
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 407

Fast Overflow Detection in Moduli Set {2n – 1, 2n, 2n + 1}

Mehrin Rouhifar1,*, Mehdi Hosseinzadeh2, Saeid Bahanfar3 and Mohammad Teshnehlab4

 1 Dept. of Computer engineering , Islamic Azad University, Tabriz branch
Tabriz, Iran

2 Islamic Azad University, Science and research branch
Tehran, Iran

3 Dept. of Computer engineering , Islamic Azad University, Tabriz branch
Tabriz, Iran

4 Dept. of Control engineering, K. N. Toosi University of Technology
Tehran, Iran

* Corresponding Author

Abstract
The Residue Number System (RNS) is a non weighted system. It
supports parallel, high speed, low power and secure arithmetic.
Detecting overflow in RNS systems is very important, because if
overflow is not detected properly, an incorrect result may be
considered as a correct answer. The previously proposed
methods or algorithms for detecting overflow need to residue
comparison or complete convert of numbers from RNS to binary.
We propose a new and fast overflow detection approach for
moduli set {2n-1, 2n, 2n+1}, which it is different from previous
methods. Our technique implements RNS overflow detection
much faster applying a few more hardware than previous
methods.
Keywords: Residue number system, overflow detection, moduli
set {2n-1, 2n, 2n+1}, group number.

1. Introduction

Residue number systems (RNS) have been for a long time
a topic of intensive research. Their usefulness has been
demonstrated, especially for computations where
additions, subtractions and multiplications dominate,
because such operations can be done independently for
each residue digit without carry propagation [1]. Other
operations such as overflow detection, sign detection,
magnitude comparison and division in RNS are very
difficult and time consuming [2, 3]. However, above
mentioned operations are essential in certain applications,
e.g. in exact arithmetic or computational geometry, where
residue arithmetic is applied [4].

The RNS is determined by the set m of n positive coprime
integers mi >1, which forms the base of the system. The
dynamic range M of that system is given as a product of
the moduli mi where

.
1




n

i
imM (1)

Any integer),0[MX  has a unique representation

),...,,(21 nxxx in RNS),...,,(21 nmmm . The residues

,||
imi Xx  also called residue digits, are defined as

 .0,mod iiii mxmXx  (2)

To convert a residue number),...,,(21 nxxx into its binary

representation X, the Chinese Reminder Theory (CRT) is
widely used. In CRT, the binary X is computed by:

M

n

i
imii MNxX

i



1

)((3)

where ii mMM / and
im

ii MN 1 is the

multiplicative inverse Mi modulo mi [5].

RNS has numerous applications in Digital Signal
Processing (DSP) for filtering, convolutions, correlations,
FFT computation [6, 7], fault tolerant computer systems

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 408

[8], communication [9], cryptography and image
processing [10, 11].
Overflow detection is one of the fundamental issues in
efficient design of RNS systems. In a generic approach,
overflow occurs in the addition of two numbers X and Y,
whenever MYXZ mod)( be less than X. Thus, the

problem of overflow detection in RNS arithmetic is
equivalent to the magnitude of the problem of comparison
[12, 13]. Another algorithm which proposed for overflow
detection in odd dynamic range M is a ROM-based
algorithm and called the parity checking technique. In this
method, parity indicates whether an integer number is
even or odd. Let operands of X and Y have the same parity
and YXZ  . So, the addition process is with overflow,
if Z be an odd number [14, 15]. For signed RNS, overflow
occurs when the sign of the sum is different from the
operands [16].

In this paper, we will propose an algorithm to detect
overflow in moduli set {2n-1, 2n, 2n+1}. This moduli set is
one of the most popular three-module set, and can also be
extended to improve the RNS dynamic range [17]. In
proposed method, numbers [0, M - 1] are distributed
among several groups. Then, by using their group
numbers, is diagnosed in the process of addition of two
numbers, whether overflow has occurred or no.

2. Proposed Method

To detect overflow in moduli set {2n-1, 2n, 2n+1}, we
distribute the numbers in dynamic representation range M
into several groups. Since, residue representation of X in
mentioned moduli set is corresponding with),,,(321 xxx

so its group number obtained according to Fig.1.

Fig. 1 Group Number Detection.

The number of groups required for this distribution is
equal to  and can be expressed as

.12
122321231 


n
nnn xxxx (4)

So, we can concluded that length of any group namely l is
given as

).12.(2
12

)12.(2).12(





 nn

n

nnnM
l


 (5)

In any of these groups there are 2n subgroups, because

.120,
232  n

nxx 

 (6)

For example, the value of  for numbers in first group
with range [0, 22n + 2n) is shown in the following:

 nxx
232

 0  X  2n+1,  =0

 2n+1  X  2 (2n+1),  =1

 

(2n1)(2n+1)  X  2n (2n+1),  =2n–1.

 (7)

For determination of group number of any residue
number, first should be get the value of . For clarity, we
have exhibited it in range [0, 22n + 2n) as follows:


1231 nxx

 0  X  2n+1,  =0

 2n+1  X  2 (2n+1),  =2

 2(2n+1)  X  3 (2n+1),  =4

 

(2n-11)(2n+1)  X  2n-1 (2n+1),  =2n2

 2n-1(2n+1)  X  (2n-1+1)(2n +1),  =1

 

 (2n 2)(2n+1)  X  (2n1)(2n+1),  =2n3

 (2n 1)(2n+1)  X  2n (2n+1),  =0.

 (8)

According to (8) and with regard to the product result
from moduli subtraction in each group be appeared first,
odd values and afterward even respectively. Since, in
order to accomplishment of arithmetic operations should
be arranged the  values increasingly, so it is achievable
through one bit right rotate. Therefore, if assume  = 0, 2,
4, 6, …, 2n - 2, 1, 3, .., 2n - 3, after 1-bit right rotate, we
get  = 0, 1, 2, …, 2n - 3, 2n - 2.

Now by having the values of  and  , the group number
of any residue number in RNS (counting from 0) is
defined as

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 409

 .220,
12




n
n  (9)

For facility in implementation of proposed algorithm, we
add the obtained group number from (9) with one. In this
case, if X be an integer, its group number g(X) is

 .12)(1,1)( nXgXg  (10)

Table 1 shows the distribution of numbers in dynamic
range [0, 23n – 2n) which is given as a product of the mi’s
in moduli set {2n-1, 2n, 2n+1}.

Table 1: Distribution of Numbers

Group Number

1 0  2n (2n+1) – 1
2 2n (2n+1)  2[2n (2n+1)] – 1

 

 (2n–2)[2n (2n+1)]  (2n–1)[2n (2n+1)] – 1

Let X and Y are two operands in the process of addition

YXZ  and also g(X) and g(Y) be the group number of
operands, respectively. It can be shown from Table 1 that:

i) if ,2)()(nYgXg  no overflow will occur.

ii) if ,2)()(nYgXg  overflow must occur.

iii) if ,2)()(nYgXg  overflow may or may not

occur. So, is required it be checked more.

Proof: in case iii, range of the sum YX  in binary
system is

.2)]12(2[2)]12(2)[22( nnnnnn Z (11)

Since, M is exactly located in middle of obtained range
from (11), so it can be rewritten as

.2)]12(2[2)]12(2)[22( nnnnnn M (12)

In order to proof of ,2)()(nYgXg  we replace the

values of)22(n and n2 in terms of).()(YgXg 

Therefore, the final form of (12) is

)]12(2))[()((

)12(2)12(

)]12(2))[1)(()1)(((







nn

nnn

nn

YgXg

YgXg

 (13)

As seen, value of)12(2 nn is common in the sides of

inequality (13), thus it can be eliminated as follows:

)()(122)()(YgXgYgXg n  (14)

After adding one whit the sides of (14), the resulting
inequality be defined as

 .1)()(21)()( YgXgYgXg n (15)

Finally (15) can be divided by two parts, that is

.2)()(
12)()(

12)()(n

n

n

YgXg
YgXg

YgXg











 (16)

Therefore, overflow can be detected by comparing the

sum of the groups of operands with .2n If the sum exceeds

,2n overflow must occur. Notice that, overflow
probability should be again checked in third mode. For

this purpose, nYgXg 2)()( is given 1-bit shift to right

as .22/2 1 nn Subsequently, it be compared with group
number of sum of operands).(Zg In this case, if

,2)(1 nZg then overflow does not exist and

otherwise 12)( nZg overflow has occurred. Fig. 2

shows the overflow detection circuit in moduli set {2n-1,
2n, 2n+1}.

Table2: Group Number Calculations for RNS {15,16,17}

g(X)  = |   |15   XRNS X

1 0 3 3 (2, 14, 11) 62
4 3 1 13 (10, 5, 8) 1045
5 4 5 1 (1, 7, 6) 1111
8 7 0 8 (0, 8, 0) 2040
8 7 0 8 (8, 0, 8) 2048

12 11 2 6 (7, 9, 3) 3097
15 14 14 15 (14, 15, 16) 4079

As an example, consider moduli set }.17,16,15{ Therefore

4080171615 M and the number of groups  = 15.
The example calculation for the distribution of a few
values of numbers are shown in Table 2. If X = 1111 and Y
= 2048, then Z = X + Y = 3159 < 4079. In RNS, according
to Table 2, groups of operands are equal to 5 and 8
respectively. Based on proposed method, because sum of
the group of operands 13 is less than 16, thus no overflow
exits. Another instance of overflow consists of:
X =1045 = (10, 5, 8)  g(X) = 4
Y = 3097 = (7, 9, 3)  g(Y) = 12
Since, g(X) + g(Y) = 16 = 2n therefore, is required g(Z) be
compared with 2n-1 = 8
Z = | X + Y |M = (2, 14, 11)  g(Z) = 1
According to our algorithm 1<8 and it denotes that an
overflow has occurred. In the other words, we have: Z = X
+ Y = 4142 > 4080.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 410

3. Hardware Implementation

The group detection function is determined by Eq.(10) as
a sum of  and 1. The value of  is given by

.

12 
 n Since  is computed as a residue modulo

2n-1 then, instead of subtracting
12 n we can add its

additive inverse modulo 2n-1. An additive inverse modulo
2n-1 is simply a negation of binary representation. For
simplification reasons the additive inverse of

12 n is

denoted as

.ˆ
1212 


nn (17)

So that, the binary form of (17) is .,,...,ˆ
011   n

Thus (9) can be rewritten as the sum

.ˆ
12 


n

 (18)

From [18], an addition modulo (2n - 1) with redundant zero
elimination can be expressed as

nn pcbaba out 212



 (19)

where cout is a carry bit of a + b addition and p = 1 for a +
b = 11…12. The sum cout + p is 0 for a + b < 2n  1 and 1
for a + b  2n – 1 [1]. By assuming that Cin = cout + p, the
final form of (18) is then

 .ˆ
2ninC  (20)

Also, the values of  and  is given using this way.
Notice that, in computing of ,

1231 
 nxx because x3

is a residue number modulo 2n +1 and x3  2n then
123 nx

is given by OR-ing the least and the most significant bits
of x3. Therefore, binary form of 3x̂ is

.,...,, 1,31,3,30,3 xxxx nn 

To overflow detection, should be compared)()(YgXg 

with 2n. We know the number comparison in RNS is one
of the difficult and time consuming operations, therefore
attempted to do this operation whit another way. In this
paper, in order to)()(YgXg  addition, we designed a

new circuit that just generates the required valves. The
outputs of this unit are the most significant bit (MSB) of
the sum as (M), a carry bit of the sum namely C and P1
where if be equal to one, denotes the all the bits of the
sum, expect M, are zero. Hence, mentioned unit is called
MCP1G. Consequently, comparison operation performs as
following:


















.,2

1,0,1,2

0,2

)()(1

otherwise

PMCif

Cif

YgXg
n

n

n

 (21)

As mentioned above, whenever ,2)()(nYgXg  is

required to overflow probability be checked again. For this
propose, g(Z) be compared with 2n-1. In this case, by
having the MSB of g(Z) as 1 nSW and its ,2:02  nPP

can be said:














.,2

0,1,2
)(

1

2
1

otherwise

PWif
Zg

n

n

 (22)

The proposed method to overflow detection is
implemented as shown in Fig. 2. The circuit consists of
five main blocks: three group detection units, a unit for
generation of (MSB), output carry and P1 of)()(YgXg 

addition and the final post-processing unit to detecting
overflow.

Fig. 2 Overflow detection unit.

The group number detection unit shown in Fig.1 is used
for determination of group number of operands and their
sum. These values are represented as three vectors),(Xg

)(Yg and)(Zg respectively. The produced vectors are

connected to the inputs of the MCP1G unit.

The goal of the MCP1G unit is to determination
the ,ncC  2:01:1   nnn GPM where 2:0 nG is the

carry of the (n 1)-bit of)()(YgXg  from the position 0

to n – 2 and also generation of 2:01  nPP which detects a

result in the form of 20...00X . These signals can be

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 411

computed in a simplified and new prefix structure
proposed in [18]. Hence, we no need to use a full n-bit
adder.

A parallel prefix adder and also parallel prefix adder with
end-around-carry are built from elements shown in Fig. 3.

Fig. 3 Blocks of prefix adder.

The signals jiG : and jiP : are the carry generation and

propagation functions from the position i to j. The jiP :

signal is a function where indicates whether all the bits
from the position i to j are equal zero or no. For an
addition of two binary vectors 01...aan and 01...bbn and

for ,jki  these functions can be expressed by logic

equations

.:1::

:1::

:1:1::

:

:

jkkiji

jkkiji

jkjkkiji

iiii

iiii

PPP

PPP

GPGG

baP

baG















 (23)

The carry signals jc are equal to 1:0 jG and the bits js of

a final sum are .: jjjj cPs  An addition advantage of

prefix structures is that the end-around carry can be added
in the last stage with a delay cost of two logic levels [1].
The detailed description of this idea is presented in [18].

Fig.4. depicts the structure of parallel prefix adder with
end-around-carry (PPA with EAC). We applied it for
doing addition operations in order to obtain the values of
 and .

Fig. 4 Parallel prefix adder structure with End-around-carry.

The possibility of adding one bit with the delay of two
logic levels enables computation of M and .1)(Xg

Since ,: jjjj cPs  then M is given in the additional

stage of new parallel-prefix adder. The value of M from

2:01:1   nnn GPM is computed by EX-ORing of

1:1  nnP and 2:0 nG of the MCP1G unit. The full circuit to

evaluate M for n = 16 is shown in Fig. 5.

Fig. 5 MCP1G unit for n =16.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 412

The post-processing unit block diagram is shown in Fig. 6.
It comprises a limited number of components, which can
detect the overflow in process of addition of two numbers.

Fig. 6 post-processing unit.

The area and time (AT) characteristics of proposed circuit
in order to overflow detection for RNS by moduli set {2n-
1, 2n, 2n+1} are estimated using the standard unit-gate
model used [18]. In this model, each gate of two-input
such as AND, OR, NAND, NOR has area A = 1 and delay
T = 1. Also, for each 2-input gate XOR / XNOR there are
A = T = 2.

The group number detection unit of shown in Fig. 1.
comprises three main adders: one modulo (2n) adder and
two adder mod (2n 1). For calculation of  modulo 2n, we
used the parallel adder structure from [18] by

nnnA 2log)2/3(5  and 4log2 2  nT . As we said

previously, for determination of values  and , applied
the PPA with EAC (Fig. 4) which it uses (n  1) black
nodes, n input nodes (as square) and n / 2 black square in
each level where number of levels is equal be .log 2 n

Thus, AT parameters of any adder modulo (2n 1) are

.6log2

3log28

212mod

212mod









nT

nnnA

n

n

adder

adder (24)

After the value determination of  for group detection of
each number, should be add  with 1. Therefore, g(X) also
obtains in the additional stage of PPA with EAC from Fig.
4. which it requires the hardware of 2n and delay of 2
logic levels (see Fig. 7). Consequently, area and delay of
GND unit are

.14log4

6log
2

11
23

21

21





nT

nnnA
 (25)

Fig.7 Final addition unit

The requirements for MCP1G unit (Fig.5) are as follows:
n input nodes, (n + 2) black square, and an additional gate.
For determination of delay should be noticed the
maximum number of black square that is required to
working in parallel is n2log . So, the MCP1G area and

delay can expressed as

.4log2

107

22

2




nT

nA
 (26)

The post-processing unit contains a limited number of the
gates and multiplexers. Notice that, a Mux2:1 has A = 3 and
T = 2. So, the AT parameters of mentioned unit are

.5

8

3

3




T

A
 (27)

Total delay of the circuit is determined by a path
consisting one unit of group detection, MCP1G unit and
post-processing unit. The total area and delay of the
designed overflow detection circuit are

.23log6

log
2

33
763

2321

2321





nTTTT

nnnAAAA

tot

tot (28)

4. Comparison

One of the fastest and most efficient RNS comparator for
the moduli set {2n-1, 2n, 2n+1} are introduced in
references [17] and [19] respectively. In a generic
approach, after a residue to binary convert, comparison
operation can be done by using n or (n +1) bits comparator
which has a delay of residue to binary converter plus delay
of a (n +1) bit Binary Comparator (BC). In Table 3
proposed technique is compared with other methods.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 413

Table 3: Comparison Area and Delay of proposed method with other methods using unit-gate model

Delay Area Design

4n + log2 n + 36 115n + 186 [17]

8n + log2 n + 12 96n + nlog2 n + 16 [19]

16n + 4 + τ BC 56n + 22 + ABC [20] - CI

4n + 4 + τ BC 96n + 24 + ABC [20] - CII

4n + 4 + τ BC 80n + 18 + ABC [20] - CIII

6log2 n + 23 76n + (33/2)n log2 n Proposed method

The most effective overflow detection circuit based on
reverse converters can be built on the base on Converter I
from [20]. In Converter I and also Converters II and III
from [20], the minimum delay is O(n) whereas, delay of
proposed method is factor of O(log2 n).

As seen from Table 3, the proposed approach for overflow
detection in moduli set {2n-1, 2n, 2n+1} is faster than
previous works. However, the hardware cost of the
presented method is more. It is essential to remark that,
although the proposed design consumes more hardware
but it demonstrates significant improvement in terms of
delay, especially for large n. Furthermore, our proposed
method detects overflow without applying a complete
comparator or reverse converter.

5. Conclusions

Detecting overflow is one of the most important and
complex operations in residue number system. In this
paper, a novel and different method has been presented for
detecting overflow in moduli set {2n-1, 2n, 2n+1}. Our
proposed technique is based on group of numbers which
leads to the correct result without doing a complete
comparison or need to use the residue to binary converter.
The presented approach has significant reduction in delay,
compared to other methods.

References
[1] T. Tomczak, "Fast Sign Detection for RNS {2n-1, 2n, 2n+1}",

IEEE Transactions on Circuits and Systems I: Regular
Papers, Vol. 55, Iss. 6, 2008, pp. 1502-1511.

[2] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and Its
Application to Computer Technology, New York: McGraw-
Hill, 1967.

[3] W. A. Chren, Jr. "A new residue number system division
algorithm", Comput, Math. Appl., Vol. 19, No. 7, 1990, pp.
13-29.

 [4] H. Bronnimann, I. Z. Emiris, V. Y. Pan, and S. Pion,

"Computing exact geometric predicates using modular
arithmetic with single precision", in Proc. 13th Annu. Symp.
Comput. Geom., ACM press , 1997.

 [5] R. C. Debnath and D. A. Pucknell, "On Multiplicative
Overflow detection in Residue Number System", Electronics
Letters, Vol. 14, No. 5, 1978

 [6] R. Conway and J. Nelson, "Improved RNS FIR Filter
Architectures", IEEE Trans. On Circuits and Systems-II:
Express Briefs, Vol. 51, No.1, 2004.

[7] P. G. Fernandez and et al., "A RNS-Based Matrix-Vector-
Multiply FCT Architecture for DCT Computation", Proc,
43th IEEE Midwest Symposium on circuits and Systems
2000, pp. 350-353.

[8] L. Yang and L. Hanzo, "Redundant Residue number System
Based ERROR Correction Codes", IEEE VTS 54th on
Vehicular Technology Conference, 2001, Vol. 3, pp. 1472-
1467.

[9] J. Ramirez, et al., "Fast RNS FPL-Based Communication",
Proc. 12th Int’l Conf. Field Programmable Logic, 2002, pp.
472-481.

[10] R. Rivest, A. Shamir, and L.Adleman, "A Method for
obtaining Digital Signatures and Public Key Cryptosystems",
Comm. ACM, Vol. 21, No. 2, 1948, pp. 120-126.

[11] J. Bajard, and L. Imbert, "A Full RNS Implementation of
RSA", IEEE Transactions on computers, Vol. 53, No. 6,
2004, pp. 769-774.

[12] B. Parhami, "Computer arithmetic: algorithms and
hardware designs", New York : Oxford University Press,
2000.

[13] M. Askarzadeh, M. Hosseinzadeh and K. Navi, "A New
approach to overflow detection in moduli set {2n-3, 2n-1,
2n+1, 2n+3}", Second International Conference on Computer
and Electrical Engineering, 2009, pp. 439-442.

[14] M. shang, H. JianHao, Z. Lin and L. Xiang, "An efficient
RNS parity checker for moduli set {2n-1, 2n+1, 22n+1} and its
applications", Springer Journal of Science in China Series F:
Information Sciences", Vol. 51, No. 10, 2008, pp. 1563-
1571.

[15] A. Omondi and B. Premkumar, "Residue Number Systems:
Theory and Implementation", Imperial College Press, 2007.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 414

[16] M. Rouhifar, M. Hosseinzadeh and M. Teshnehlab, "A new
approach to Overflow detection in moduli set {2n-1, 2n,
2n+1}", International Journal of Computational Intelligence
and Information Security, Vol. 2, No.3, 2011, pp. 35-43.

[17] E. Gholami, R. Farshidi, M. Hosseinzadeh and K. Navi,
"High speed residue number system comparison for the
moduli set {2n-1, 2n, 2n+1}", Journal of communication and
computer, Vol. 6, No. 3, 2009, pp. 40-46.

[18] R. Zimmerman, "Efficient VLSI implementation of modulo
(2n±1) addition and multiplication", in Proc. 14th IEEE
Symp. Comput. Arithm. , 1999, pp. 158-167.

[19] BI. Shao-quiang and W. J. Groos, "Efficient residue
comparison algorithm for general Moduli sets", IEEE
International Circuits and Systems, 2005, pp. 1601-1604.

[20] Y. Wang, X. Song, M. Aboulhamid and H. Shen, "Adder
based residue to binary converters for {2n-1, 2n, 2n+1}",
2002, pp. 1772-1779.

Mehrin Rouhifar received her B.Sc. in Computer Software
Engineering from Islamic Azad University, Shabestar branch, Iran
in 2008. Recently, she is received the M.Sc. degree in Computer
System Architecture from Islamic Azad University, Tabriz branch,
Iran in 2011. Her main research interests include Computer
Arithmetic, Residue Number System, VLSI Design and Network
reliability.

Mehdi Hosseinzadeh was born in Dezful, a city in the
southwestern of Iran, in 1981. Received B.Sc. in Computer
Hardware Engineering from Islamic Azad University, Dezful
branch, Iran in 2003. He also received the M.Sc. and Ph.D.
degrees in Computer System Architecture from the Science and
Research Branch, Islamic Azad University, Tehran, Iran in 2005
and 2008, respectively. He is currently Assistant Professor in
Department of Computer Engineering of Science and Research
Branch of Islamic Azad University, Tehran, Iran. His research
interests are Computer Arithmetic with emphasis on Residue
Number System, Cryptography, Network Security and E-
Commerce.

Saeid Bahanfar received the B.Sc. degree in Computer Software
Engineering from Payam Noor University (PNU), Tabriz branch,
Iran in 2008. Currently, he is a M.Sc. student of Computer System
Architecture in Islamic Azad University, Tabriz branch, Iran. His
research interests include Residue Number System and VLSI
Design.

Mohammad Teshnehlab is professor at Department of Control
Engineering, Faculty of Electrical Engineering, K. N. Toosi
University, Tehran, Iran. His current research interests include
Fuzzy, Neural Network, Soft Computing, Evolutionary Filtering and
Simultaneous Localization and Mapping.

