gram models, hidden Markov models
(HMMs), and probabilistic context free grammars (PCFGs).
Given the successes of empirical NLP methods, researchers
have recently begun to apply learning methods to the
construction of information extraction systems[8,9,10].
Several different symbolic and statistical methods have been
employed, but most of them are used to generate one part of a
larger information extraction system. Majumder,
experimented N-gram based language modeling and claimed
to develop language independent approach to IR and Natural
Language Processing[11].

c. Connectionist Approach (Using Neural
Network)

Since human language capabilities are based on neural
network in the brain, Artificial Neural Networks (also called
as connectionist network) provides on essential starting point
for modeling language processing. In the recent years, the
field of connectionist processing has seen a remarkable
development. The sub-symbolic neural network approach
holds a lot of promise for modeling the cognitive foundations
of language processing. Instead of symbols, the approach is
based on distributed representations that correspond to
statistical regularities in language.
There has also been significant research applying neural-
network methods to language processing [12,13] However,

there has been relatively little recent language research using
sub-symbolic learning, although some recent systems have
successfully employed decision trees transformation rules
and other symbolic methods . SHRUTI[14] system is a
neurally inspired system for event modeling and temporal
processing at a connectionist level.

6. Architecture of NLIDB systems

 This section describes architectures adopted in existing
systems.

a. Pattern Matching systems

The early efforts in the NL interfaces area started back in ties
[16]. Prototype systems had appeared in the late sixties and
early seventies. Many of these systems relied on pattern
matching to directly mapping the user input to the database
[15]. Formal LIst Processor (FLIP) is an early language for
pattern-matching based on LISP structure [17] works on the
bases that if the input matches one of the patterns then the
system is able to build a query for the database. In the pattern
matching
based systems, the database details were inter-mixed into the
code, limited to specific databases and to the number and
complexity of the patterns. As the usage of databases has
spread during the 1970’s, the concept of user interface
presented new challenges to the designers. One approach was
the use of natural language processing, where the user
interactively is allowed to interrogate the stored data.

The main advantage of the pattern-matching approach is its
simplicity. In such systems no elaborate parsing and
interpretation modules are needed, and the systems are easy to
implement. Also, pattern-matching systems often manage to
come up with some reasonable answer, even if the input is out
of the range of sentences the patterns were designed to
handle. One of the best natural language processing system
that role in this style is ELIZA. ELIZA functions by
processing users, by these responses to the scripts. It typically
says differently and rephrased the statements of the users as
questions and replies the answers of those questions to the
'patient. ELIZA was programmed by Mr. Joseph Weizenbaum
in nearly from 1964 to 1966.

b. Syntax-Based Systems

In syntax-based systems the users question is parsed (i.e.
analyzed syntactically) and the resulting parse tree is directly
mapped to an expression in some database query language.
Syntax-based systems use a grammar that describes the
possible syntactic structures of the users questions. Syntax-
based NLIDBs usually interface to application-specific
database systems that provide database query languages
carefully designed to facilitate the mapping from the parse
tree to the database query. It is usually difficult to devise

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

604

mapping rules that will transform directly the parse tree into
some expression in a real-life database query language (e.g.
SQL).

The main advantage of using syntax based approaches is
that they provide detailed information about the structure
of a sentence. A parse tree contains a lot of information
about the sentence structure; starting from a single word and
its part of speech, how words can be grouped together to
form a phrase, how phrases can be grouped together to
form more complex phrases, until a complete sentence is
built. Having this information, we can map the semantic
meanings to certain production rules (or nodes in a parse
tree).

Unfortunately not all nodes should be mapped, some nodes
have to be left just as they are without adding any semantic
meanings. And it is not always clear which nodes should be
mapped and which should not. Moreover the same node in
different parse trees is not necessarily going to be translated
in all the trees. The second problem is a sentence can have
multiple correct parse trees, and if all are translated, they may
lead to different query results. The last problem is that it is
difficult for a syntax based approach to directly map a parse
tree into some general database query language, such as
SQL (Structured Query Language). In semantic grammar
systems, the question-answering is still done by parsing the
input and mapping the parse tree to a database query. The
difference, in this case, is that the grammar’s categories do
not necessarily correspond to syntactic concepts. Semantic
information about the knowledge domain is hard-wired into
the semantic grammar that‟s why systems based on this
approach are very difficult to port to other knowledge
domains a new semantic grammar has to be written whenever
the NLIDB is configured for a new knowledge domain.
Semantic grammar categories are usually chosen to enforce
semantic constraints [18]. Much of the systems developed till
now like LUNAR, LADDER, use this approach of semantic
grammar.

c. Semantic Grammar Systems

A semantic grammar system is very similar to the syntax
based system, meaning that the query result is obtained by
mapping the parse tree of a sentence to a database query.
The basic idea of a semantic grammar system is to simplify
the parse tree as much as possible, by removing unnecessary
nodes or combining some nodes together. Based on this
idea, the semantic grammar system can better reflect the
semantic representation without having complex parse tree
structures. Therefore, a production rule in a semantic
grammar system does not necessarily correspond to the
general syntactic concepts.
Instead of smaller structures, the semantic grammar approach
also provides a special way for assigning a name to a certain
node in the tree, thus resulting in less ambiguity compared to

the syntax based approach. Both of the ambiguities that can
occur in mapping a node to its semantic label and the number
of different parse trees which are possible for a particular
sentence.

The main drawback of semantic grammar approach is that it
requires some prior- knowledge of the elements in the
domain, therefore making it difficult to port to other
domains. In addition, a parse tree in a semantic grammar
system has specific structures and unique node labels, which
could hardly be useful for other applications. Regardless,
there are on-going attempts to automatically build the
grammar rules by obtaining the prior-knowledge based on
user interaction or by automatically extracting it from a
corpus.

d. Intermediate Representation Languages
Most current NLIDBs first transform the natural language
question into an intermediate logical query, expressed in some
internal meaning representation language. The intermediate
logical query expresses the meaning of the user’s question in
terms of high level world concepts, which are independent of
the database structure. The logical query is then translated to
an expression in the database’s query language, and evaluated
against the database

Due to the difficulties of directly translating a sentence into
a general database query languages using a syntax based
approach, the intermediate representation systems were
proposed. The idea is to map a sentence into a logical query
language first, and then further translate this logical query
language into a general database query language, such as
SQL. In the process there can be more than one intermediate
meaning representation language [1]. Figure 6.1 shows a
possible architecture of an intermediate representation
language system.

Figure 6.1 Intermediate Representation
Language Architecture

The transformation from a logical query language to a
database query language does not need to be made in one
step. As an example, an NLIDB system developed at the
University of Essex uses a multi-stage transformation
process [5]. The first logic query is in the from of λ-calculus,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

605

which is then transformed to a first-order predicate logic,
universal domain relational calculus, domain relational
calculus, tuple relational calculus, and finally SQL.

In the intermediate representation language approach,
the system can be divided into two parts. One part starts
from a sentence up to the generation of a logical query. The
other part starts from a logical query until the generation of
a database query. In the part one, The use of logic query
languages makes it possible to add reasoning capabilities to
the system by embedding the reasoning part inside a logic
statement. In addition, because the logic query languages is
independent from the database, it can be ported to
different database query languages as well as to other
domains, such as expert systems and operating systems [1].

7. History of NLIDB

The very first attempts at NLP database interface are just as
old as any other NLP research. Asking questions to databases
in natural language is very convenient and easy method of
data access, specially for casual users who do not understand
complex database query language such as SQL.
Here are some examples of the Natural Language Interface to
Database systems :

a. LUNAR system
The system LUNAR [20] is a system which answers questions
about samples of rocks brought back from the moon. The
system was informally introduced in 1971. To accomplish its
function the LUNAR system uses two databases; one for the
chemical analysis and the other for literature references. The
LUNAR system uses an Augmented Transition Network
(ATN) parser and Woods' procedural Semantics. According
to [19], the LUNAR system performance was quite
impressive; it managed to handle 78% of requests without any
errors and this ratio rose to 90% when dictionary errors were
corrected. But these figures may be misleading because the
system was not subject to intensive use due to the limitation of
its linguistic capabilities.

b. LADDER
The LADDER system was designed as a natural language
interface to a database of information about US Navy ships.
According to [22], the LADDER system uses semantic
grammar to parse questions to query a distributed database.
The system uses semantic grammars technique that inter-
leaves syntactic and semantic processing. The question
answering is done via parsing the input and mapping the parse
tree to a database query. The system LADDER is based on a
three layered architecture. The first component of the system
is for Informal Natural Language Access to Navy Data
(INLAND), which accepts questions in a natural language and
produces a query to the database. The queries from the
INLAND are directed to the Intelligent Data Access (IDA),
which is the second component of LADDER. According to
[21], the INLAND component builds a fragment of a query to
IDA for each lower level syntactic unit in the English
language input query and these fragments are then combined

to higher level syntactic units to be recognized. At the
sentence level, the combined fragments are sent as a command
to IDA. IDA would compose an answer that is relevant to the
user’s original query in addition to planning the correct
sequence of file queries. The third component of the
LADDER system is for File Access Manager (FAM).The task
of FAM is to find the location of the generic files and manage
the access to them in the distributed database. The system
LADDER was implemented in LISP. At the time of the
creation of the LADDER system was able to process a
database that is equivalent to a relational database with 14
tables and 100 attributes.

c. RENDEZVOUS System
This system appeared in late seventies. In this, users could
access databases via relatively unrestricted natural language.
In this Codd‟s system, special emphasis is placed on query
paraphrasing and in engaging users in clarification dialogs
when there is difficulty in parsing user input.

d. PLANES
This was developed in late seventies for (Programmed
LANguage-based Enquiry System) at the University of Illinois
Coordinated Science Laboratory. PLANES include an English
language front end with the ability to understand and explicitly
answer user requests. It carries out clarifying dialogues with
the user as well as answer vague or poorly defined questions.
This work is being carried out using database based upon
information of the U.S. Navy 3-M (Maintenance and Material
Management), it is a database of aircraft maintenance and
flight data, although the ideas can be directly applied to other
non-hierarchic record-based databases [23].
PHILIQA
This was developed in 1977 and was known as Philips
Question Answering System [24], uses a syntactic parser
which runs as a separate pass from the semantic understanding
passes. This system is mainly involved with problems of
semantics and has three separate layers of semantic
understanding. The layers are called "English Formal
Language", "World Model Language", and "Data Base
Language" and appear to correspond roughly to the "external",
"conceptual", and "internal" views of data.

e. CHAT-80
The system CHAT-80 [26] is one of the most referenced NLP
systems in the eighties. The system was implemented in
Prolog. According to [25], the CHAT-80 was an impressive,
efficient and sophisticated system. The database of CHAT-80
consists of facts (i. e. oceans, major seas, major rivers and
major cities) about 150 of the countries world and a small set
of English language vocabulary that are enough for querying
the database. The CHAT-80 system processes an English
language question in three stages as depicted.

f. TEAM
It was developed in 1987. A large part of the research of that
time was devoted to portability issues. TEAM was designed to
be easily configurable by database administrators with no
knowledge of NLIDBs [27, 28].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

606

g. ASK
This system developed in 1983, allowed end-users to teach the
system new words and concepts at any point during the
interaction. ASK was actually a complete information
management system, providing its own built-in database and
the ability to interact with multiple external databases,
electronic mail programs and other computer applications. All
the applications connected to ASK were accessible to the end-
user through natural language requests. The user stated his/her
requests in English and Ask transparently generated suitable
requests to the appropriate underlying systems.

h. JANUS
It had similar abilities to interface to multiple underlying
systems (databases, expert systems, graphics devices, etc). All
the underlying systems could participate in the evaluation of a
natural language request, without the user ever becoming
aware of the heterogeneity of the overall system. JANUS is
also one of the few systems to support temporal questions
[29].

i. EUFID
The EUFID system consists of three major modules, not
counting the DBMS. First is analyzer module, second is
mapper module and third is translator module. [30]

j. DATALOG
It is an English database query system based on Cascaded
ATN grammar. By providing separate representation schemes
for linguistic knowledge, general world knowledge, and
application domain knowledge, DATALOG achieves a high
degree of portability and extendibility [31]. Systems that also
appeared in mid-eighties were LDC [32], TQA [33], TELI
[34] and many others.

8. Recent Developments in NLIDB

This section provides a brief overview of three specific
NLIDB systems developed recently in different universities.

a. NALIX
NALIX (Natural Language Interface for an XML Database)
is an NLIDB system de- veloped at the University of
Michigan, Ann Arbor by Yunyao Li, Huahai Yang, and H. V.
Jagadish (2006). The database used for this system is
extensible markup language (XML) database with Schema-
Free XQuery as the database query language.
Schema-Free XQuery is a query language designed mainly
for retrieving information in XML. The idea is to use
keyword search for databases. However, pure keyword
search certainly cannot be applied. Therefore, some richer
query mechanisms are added [36]. Given a collection of
keywords, each keyword has several candidate XML
elements to relate. All of these candidates are added to MQF
(Meaningful Query Focus), which will automatically find all
the relations between these elements. The main advantage of
Schema-Free Xquery is that it is not necessary to map a query
into the exact database schema, since it will automatically
find all the relations given certain keywords.

NALIX can be classified as a syntax based system, since the
transformation processes are done in three steps: generating
a parse tree, validating the parse tree, and translating the
parse tree to an XQuery expression. However, as implied in
the paper [35][36], NALIX is different from the general
syntax based approaches; in the way the system was built:
NALIX implements a reversed-engineering technique by
building the system from a query language toward the
sentences.

b. PRECISE

PRECISE is a system developed at the University of
Washington by Ana-Maria Popescu, Alex Armanasu, Oren
Etzioni, David Ko, and Alexander Yates (2004). The target
database is in the form of a relational database using SQL as
the query language. It introduces the idea of semantically
tractable sentences which are sentences that can be
translated to a unique semantic interpretation by analyzing
some lexicons and semantic constraints[37].
PRECISE was evaluated on two database domains. The first
one is the ATIS domain, which consists of spoken questions
about air travel, their written forms, and their correct
translations in SQL query language. In ATIS domain, 95.8%
of the questions were semanti- cally tractable. Using these
questions gives PRECISE 94% precision. The second
domain is the GEOQUERY domain. This domain contains
information about U.S. Geography. 77.5% of the questions
in GEOQUERY are semantically tractable. Using these
questions gives PRECISE 100% accuracy.
The strength of PRECISE is based on the ability to match
keywords in a sentence to the corresponding database
structures. This process is done in two stages, first by
narrowing the possibilities using Maxflow algorithm and
second by analyzing the syntactic structure of a sentence.
Therefore PRECISE is able to perform impressively in
semantically tractable questions.

As other NLIDB systems, PRECISE has its own weaknesses.
While it is able to achieve high accuracy in semantically
tractable questions, the system compensates for the gain in
accuracy at the cost of recall.Another problem is as PRECISE
adopts a heuristic based approach, the system suffers from the
problem of handling nested structures.

c. WASP

Word Alignment-based Semantic Parsing (WASP) is a
system developed at the University of Texas, Austin by Yuk
Wah Wong[38]. While the system is designed to address
the broader goal of constructing ”a complete, formal,
symbolic, meaningful representation of a natural language
sentence” , it can also be applied to the NLIDB domain. A
predicate logic (Prolog) was used as the formal query
language.
WASP learns to build a semantic parser given a corpus a set
of natural language sentences annotated with their correct
formal query languages [38]. It requires no prior-knowledge of

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

607

the syntax, because the whole learning process is done using
statistical machine translation techniques.
WASP was evaluated on the GEOQUERY domain, the same
domain as PRECISE. GEO- QUERY corpus consists of 880
questions in the training set and 250 questions in the test
set, which are merged together into one larger data set.
Each data set was divided to 10 equal-sized subsets, and
standard 10-fold cross validation was used to estimate the
system performance. WASP achieved 86.14% precision and
75.00% recall in the GEOQUERY do- main. The system
was also evaluated on a variety of other natural languages:
English, Spanish, Japanese and Turkish. There were no
significant differences observed between Eng- lish and
Spanish, but the Japanese corpus has the lowest precision and
the Turkish corpus has the lowest recall.
The strength of WASP comes from the ability to build a
semantic parser from annotated corpora. This approach is
beneficial because it uses statistical machine translation with
minimal supervision. Therefore, the system does not have to
manually develop a grammar in different domains.
Moreover, while most of NLIDB systems use English as their
natural language, WASP has been tested on several
languages.
In spite of the strength, WASP also has two weaknesses. The
first is: the system is based solely on the analysis of a
sentence and its possible query translation, and the
database part is therefore left untouched. There is a lot of
information that can be extracted from a database, such as
the lexical notation, the structure, and the relations within.
Not using this knowledge prevents WASP to achieve better
performances. The second problem is that the system requires
a large amount of annotated corpora before it can be used, and
building such corpora requires a large amount of work.

9. CONCLUSION
Research is done from the last few decades on Natural
Language Interfaces. With the advancement in hardware
processing power, many NLIDBs mentioned in historical
background got promising results. Though several NLIDB
systems have also been developed so far for commercial use
but the use of NLIDB systems is not wide-spread and it is not
a standard option for interfacing to a database. This lack of
acceptance is mainly due to the large number of deficiencies
in the NLIDB system in order to understand a natural
language.

10. REFERENCES

[1]. Bertino, B. Catania, G.P. Zarri, “Intelligent database

systems”, Reading, Addsion Wesley Professional, 2001.
[2]. Kamran Parsaye, Mark Chignell, Setrag Khoshafian and

Harry Wong, “Intelligent databases-object-oriented,
deductive hypermedia technologies”, New York, John
Wiley& Sons, 1989.

[3]. Androutsopoulos, G.D. Ritchie, and P. Thanisch,
Natural Language Interfaces to Databases - An
Introduction, Journal of Natural Language Engineering
1 Part 1 (1995), 29–81

[4]. Charniak E. 1993, “Statistical Language Learning”, MIT
Press.

[5]. Church K., Mercer R. 1993, “Introduction to the special
issue on computational linguistics using large corpora”,
Computational Linguistics,19 (1), pp. 1-24.

[6]. Miikkulainen R. 1993, “Subsymbolic Natural Language
Processing: An Integrated Model of Scripts, Lexicon, and
Memory”, MIT Press, Cambridge, MA.

[7]. Marcus M., Santorini B., Marcinkiewicz M. 1993,”
Building a large annotated corpus of English: The Penn
Treebank”, Computational Linguistics, 19 (2), pp. 313-330.

[8]. McCarthy J, Lehnert W ,1995, “Using decision trees for
coreference resolution”, Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence,
pp. 1050-1055.

[9]. Riloff E. 1993, “Automatically constructing a dictionary for
information extraction tasks”, Proceedings of the Eleventh
National Conference on Artificial Intelligence,pp. 811-816.

[10]. Riloff E.1996, “Automatically generating extraction
patterns from untagged text”, Proc eedings of the
Thirteenth National Conference on Artificial Intelligence,
pp. 1044-1049.

[11]. Majumder P., Mitra M., Chaudhari B.,2002, “N-gram: A
Language Independent Approach to IR and Natural
Language Processing”, Lecture Notes.

[12]. Miikkulainen R., 1997,“Natural language processing with
subsymbolic neural networks”, Neural Network
Perspectives on Cognition and Adaptive Robotics.

[13]. Reilly R., Sharkey N. (Eds.),1992 “Connectionist
Approaches to Natural Language Processing”, Lawrence
Erlbaum and Associates, Hilldale, NJ.

[14]. Shashtri L.,1997, “A model of rapid memory formation in
the hippocampal system”, Proceeding of Meeting of
cognitive Science Society, Stanford.

[15]. Abrahams P. W. et al. “The LISP 2 Programming
Language and System”, in proceedings of FJCC, No. 29,
USA, 1966, pp. 661– 676.

[16]. J. McCarthy, “LISP Programmers Manual, Handwritten
Draft” MIT AI Lab., Vambridge, USA, 1959.

[17]. T. Warren, “A Step toward Man-Computer Symbiosis”,
Ph.D. Thesis, Massachusetts Institut of Technologie,
Project on Mathematics and Computation (MAC),
Technical Report MAC-TR-32, Cambridge, MA, USA,
1966.

[18]. Rohit J. Kate and Raymond J. Mooney, Using String-
Kernels for Learning Semantic Parsers, COLING-
ACL (2006).

[19]. Woods, W. (1973). An experimental parsing system for
transition network grammars. In Natural language
Processing, R. Rustin, Ed.,Algorithmic Press, New York.

[20]. Woods, W., Kaplan, R. and Webber, B. (1972). The Lunar
Sciences Natural Language Information System. Bolt
Beranek and Newman Inc., Cambridge, Massachusetts
Final Report. B. B. N. Report No 2378.

[21]. Hendrix, G. (1977). The LIFER manual A guide to building
practical natural language interfaces. SRI Artificial
Intelligence Center, Menlo Park, Calif. Tech. Note 138.

[22]. Hendrix, G., Sacrdoti, E., Sagalowicz, D. and Slocum, J.
(1978). Developing a natural language interface to
complex data. ACM Transactions on Database Systems,
Volume 3, No. 2, USA, Pages 105 – 147

[23]. D.L. Waltz., “An English Language Question Answering
System for a Large Relational Database”,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 2, March 2011
ISSN (Online): 1694-0814
www.IJCSI.org

608

Communications of the ACM, 21(7): (July 1978), pp
526– 539

[24]. R.J.H., Scha., “Philips Question Answering System
PHILIQA1”, In SIGART Newsletter, no.61. ACM, New
York, (February 1977)

[25]. Amble, T. (2000). BusTUC – A Natural Language Bus
Route Oracle. 6th Applied Natural Language Processing
Conference, Seattle, Washington, USA

[26]. Warren, D., Pereira, F. (1982). An efficient and easily
adaptable system for interpreting natural language queries
in Computational Linguistics. Volume 8 pages 3 – 4.

[27]. B.J. Grosz, “TEAM: A Transportable Natural-Language
Interface System”, In Proceedings of the 1st Conference
on Applied Natural Language Processing, Santa Monica,
California, (1983), pp 39–45

[28]. B.J. Grosz, D.E. Appelt, P.A. Martin, and F.C.N. Pereira,
“TEAM: An Experiment in the Design of Transportable
Natural-Language Interfaces”, Artificial Intelligence, 32:
(1987), pp 173–243

[29]. P. Resnik, “Access to Multiple Underlying Systems in
JANUS”, BBN report 7142, Bolt Beranek and Newman
Inc., Cambridge, Massachusetts, (September 1989)

[30]. M. Templeton and J. Burger, “Problems in Natural
Language Interface to DBMS with Examples from
EUFID”, In Proceedings of the 1st Conference on
Applied Natural Language Processing, Santa Monica,
California, (1983), pp 3–16

[31]. C.D. Hafner, “Interaction of Knowledge Sources in a
Portable Natural Language Interface”, In Proceedings of

the 22nd Annual Meeting of ACL, Stanford, California, (
1984) pp 57–60

[32]. B.W. Ballard, J.C. Lusth, and N.L. Tinkham, “LDC-1: A
Transportable, Knowledge based Natural Language
Processor for Office Environments”, ACM Transactions
on Office Information Systems, 2(1): (January 1984), pp
1–25

[33]. F. Damerau, “Operating statistics for the transformational
question answering system”, American Journal of
Computational Linguistics, 7: (1981), pp 30–42

[34]. B. Ballard and D. Stumberger, “Semantic Acquisition in
TELI”, In Proceedings of the 24th Annual Meeting of
ACL, New York, (1986), pp 20–29

[35]. Yunyao Li, Huahai Yang, and H.V. Jagadish, Nalix:an
Interactive Natural Language Interface for Querying
XML, SIGMOD (2005).

[36]. Yunyao Li, Huahai Yang, and H.V. Jagadish,
Constructing a Generic Natural Language Interface
for an XML Database, EDBT (2006).

[37]. Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates, Modern Natural
Language Interfaces to Databases:Composing
Statistical Parsing with Semantic Tractability,
COLING (2004).

[38]. Yuk Wah Wong, Learning for Semantic Parsing Using
Statistical Machine TranslationTechniques, Tech-
nical Report UT-AI-05-323, University of Texas at
Austin, Artificial Intelligence Lab, October 2005.

