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Abstract 
The Residue Number System (RNS) is a non weighted system. It 
supports parallel, high speed, low power and secure arithmetic. 
Detecting overflow in RNS systems is very important, because if 
overflow is not detected properly, an incorrect result may be 
considered as a correct answer. The previously proposed 
methods or algorithms for detecting overflow need to residue 
comparison or complete convert of numbers from RNS to binary. 
We propose a new and fast overflow detection approach for 
moduli set {2n-1, 2n, 2n+1}, which it is different from previous 
methods. Our technique implements RNS overflow detection 
much faster applying a few more hardware than previous 
methods.  
Keywords: Residue number system, overflow detection, moduli 
set {2n-1, 2n, 2n+1}, group number.  

1. Introduction 

Residue number systems (RNS) have been for a long time 
a topic of intensive research. Their usefulness has been 
demonstrated, especially for computations where 
additions, subtractions and multiplications dominate, 
because such operations can be done independently for 
each residue digit without carry propagation [1]. Other 
operations such as overflow detection, sign detection, 
magnitude comparison and division in RNS are very 
difficult and time consuming [2, 3]. However, above 
mentioned operations are essential in certain applications, 
e.g. in exact arithmetic or computational geometry, where 
residue arithmetic is applied [4]. 

   
The RNS is determined by the set m of n positive coprime 
integers mi >1, which forms the base of the system. The 
dynamic range M of that system is given as a product of 
the moduli mi where 

.
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Any integer ),0[ MX  has a unique representation 

),...,,( 21 nxxx in RNS ),...,,( 21 nmmm . The residues  

,||
imi Xx   also called residue digits, are defined as 

     .0,mod iiii mxmXx                    (2) 

 
To convert a residue number ),...,,( 21 nxxx  into its binary 

representation X, the Chinese Reminder Theory (CRT) is 
widely used. In CRT, the binary X is computed by: 
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where ii mMM /  and 
im

ii MN 1  is the 

multiplicative inverse Mi modulo mi  [5]. 
 
RNS has numerous applications in Digital Signal 
Processing (DSP) for filtering, convolutions, correlations, 
FFT computation [6, 7], fault tolerant computer systems 
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[8], communication [9], cryptography and image 
processing [10, 11]. 
Overflow detection is one of the fundamental issues in 
efficient design of RNS systems. In a generic approach, 
overflow occurs in the addition of two numbers X and Y, 
whenever MYXZ mod)(   be less than X. Thus, the 

problem of overflow detection in RNS arithmetic is 
equivalent to the magnitude of the problem of comparison 
[12, 13]. Another algorithm which proposed for overflow 
detection in odd dynamic range M is a ROM-based 
algorithm and called the parity checking technique. In this 
method, parity indicates whether an integer number is 
even or odd. Let operands of X and Y have the same parity 
and YXZ  . So, the addition process is with overflow, 
if Z be an odd number [14, 15]. For signed RNS, overflow 
occurs when the sign of the sum is different from the 
operands [16]. 
 
In this paper, we will propose an algorithm to detect 
overflow in moduli set {2n-1, 2n, 2n+1}. This moduli set is 
one of the most popular three-module set, and can also be 
extended to improve the RNS dynamic range [17]. In 
proposed method, numbers [0, M - 1] are distributed 
among several groups. Then, by using their group 
numbers, is diagnosed in the process of addition of two 
numbers, whether overflow has occurred or no.  

2. Proposed Method  

To detect overflow in moduli set {2n-1, 2n, 2n+1}, we 
distribute the numbers in dynamic representation range M 
into several groups. Since, residue representation of X in 
mentioned moduli set is corresponding with ),,,( 321 xxx  

so its group number obtained according to Fig.1. 
 

 

Fig. 1  Group Number Detection. 

The number of groups required for this distribution is 
equal to  and can be expressed as 

.12
122321231 


n
nnn xxxx           (4) 

 
So, we can concluded that length of any group namely l is 
given as 
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In any of these groups there are 2n subgroups, because 

.120,
232  n

nxx 
    

            (6) 

 
For example, the value of  for numbers in first group 
with range [0, 22n + 2n) is shown in the following: 
 

 nxx
232  

           0  X  2n+1,  =0 

           2n+1  X  2 (2n+1),  =1 

                           

(2n1)(2n+1)  X  2n (2n+1),  =2n–1. 

 (7) 
 

For determination of group number of any residue 
number, first should be get the value of . For clarity, we 
have exhibited it in range [0, 22n + 2n) as follows:  
 
 
 
 
 


1231 nxx

 

     0  X  2n+1,  =0 

     2n+1  X  2 (2n+1),  =2 

          2(2n+1)  X  3 (2n+1),  =4 

                             

(2n-11)(2n+1)  X  2n-1 (2n+1),  =2n2 

      2n-1(2n+1)  X  (2n-1+1)(2n +1),  =1 

                             

 (2n 2)(2n+1)  X  (2n1)(2n+1),  =2n3 

 (2n 1)(2n+1)  X  2n (2n+1),  =0. 

 (8) 
 
According to (8) and with regard to the product result 
from moduli subtraction in each group be appeared first, 
odd values and afterward even respectively. Since, in 
order to accomplishment of arithmetic operations should 
be arranged the  values increasingly, so it is achievable 
through one bit right rotate. Therefore, if assume  = 0, 2, 
4, 6, …, 2n - 2, 1, 3, .., 2n - 3, after 1-bit right rotate, we 
get   = 0, 1, 2, …, 2n - 3, 2n - 2. 
 
Now by having the values of  and  , the group number 
of any residue number in RNS (counting from 0) is 
defined as   
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        .220,
12




n
n                   (9) 

 
For facility in implementation of proposed algorithm, we 
add the obtained group number from (9) with one. In this 
case, if X be an integer, its group number g(X) is  

       .12)(1,1)(  nXgXg                 (10) 

 
Table 1 shows the distribution of numbers in dynamic 
range [0, 23n – 2n) which is given as a product of the mi’s 
in moduli set {2n-1, 2n, 2n+1}.  

Table 1: Distribution of Numbers 

Group Number 

1              0  2n (2n+1) – 1 
2       2n (2n+1)  2[2n (2n+1)] – 1  
 

                                

  (2n–2)[2n (2n+1)]  (2n–1)[2n (2n+1)] – 1 

 
Let X and Y are two operands in the process of addition 

YXZ   and also g(X) and g(Y) be the group number of 
operands, respectively. It can be shown from Table 1 that: 

i) if ,2)()( nYgXg   no overflow will occur. 

ii) if ,2)()( nYgXg   overflow must occur.  

iii) if ,2)()( nYgXg   overflow may or may not 

occur. So, is required it be checked more.    
   
Proof: in case iii, range of the sum YX   in binary 
system is 

.2)]12(2[2)]12(2)[22(  nnnnnn Z        (11) 

 
Since, M is exactly located in middle of obtained range 
from (11), so it can be rewritten as  

.2)]12(2[2)]12(2)[22(  nnnnnn M        (12) 

 

In order to proof of ,2)()( nYgXg   we replace the 

values of )22( n  and n2  in terms of ).()( YgXg   

Therefore, the final form of (12) is 
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               (13) 

 

As seen, value of )12(2 nn  is common in the sides of 

inequality (13), thus it can be eliminated as follows: 

    )()(122)()( YgXgYgXg n              (14) 

After adding one whit the sides of (14), the resulting 
inequality be defined as 

     .1)()(21)()(  YgXgYgXg n            (15)  

 
Finally (15) can be divided by two parts, that is 
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12)()(
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Therefore, overflow can be detected by comparing the 

sum of the groups of operands with .2n  If the sum exceeds 

,2n overflow must occur. Notice that, overflow 
probability should be again checked in third mode. For 

this purpose, nYgXg 2)()(   is given 1-bit shift to right 

as .22/2 1 nn  Subsequently, it be compared with group 
number of sum of operands ).(Zg  In this case, if 

,2)( 1 nZg then overflow does not exist and 

otherwise 12)(  nZg  overflow has occurred. Fig. 2 

shows the overflow detection circuit in moduli set {2n-1, 
2n, 2n+1}.                                                                                                      

Table2: Group Number Calculations for RNS {15,16,17} 

g(X)  = |   |15   XRNS X 

1 0 3 3 (2, 14, 11) 62 
4 3 1 13 (10, 5, 8) 1045 
5 4 5 1 (1, 7, 6) 1111 
8 7 0 8 (0, 8, 0) 2040 
8 7 0 8 (8, 0, 8) 2048 

12 11 2 6 (7, 9, 3) 3097 
15 14 14 15 (14, 15, 16) 4079 

 
As an example, consider moduli set }.17,16,15{  Therefore 

4080171615 M  and the number of groups   = 15. 
The example calculation for the distribution of a few 
values of numbers are shown in Table 2. If X = 1111 and Y 
= 2048, then Z = X + Y = 3159 < 4079. In RNS, according 
to Table 2, groups of operands are equal to 5 and 8 
respectively. Based on proposed method, because sum of 
the group of operands 13 is less than 16, thus no overflow 
exits.  Another instance of overflow consists of: 
X =1045 = (10, 5, 8)     g(X) = 4 
Y = 3097 = (7, 9, 3)      g(Y) = 12 
Since, g(X) + g(Y) = 16 = 2n therefore, is required g(Z) be 
compared with 2n-1 = 8 
Z = | X + Y |M = (2, 14, 11)     g(Z) = 1  
According to our algorithm 1<8 and it denotes that an 
overflow has occurred. In the other words, we have: Z = X 
+ Y = 4142 > 4080.  
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3. Hardware Implementation 

The group detection function is determined by Eq.(10) as 
a sum of  and 1. The value of  is given by

 
.

12 
 n  Since  is computed as a residue modulo 

2n-1 then, instead of subtracting  
12 n  we can add its 

additive inverse modulo 2n-1. An additive inverse modulo 
2n-1 is simply a negation of binary representation. For 
simplification reasons the additive inverse of 

12 n  is 

denoted as  

.ˆ
1212 


nn                              (17) 

So that, the binary form of (17) is .,,...,ˆ
011   n  

Thus (9) can be rewritten as the sum  

.ˆ
12 


n

                             (18) 

 
From [18], an addition modulo (2n - 1) with redundant zero 
elimination can be expressed as 

nn pcbaba out 212



                  (19) 

where cout is a carry bit of a + b addition and p = 1 for a + 
b = 11…12. The sum cout + p is 0 for a + b < 2n  1 and 1 
for  a + b  2n – 1 [1]. By assuming that Cin = cout + p, the 
final form of (18) is then 

  .ˆ
2ninC                             (20)  

 
Also, the values of  and   is given using this way. 
Notice that, in computing of ,

1231 
 nxx  because x3 

is a residue number modulo 2n +1 and x3  2n then 
123 nx  

is given by OR-ing the least and the most significant bits 
of x3. Therefore, binary form of 3x̂  is 

.,...,, 1,31,3,30,3 xxxx nn   

 
To overflow detection, should be compared )()( YgXg   

with 2n. We know the number comparison in RNS is one 
of the difficult and time consuming operations, therefore 
attempted to do this operation whit another way. In this 
paper, in order to )()( YgXg  addition, we designed a 

new circuit that just generates the required valves. The 
outputs of this unit are the most significant bit (MSB) of 
the sum as (M), a carry bit of the sum namely C and P1 
where if be equal to one, denotes the all the bits of the 
sum, expect M, are zero. Hence, mentioned unit is called 
MCP1G. Consequently, comparison operation performs as 
following:  


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




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
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PMCif
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YgXg
n

n
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As mentioned above, whenever ,2)()( nYgXg   is 

required to overflow probability be checked again. For this 
propose, g(Z) be compared with 2n-1. In this case, by 
having the MSB of g(Z) as 1 nSW  and its ,2:02  nPP  

can be said: 

    







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



.,2

0,1,2
)(

1

2
1

otherwise

PWif
Zg

n

n

                 (22) 

  
The proposed method to overflow detection is 
implemented as shown in Fig. 2. The circuit consists of 
five main blocks: three group detection units, a unit for 
generation of (MSB), output carry and P1 of )()( YgXg   

addition and the final post-processing unit to detecting 
overflow. 
 

 

Fig. 2  Overflow detection unit.   

The group number detection unit shown in Fig.1 is used 
for determination of group number of operands and their 
sum. These values are represented as three vectors ),(Xg  

)(Yg  and )(Zg  respectively. The produced vectors are 

connected to the inputs of the MCP1G unit. 
   
The goal of the MCP1G unit is to determination 
the ,ncC  2:01:1   nnn GPM  where 2:0 nG  is the 

carry of the (n 1)-bit of )()( YgXg   from the position 0 

to n – 2 and also generation of 2:01  nPP  which detects a 

result in the form of 20...00X .  These signals can be 
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computed in a simplified and new prefix structure 
proposed in [18]. Hence, we no need to use a full n-bit 
adder.  
 
A parallel prefix adder and also parallel prefix adder with 
end-around-carry are built from elements shown in Fig. 3. 
 

 

Fig. 3 Blocks of prefix adder. 

The signals jiG :  and jiP :  are the carry generation and 

propagation functions from the position i to j. The jiP :  

signal is a function where indicates whether all the bits 
from the position i to j are equal zero or no. For an 
addition of two binary vectors 01...aan  and 01...bbn  and 

for ,jki   these functions can be expressed by logic 

equations 

.:1::

:1::

:1:1::

:

:

jkkiji

jkkiji

jkjkkiji

iiii

iiii

PPP

PPP

GPGG

baP

baG















                      (23) 

The carry signals jc  are equal to 1:0 jG  and the bits js  of 

a final sum are .: jjjj cPs   An addition advantage of 

prefix structures is that the end-around carry can be added 
in the last stage with a delay cost of two logic levels [1]. 
The detailed description of this idea is presented in [18].  

Fig.4. depicts the structure of parallel prefix adder with 
end-around-carry (PPA with EAC). We applied it for 
doing addition operations in order to obtain the values of 
 and .   
 

 

Fig. 4  Parallel prefix adder structure with End-around-carry. 

The possibility of adding one bit with the delay of two 
logic levels enables computation of M and .1)( Xg  

Since ,: jjjj cPs   then M is given in the additional 

stage of new parallel-prefix adder. The value of M from 

2:01:1   nnn GPM  is computed by EX-ORing of 

1:1  nnP  and 2:0 nG  of the MCP1G unit. The full circuit to 

evaluate M for n = 16 is shown in Fig. 5.  
 

 

Fig. 5  MCP1G unit for n =16. 
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The post-processing unit block diagram is shown in Fig. 6. 
It comprises a limited number of components, which can 
detect the overflow in process of addition of two numbers. 
 

 

Fig. 6  post-processing unit. 

The area and time (AT) characteristics of proposed circuit 
in order to overflow detection for RNS by moduli set {2n-
1, 2n, 2n+1} are estimated using the standard unit-gate 
model used [18]. In this model, each gate of two-input 
such as AND, OR, NAND, NOR has area A = 1 and delay 
T = 1. Also, for each 2-input gate XOR / XNOR there are 
A = T = 2. 
 
The group number detection unit of shown in Fig. 1. 
comprises three main adders: one modulo (2n) adder and 
two adder mod (2n 1). For calculation of  modulo 2n, we 
used the parallel adder structure from [18] by 

nnnA 2log)2/3(5   and 4log2 2  nT . As we said 

previously, for determination of values  and , applied 
the PPA with EAC (Fig. 4) which it uses (n  1) black 
nodes, n input nodes (as square) and n / 2 black square in 
each level where number of levels is equal be .log 2 n  

Thus, AT parameters of any adder modulo (2n 1) are  

.6log2

3log28

212mod

212mod









nT

nnnA

n

n

adder

adder                 (24)  

 
After the value determination of  for group detection of 
each number, should be add  with 1. Therefore, g(X) also 
obtains in the additional stage of PPA with EAC from Fig. 
4. which it requires the hardware of 2n and delay of 2 
logic levels (see Fig. 7). Consequently, area and delay of 
GND unit are   

.14log4

6log
2

11
23

21

21





nT

nnnA
                      (25)   

 

Fig.7  Final addition unit 

The requirements for MCP1G unit (Fig.5) are as follows: 
n input nodes, (n + 2) black square, and an additional gate. 
For determination of delay should be noticed the 
maximum number of black square that is required to 
working in parallel is n2log . So, the MCP1G area and 

delay can expressed as  

 
.4log2

107

22

2




nT

nA
                           (26)   

 
The post-processing unit contains a limited number of the 
gates and multiplexers. Notice that, a Mux2:1 has A = 3 and 
T = 2. So, the AT parameters of mentioned unit are 

.5

8

3

3




T

A
                                   (27) 

 
Total delay of the circuit is determined by a path 
consisting one unit of group detection, MCP1G unit and 
post-processing unit. The total area and delay of the 
designed overflow detection circuit are 

.23log6

log
2

33
763

2321

2321





nTTTT

nnnAAAA

tot

tot            (28)  

4. Comparison  

One of the fastest and most efficient RNS comparator for 
the moduli set {2n-1, 2n, 2n+1} are introduced in 
references [17] and [19] respectively. In a generic 
approach, after a residue to binary convert, comparison 
operation can be done by using n or (n +1) bits comparator 
which has a delay of residue to binary converter plus delay 
of a (n +1) bit Binary Comparator (BC). In Table 3 
proposed technique is compared with other methods.  
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Table 3: Comparison Area and Delay of proposed method with other methods using unit-gate model 

Delay Area Design 

4n + log2 n + 36 115n + 186 [17] 

8n + log2 n + 12 96n + nlog2 n + 16  [19] 

16n + 4 + τ BC 56n + 22 + ABC [20] - CI 

4n + 4 + τ BC 96n + 24 + ABC [20] - CII 

4n + 4 + τ BC 80n + 18 + ABC [20] - CIII 

6log2 n + 23 76n + (33/2)n log2 n  Proposed method 

 
The most effective overflow detection circuit based on 
reverse converters can be built on the base on Converter I 
from [20]. In Converter I and also Converters II and III 
from [20], the minimum delay is O(n) whereas, delay of 
proposed method is factor of O(log2 n). 
 
As seen from Table 3, the proposed approach for overflow 
detection in moduli set {2n-1, 2n, 2n+1} is faster than 
previous works. However, the hardware cost of the 
presented method is more. It is essential to remark that, 
although the proposed design consumes more hardware 
but it demonstrates significant improvement in terms of 
delay, especially for large n. Furthermore, our proposed 
method detects overflow without applying a complete 
comparator or reverse converter.   

5. Conclusions  

Detecting overflow is one of the most important and 
complex operations in residue number system. In this 
paper, a novel and different method has been presented for 
detecting overflow in moduli set {2n-1, 2n, 2n+1}. Our 
proposed technique is based on group of numbers which 
leads to the correct result without doing a complete 
comparison or need to use the residue to binary converter. 
The presented approach has significant reduction in delay, 
compared to other methods.  
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