
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 224

A New Round Robin Based Scheduling Algorithm for Operating
Systems: Dynamic Quantum Using the Mean Average

Abbas Noon1, Ali Kalakech2, Seifedine Kadry1

 1 Faculty of Computer Science, Arts Sciences and Technology University
Lebanon

2 Faculty of Business, Lebanese University
Lebanon

Abstract

Round Robin, considered as the most widely adopted CPU
scheduling algorithm, undergoes severe problems directly related
to quantum size. If time quantum chosen is too large, the
response time of the processes is considered too high. On the
other hand, if this quantum is too small, it increases the overhead
of the CPU.
In this paper, we propose a new algorithm, called AN, based on a
new approach called dynamic-time-quantum; the idea of this
approach is to make the operating systems adjusts the time
quantum according to the burst time of the set of waiting
processes in the ready queue.
Based on the simulations and experiments, we show that the new
proposed algorithm solves the fixed time quantum problem and
increases the performance of Round Robin.
Keywords: Operating Systems, Multi Tasking, Scheduling
Algorithm, Time Quantum, Round Robin.

1. Introduction

Modern Operating Systems are moving towards
multitasking environments which mainly depends on the
CPU scheduling algorithm since the CPU is the most
effective or essential part of the computer. Round Robin is
considered the most widely used scheduling algorithm in
CPU scheduling [8, 9], also used for flow passing
scheduling through a network device [1].

CPU Scheduling is an essential operating system task,
which is the process of allocating the CPU to a specific
process for a time slice. Scheduling requires careful
attention to ensure fairness and avoid process starvation in
the CPU. This allocation is carried out by software known
as scheduler and dispatcher [8, 9].
Operating systems may feature up to 3 distinct types of a
long-term scheduler (also known as an admission
scheduler or high-level scheduler), a mid-term or medium-
term scheduler and a short-term scheduler (fig1).

The dispatcher is the module that gives control of the CPU
to the process selected by the short-term scheduler [8].

Figure 1: Queuing diagram for scheduling

There are many different scheduling algorithms

which varies in efficiency according to the holding
environments, which means what we consider a good
scheduling algorithm in some cases which is not so in
others, and vice versa. The Criteria for a good scheduling
algorithm depends, among others, on the following
measures [8]:

- Fairness: all processes get fair share of the CPU,
- Efficiency: keep CPU busy 100% of time,
- Response time: minimize response time,
- Turnaround: minimize the time batch users must

wait for output,
- Throughput: maximize number of jobs per hour.

Moreover, we should distinguish between the two schemes
of scheduling: preemptive and non preemptive algorithms.
Preemptive algorithms are those where the burst time of a
process being in execution is preempted when a higher

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 225

priority process arrives. Non preemptive algorithms are
used where the process runs to complete its burst time
even a higher priority process arrives during its execution
time.

First-Come-First-Served (FCFS)[8, 9] is the simplest
scheduling algorithm, it simply queues processes in the
order that they arrive in the ready queue. Processes are
dispatched according to their arrival time on the ready
queue. Being a non preemptive discipline, once a process
has a CPU, it runs to completion. The FCFS scheduling is
fair in the formal sense or human sense of fairness but it is
unfair in the sense that long jobs make short jobs wait and
unimportant jobs make important jobs wait [8, 9].

Shortest Job First (SJF) [8, 9] is the strategy of arranging
processes with the least estimated processing time
remaining to be next in the queue. It works under the two
schemes (preemptive and non-preemptive). It’s provably
optimal since it minimizes the average turnaround time
and the average waiting time. The main problem with this
discipline is the necessity of the previous knowledge about
the time required for a process to complete. Also, it
undergoes a starvation issue especially in a busy system
with many small processes being run [8, 9].

Round Robin (RR) [8, 9]which is the main concern of this
research is one of the oldest, simplest and fairest and most
widely used scheduling algorithms, designed especially
for time-sharing systems. It’s designed to give a better
responsive but the worst turnaround and waiting time due
to the fixed time quantum concept. The scheduler assigns
a fixed time unit (quantum) per process usually 10-100
milliseconds, and cycles through them. RR is similar to
FCFS except that preemption is added to switch between
processes [2, 3, and 8].

In this paper, we propose a new algorithm to solve the
constant time quantum problem. The algorithm is based on
dynamic time quantum approach where the system adjusts
the time quantum according to the burst time of processes
founded in the ready queue. The second section states
some of previous works done in this field. Section III
describes the proposed method in details. Section IV
discusses the simulation done in this method, before
concluding this paper in the last section.

2. Previous works

Round Robin becomes one of the most widely used
scheduling disciplines despite of its severe problem which
rose due to the concept of a fixed pre-determined time
quantum [2, 3, 4, 5, 6, and 7]. Since RR is used in almost
every operating system (windows, BSD, UNIX and Unix-

based etc…), many researchers have tried to fill this gap,
but still much less than needs.

Matarneh [2] founded that an optimal time quantum could
be calculated by the median of burst times for the set of
processes in ready queue, unless if this median is less than
25ms. In such case, the quantum value must be modified
to 25ms to avoid the overhead of context switch time [2].
Other works [7], have also used the median approach, and
have obtained good results.

Helmy et al. [3] propose a new weighting technique for
Round-Robin CPU scheduling algorithm, as an attempt to
combine the low scheduling overhead of round robin
algorithms and favor short jobs. Higher process weights
means relatively higher time quantum; shorter jobs will be
given more time, so that they will be removed earlier from
the ready queue [3]. Other works have used mathematical
approaches, giving new procedures using mathematical
theorems [4].

Mohanty and others also developed other algorithms in
order to improve the scheduling algorithms performance
[5], [6] and [7]. One of them is constructed as a
combination of priority algorithm and RR [5] while the
other algorithm is much similar to a combination between
SJF and RR [6].

3. AN Algorithm

In this paper, we present a solution to the time quantum
problem by making the operating system adjusts the time
quantum according to the burst time of the existed set of
processes in the ready queue.

3.1 Methodology

When operating system is installed for the first time, it
begins with time quantum equals to the burst time of first
dispatched process, which is subject to change after the
end of the first time quantum. So, we assume that the
system will immediately take advantage of this method.
The determined time quantum represents real and optimal
value because it based on real burst time unlike the other
methods, which depend on fixed time quantum value.
Repeatedly, when a new process is loaded into the ready
queue in order to be executed, the operating system
calculates the average of sum of the burst times of
processes found in the ready queue including the new
arrival process.
This method needs two registers to be identified:

- SR: Register to store the sum of the remaining burst
times in the ready queue.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 226

- AR: Register to store the average of the burst times
by dividing the value found in the SR by the count of
processes found in the ready queue.

When a process in execution finishes its time slice or its
burst time, the ready queue and the registers will be
updated to store the new data values.

- If this process finishes its burst time, then it will be
removed from the ready queue. Otherwise, it will
move to the end of the ready queue.

- SR will be updated by subtracting the time consumed
by this process.

- AR will be updated according to the new data.
When a new process arrives to the ready queue, it will be
treated according to the rules above in addition to updating
the ready queue and the registers.

3.2 Pseudo Code and Flow Chart

The algorithm described in the previous section can be
formally described by pseudo code and flow chart like
follows:
New process P arrives
 P Enters ready queue
Update SR and AR
Process p is loaded from ready queue
into the CPU to be executed
 IF (Ready Queue is Empty)
 TQ  BT (p)
 Update SR and AR
 End if
 IF (Ready Queue is not empty)
 TQAVG (Sum BT of processes in
ready queue)
 Update SR and AR
 End if
CPU executes P by TQ time
 IF (P is terminated)
 Update SR and AR
 End if
 IF (P is not terminated)
 Return p to the ready queue with
its updated burst time
 Update SR and AR
 End if

4. Simulations

In order to validate our algorithm (AN) over the existing
Round Robin, we have built our simulator using
MATLAB, since it presents the user data and solutions
after fetching in a graphical representation which is not
found in most other languages.
Using MATLAB 2010a, we built a simulator for AN
algorithm that acquires a triplet (N, AT, BT) where:

- N: the number of processes
- AT: an array of arrival times of all processes
- BT: an array of burst times of all processes

The simulator calculates the average waiting time and the
average turnaround time of the whole system consisting of
N processes according to the AN algorithm.
We have also built a simulator for Round Robin algorithm
that acquires a quadrant (Q, N, AT, BT) where:

- Q: The time quantum (assigned by the user)
- N: the number of processes
- AT: an array of arrival times of all processes
- BT: n array of burst times of all processes

Then the simulator calculates the average waiting time and
the average turnaround time of the whole system
consisting of N processes according to the Round Robin
algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 227

Finally, we have developed a simple function to compare
among the two algorithms presenting graphical result,
showing the efficiency of our algorithm over Round
Robin. The function loads data from a text file consisting
of 50 samples. Each sample is a 4 processes system (N=4).
Arrival times and burst times were randomly chosen
varying from 10 To 100 milliseconds. Note that we choose
N = 4 since whatever N is, we will have the same result as
will shown in the result below (figures 2 and 3).
We have chosen a fixed time quantum Q=10 ms in Round
Robin it gives the results in fig2 and fig3. In these figures,
the x-axis represents the different samples we have
targeted, while the y-axis represents the TAT (average of
turnaround times) in fig 2, and the WT (average of waiting
times) in fig3. In the graphs below a higher vertex means a
larger average turnaround time (fig2) and waiting time
(fig3). As mentioned before a better algorithm is to
minimize turnaround and waiting time, thus the better
algorithm has the lowest vertex.

These figures clearly show that for all the tested cases, we
obtain better results (lower TAT and WT) when using the
AN algorithm.

Figure 2: Average Turnaround time for time quantum = 10 ms

Figure 3: Average Waiting time for time quantum = 10 ms

The same process was done on TQ=15, 20, 25 and 30 ms
to cover as much as possible fixed time quantum
possibilities, and we always obtain the same results.

4. Results and Observations

As a result of the simulation and hand solved examples
we’ve reached to a conclusion that AN algorithm could
improve the efficiency of Round Robin by changing the
idea of fixed time quantum to dynamic calculated
automatically without the interfere of user.

4.1 Numerical Examples
To evaluate our proposed method and for simplicity seek
we will take a group of four processes in four different
cases with random burst, in fact the number of processes
does not change the result because the algorithm works
effectively even if it used with a very large number of
processes. For each case, we will compare the result of our
developed method with the traditional approach (fixed
quantum = 20ms) and with the method proposed in [2].
We should mention here, the numerical values of the 4
different cases are taken from [2].

Case 1: Assume four processes arrived at time = 0, with
burst time (P1 = 20, P2 = 40, P3 = 60, P4 = 80):
 Fixed

Quantum=20ms
Dynamic
method [2]

AN

Turn-around time 120 112.5 100
Waiting time 70 77.5 50
Context switch 9 6 5

Case 2: Assume four processes arrived at time = 0, with
burst time (P1 = 10, P2 = 14, P3 = 70, P4 = 120):
 Fixed

Quantum=20ms
Dynamic
method [2]

AN

Turn-around time 100.5 96 85.5
Waiting time 47 42.5 32
Context switch 11 6 5

Case 3: Assume four processes arrived at different time,
respectively 0, 4, 8, and 16, with burst time (P1 = 18, P2 =
70, P3 = 74, P4 = 80):
 Fixed

Quantum=20ms
Dynamic
method [2]

AN

Turn-around time 106 98.5 81
Waiting time 60 58.5 35
Context switch 10 4 5

Case 4: Assume four processes arrived at different time,
respectively 0, 6, 13, and 21, with burst time (P1 = 10, P2
= 14, P3 = 70, P4 = 120):
 Fixed

Quantum
20ms

Dynamic
method [2]

AN

Turn-around
time

90.5 46 75.5

Waiting time 37 30.5 22
Context switch 11 4 4

From the above comparisons, it is clear that the dynamic
time quantum approach based on the average of processes
bursts time is more effective than the fixed time quantum
approach and the proposed method in [2] in round robin
algorithm, where the dynamic time quantum significantly

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 228

reduces the context switch, turnaround time and the
waiting time. In addition, the complexity calculation of the
mean of the processes is very small.

4.2 Improvements in waiting times and turnaround
times

At the end of each run we calculated the percentage of
improvement of AN algorithm over Round Robin by
implementing a simple rule.
I = (Vertex [AN] – Vertex [RR])/number of samples
We obtained the following results (table 1):

Table 1: Improvement percentage of AN

TQ % I(wt[TQ]) % I(tat[TQ])

10 ms 20.1162 20.1162
15 ms 16.1163 16.1162
20 ms 13.8562 13.8562
25 ms 12.6113 12.6112
30 ms 10.4413 10.4412

4.3 Success in Statistics

In addition to the improvement measure (%I), we added
another measure of success over failure which is
calculated by percentage of success samples over the
failed ones. A succeed sample is sample where vertex of
AN algorithm is less than vertex of RR.
S= ((number of succeed samples) / (total number of
samples)) we obtained the following results (table 2).

Table 2: Success over failure percentage of AN

TQ %S(tat[TQ]) %S(wt[TQ])

10 ms 96% 96%
15 ms 92% 90%
20 ms 90% 88%
25 ms 88% 88%
30 ms 86% 84%

4.4 Improvement in Context Switches

As a result of our observations, 50% of the processes will
be terminated through the first round and as time quantum
is calculated repeatedly for each round, then 50% of the
remaining processes will be terminated during the second
round, with the same manner for the third round, fourth
round etc…i.e., the maximum number of rounds will be
less than or equal to 6 whatever the number of processes
or their burst time (fig4). [2]

Figure 4: The rate of decrease in the number of processes in each round

The significant decrease of the number of processes will
inevitably lead to significant reduction in the number of
context switches, which may pose high overhead on the
operating system in many cases. The number of context
switches can be represented mathematically as follows:

  1
1

 r

rT KQ

Where:
QT = the total number of context switch
r = the total number of rounds, r = 1, 2…6
kr = the total number of processes in each round

 In other variants of round robin scheduling algorithm, the
context switch occurs even if there is only a single process
in the ready queue, where the operating system assigns to
the process a specific time quantum Q[4]. When time
quantum expires, the process is interrupted and again
assigned the same time quantum Q, regardless whether the
process is alone in the ready queue or not [2, 3], which
means that there will be additional unnecessary context
switches, while this problem does not occur at all in our
new proposed algorithm; because in this case, the time
quantum will equal to the remaining burst time of the
process.

5. Conclusion

Time quantum is the bottleneck facing round robin
algorithm and was more frequently asked question: What
is the optimal time quantum to be used in round robin
algorithm?
In light of the effectiveness and the efficiency of the RR
algorithm, this paper provides an answer to this question
by using dynamic time quantum instead of fixed time
quantum, where the operating system itself finds the
optimal time quantum without user intervention.
In this paper, we have discussed the AN algorithm that
could be a simple step for a huge aim in obtaining an
optimal scheduling algorithm. It will need much more
efforts and researches to score a goal.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 229

From the simulation study, we get an important
conclusion; that the performance of AN algorithm is
higher than that of RR in any system. The use of dynamic
scheduling algorithm increased the performance and
stability of the operating system and supports building of a
self-adaptation operating system, which means that the
system is who will adapt itself to the requirements of the
user and not vice versa.

References
[1] Weiming Tong, Jing Zhao, “Quantum Varying Deficit Round

Robin Scheduling Over Priority Queues”, International
Conference on Computational Intelligence and Security. pp.
252- 256, China, 2007.

[2] Rami J. Matarneh, “Self-Adjustment Time Quantum in
Round Robin Algorithm Depending on Burst Time of the
Now Running Processes”, American Journal of Applied
Sciences, Vol 6, No. 10, 2009.

[3] Tarek Helmy,Abdelkader Dekdouk, “Burst Round Robin as a
Proportional-Share Scheduling Algorithm”, In Proceedings
of The fourth IEEE-GCC Conference on Towards Techno-
Industrial Innovations, pp. 424-428, Bahrain, 2007.

[4] Samih M. Mostafa, S. Z. Rida, Safwat H. Hamad, “Finding
Time Quantum Of Round Robin Cpu Scheduling Algorithm
In General Computing Systems Using Integer Programming”,
International Journal of Research and Reviews in Applied
Sciences (IJRRAS), Vol 5, Issue 1, 2010.

[5] Rakesh Mohanty, H. S. Beheram Khusbu Patwarim Monisha
Dash, M. Lakshmi Prasanna , “Priority Based Dynamic
Round Robin (PBDRR) Algorithm with Intelligent Time
Slice for Soft Real Time Systems”, (IJACSA) International
Journal of Advanced Computer Science and Applications,
Vol. 2, No.2, February 2011.

[6] Rakesh Mohanty, H. S. Behera, Khusbu Patwari, Monisha
Dash, “Design and Performance Evaluation of a New
Proposed Shortest Remaining Burst Round Robin (SRBRR)
Scheduling Algorithm”, In Proceedings of International
Symposium on Computer Engineering & Technology
(ISCET), Vol 17, 2010.

[7] Rakesh Mohanty, H. S. Behera, Debashree Nayak, “A New
Proposed Dynamic Quantum with Re-Adjusted Round Robin
Scheduling Algorithm and Its Performance Analysis”,
International Journal of Computer Applications (0975 –
8887), Volume 5– No.5, August 2010.

[8] Silberschatz ,Galvin and Gagne, Operating systems concepts,
8th edition, Wiley, 2009.

[9] Lingyun Yang, Jennifer M. Schopf and Ian Foster,
“Conservative Scheduling: Using predictive variance to
improve scheduling decisions in Dynamic Environments”,
SuperComputing 2003, November 15-21, Phoenix, AZ, USA.

