
IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 262

Abstract

Diacritical marks play a crucial role in meeting the criteria of
usability of typographic text, such as: homogeneity, clarity and
legibility. To change the diacritic of a letter in a word could
completely change its semantic. The situation is very complicated
with multilingual text. Indeed, the problem of design becomes more
difficult by the presence of diacritics that come from various scripts;
they are used for different purposes, and are controlled by various
typographic rules. It is quite challenging to adapt rules from one
script to another. This paper aims to study the placement and sizing
of diacritical marks in Arabic script, with a comparison with the
Latin’s case. The Arabic script is cursive and runs from right-to-left;
its criteria and rules are quite distinct from those of the Latin script.
In the beginning, we compare the difficulty of processing diacritics in
both scripts. After, we will study the limits of Latin resolution
strategies when applied to Arabic. At the end, we propose an
approach to resolve the problem for positioning and resizing
diacritics. This strategy includes creating an Arabic font, designed in
OpenType format, along with suitable justification in TEX.

Keywords: Arabic calligraphy, Diacritical mark, Justification,
Multilevel ligature, Multilingual, OpenType.

1. Introduction

The typographical choices can make or break the success of a
digital document. If the text is difficult to read or does not
look satisfactory, users will question the validity of its content
[1] or simply move to another document that is more user-
friendly. Digital typography, as an art, has its elements, its
principles and attributes [2]; controlled by rules, but also
limited by constraints. It’s, as a technique, based on the
concept of digital fonts. A font is a set of graphical
presentations of characters, called glyphs, with some
controlling rules. The rendering engine gathers them to
display the words and lines that make up the text. Some of the
constraints facing the typography are technical in nature: the
material resources are limited enough to satisfy an aesthetic
need. In multilingual digital typesetting, the principles and
attributes of design are risky because of the conflicting rules
and mechanisms that control and affect each script. Diacritical
marks are not an exception and do not escape this rule. For
example, the meaning of diacritics varies considerably
according to the language. A diacritic is a sign accompanying
a group of letters or one letter, as the circumflex accent "^" on
the "a" producing "â". Diacritics are often placed above the
letter, but they can also be placed below, in, through, before,
after or around a glyph.

Diacritics have common roles between the different languages
of the world, such as:
 to provide a reading;
 to amend the phonetic value of a letter;
 to avoid ambiguity between two homographs.

However, the Arabic diacritics have an additional role, which
is to fill space. This is a task influenced by different effects
such as: multilevel and justification of Arabic text. These
contextual varieties that control the choice of Arabic diacritics
sizes have been simplified in Arabic printed model.

 The problem, studied in this paper, is how to establish a
mechanism for extending the Arabic diacritics to adapt the
calligraphic design of marks to the technical constraints of font
formats: a question that has not been discussed before.

The proposed solution is based on the determination of
diacritical size, on neighborhood context consisting of the base
letter and the next letter that follow it in the same word.

To address it in this paper, we will discuss the following
topics: first, we compare the origins, roles, and the Unicode
encoding that governs the computing treatment of diacritics.
Second, we compare design problems of diacritics in the
Arabic script which have arisen for Latin script. Third, we
identify strategies offered by OpenType to solve this problem
and examine their capability in Arabic. Fourth, we consider our
proposed font and algorithm as a way to solve the positioning
and resizing of diacritics, in an Arabic font developed in
OpenType format. We end with some conclusions and
perspectives.

2. Diacritical Marks

2.1 History

There are some similarities between the history of Arabic
diacritical marks and the history of the Latin’s one. However,
the differences are many and varied, reflecting not only the
linguistic and graphic features of each script, but differences
between the principles on which are based the two civilizations
to which they belong. So, we find that the first Latin diacritic
appeared among the ancient Greeks and Romans. They were
developed and distributed in various European scripts. The
diacritical marks generally descend from letters that were
placed above another letter. The addition of diacritics was a

Design of Arabic Diacritical Marks

Mohamed Hssini1 and Azzeddine Lazrek2

1 Department of Computer Science, Faculty of Sciences, University Cadi Ayyad
 Marrakech, Morocco

2 Department of Computer Science, Faculty of Sciences, University Cadi Ayyad

Marrakech, Morocco

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 263

choice among four options to overcome the shortcomings of a
language belonging to the Latin script [3]. The others were: to
add another letter, to combine two or more letters, or to use the
apostrophe. The addition of diacritics in Latin script evolved
over time [4]. In periods of colonization, Latin diacritics have
been used to expand the Latin alphabet for writing non-Roman
languages. When a language has more fundamentally different
sounds – phonemes – than base letters, it can invent new letters
or adopt letters from other alphabets. The solution that is so
much more common is to add diacritics on the letters, often
imitating the spellings of other languages [5].

 When the holy Quran was documented, the Arabic alphabet
had neither dots nor diacritics. Both of them were added
successively during later periods. In Arabic writing, the same
base glyph can represent multiple letters and the same word
without vowels can represent multiple semantics [6]. The
reading difficulties caused by confusion between consonants of
the same shape and between words of same shape, the lack of
scoring short vowels led to the invention of diacritical signs to
become fixed and facilitate reading. At first, short vowels were
added by placing color dots above or below letters. This usage
changed and led to the current practice of marking vowels by
small signs. Their shapes origins are from corresponding long
vowels letters. Letters represented by same base glyph are
differentiated by adding a number of dots above or below
glyph.

After, some diacritics are added to the Arabic base alphabet
to form new letters used to write some languages as: Old
Turkic, Urdu, and Farsi [7].

2.2 Classification

There are three kinds of Arabic diacritics, according to their
typography [8] (see Fig. 1 to 8):
 Language’s diacritics: differentiate the letter’s

consonants, are very important for semantic. They
appear as:

o Diacritics above: placed above a letter, as Fatha,
Damma, Soukoun, or Shadda.

Fig. 1. Arabic diacritics above

o Diacritics below: placed below a letter, as Kasra or
Kasratan.

Fig. 2. Arabic diacritics below

o Diacritics through: placed through a letter, as Wasl.

Fig. 3. Jarrat Wasl through Alef

 Aesthetic diacritics: often filled space created when
extending some letters, to improve the aesthetic.

Fig. 4. Arabic aesthetic diacritics

 Explanatory diacritics: positioned to distinguish the
Muhmal and Muajam letters. Arabic letters are divided
into two categories: Muhmal letters without dots and
Muajam letters, based on Muhmal ones, but containing
dots.

Fig. 5. Arabic explanatory diacritics

The features of Latin diacritics affect their positions, and can
be presented according to their placements on their base letters,
as follow:

 Superscript-diacritics:

Fig. 6. Latin diacritics above

 Subscript-diacritics:

Fig. 7. Latin diacritics below

 Others diacritics: there are other diacritics that are
positioned through, before, after, or around a letter’s glyph.

Fig. 8. Others Latin diacritics

Latin diacritics can also be classified according to their
design or their Unicode encoding [4].

3. Diacritics in Unicode

Before Unicode, there were limits the number of characters that
could be encoded. The set of standard ASCII characters is 128
characters, 95 printable characters, including 52 alphabetic
characters (the 26 Latin letters in uppercase and lowercase), but
no accented letters. There are several other character sets,
called ASCII extended, which include 256 characters, with the
additional 128 characters used to represent particular vowels
and consonants of the Latin alphabet with diacritics or
occurring in other alphabets [9].

3.1 Encoding

Unicode is a character encoding standard that defines a
consistent way of encoding multilingual texts and facilitates the
exchange of textual data. It could, in theory, encode all
characters used by all the written languages of the world (more
than one million characters are reserved for this purpose). All
characters, regardless of the script in which they are used, are
accessible without escape sequences. The Unicode encoding

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 264

treats alphabetic characters, ideographic characters and
symbols in an equivalent manner, with the result that they can
coexist in any order with equal ease. For each character, the
standard Unicode allocate a unique numeric value and attribute
a single block name. As such, it differs little from other
standards. However, Unicode specify other information pivotal
to guarantee that the encoded text will be clear to read: the case
of the characters (if they have case), their properties, and
directionality. Unicode also defines semantic information and
includes correspondence tables of conversions between
Unicode and other important character sets. In Unicode,
diacritics appear as a category of combinatorial signs [10].

3.2 Arabic diacritics in Unicode

In Unicode, Arabic diacritics are treated in two different ways:
 Diacritics encoded in conjuncture with his basic letter,

such as: alef with madda.
 Diacritics encoded alone.

The encoding of Arabic diacritic is distributed in the four
following blocks [11] [12]:
 Arabic (0600–06FF): this range includes the standard

letters and diacritics.
 Arabic Supplement (0750–077F): this range

incorporates Arabic diacritics in conjuncture with their
basic letters used for extending Arabic to writing others
scripts.

 Arabic Presentation Forms-A (FB50–FDFF): this range
represents Arabic diacritics considered in isolation.

 Arabic Presentation Forms-B (FE70–FEFF): this range
adds spacing forms of Arabic diacritics.

3.3 Synthesis

Diacritics are the main set of combinatorial non-spacing
marks. They are treated in different manners: sometimes they
are encoded with their base glyphs as “à”, and sometimes they
are encoded separately as Arabic standard diacritics. Software
that take part Arabic diacritics in rendering must accomplishes
much more amplified operations than the positioning of Latin
diacritics. In Arabic case, software is supposed to analyze the
base character, the combining diacritic, the neighboring base
glyphs and their diacritics.

In Arabic script, dots are diacritics that play the same role as
Latin diacritics. The Unicode failure to encode Arabic
characters with dots, as composite characters, limits the
dynamicity of dots with regard to multilevel and justification.

4. Design and Multilingualism

Various fundamental notions underlie the domain of design,
such as balance, rhythm, etc. The principles of design clash in
the case of the mixture of different styles, which may differ
depending upon each script. A somewhat similar situation
occurs in a monolingual Arabic text where there is a change of
calligraphic styles, such as at the beginning of a title or section
[7].

The size of the combining Arab varies depending on the
context, and depending on how to choose the allographs. This
choice reflects relations between the neighboring letters
specific to each calligraphic style.

4.1 Calligraphic styles

In Arabic calligraphy, there are various styles of writing.
The main ones are: Naskh, Riqaa, Thulut, Maghrebi, and
Diwani. These styles differentiate principally by [13] [14]:
 geometric shape of the letters;
 presence, shape and number of dots;
 presence, shape and number of diacritics;
 use, shape and size of Kashida.
Each writing style has its own strict rules and context

(edition, illustration, architectural decoration, etc.). This study
concerns only Naskh style.

4.2 Contextual dependence

In most scripts, such as Latin, Hebrew and Chinese, letters
are in an imaginary box that can be aligned with the letter "x"
[7]. However, in the Arabic script, the heights and forms of
letters vary depending on the context. In general, letters have
four forms: initial, medial, final, and isolated forms [8]. In
calligraphy, some forms also vary according to the neighboring
letters glyphs [13] (see Fig. 9).

Fig. 9. Variants of Arabic letter Beh in initial and medial forms

The spatial properties vary between Latin and Arabic scripts.
In Arabic, the definition of bold depends on calligraphic style.
The reduction in the density of letters is created by layering or
by reducing the letter’s body [7]. Diacritics in the Thulut style,
unlike Naskh, are designed by a pen, called a Qalam, with a
width and slope different from those used for the body of base
letters. The harmonization of a multilingual document is
therefore influenced by the multitude of scripts or styles in the
same language.

4.3 Multilevel ligature

Arabic script is cursive, letters are interrelated. In Arabic
calligraphy, some letters could be combined forming ligatures.
The contextual ligatures are needed for cursive writing. There
are required during the computer processing of handwriting.
There are three kinds of ligatures: contextual, linguistic, and
aesthetic. The one unique linguistic ligature is LamAlef. An
aesthetic ligature can be in two, three, or more levels,
depending on the number of combined letters vertically. The
aesthetic ligatures affect considerably the visibility of
diacritical words, they are optional. There are chosen

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 265

sometimes for justification in order to contracting the word.
There are two blocks in Unicode that includes Arabic aesthetic
ligatures. As their number is very large, and they can be
represented in fonts without needing to be separately encoded,
Unicode has decided to not add any more. If we observe their
forms of representation, aesthetic ligatures are in all forms.
Arabic writing is characterized by multiple baselines, used to
position letters in ligatures vertically, known as multilevel or
stacking of Arabic writing. Ligatures introduce the multilevel
of writing. The aesthetic ligatures were a fairly limited choice
to represent the multilevel of the Arabic script: the number of
combinations represented in a multilevel context is large
enough that one can guess their representation in a block. This
property is caused also by letters: Family Jeem (Jeem, Hah,
and Khah), Meem, and Yeh rajiaa (see Fig. 10, Chawki font).

Fig. 10. Multilevel Ligatures

Yeh rajiaa, diverted, occurs at the end of a word which is
preceded by another letter which its glyph ends with the body
of a Noon, or Kaas.

4.4 Kashida

Kashida is the curvilinear elongation occurred for some
letters, according some situations, following some conditions,
and stretching in some sizes. It is specific to the Arabic script.
Unicode has included a character for Kashida (U+640 Arabic
Tatweel) in order to be inserted to stretch characters.
However, in calligraphy, Kashida is rather a processing to
extend some letters in curvilinear form. The Kashida is
characterized by the form, how depend on the writing style
(see Fig. 11, By Mohamed Amzile).

Fig. 11. Kashida of letter Sad

Stretching places: Stretching by Kashida occurs in a word
according to aesthetics and typographic criteria, and in
respecting their roles. For example, it is a defect to
superposing tow elongations in the two consecutive lines [15].
Degree of extensibility: The degree of extensibility of
stretchable letters depends on some contextual elements [15]:
 nature of the letter to stretch;
 position of the letter in the word;
 position of the word in the line;
 level of writing that Kashida must take place;
 writing style.

Roles: The Kashida is used in the followed circumstances
[15]:
 Justification: to justify Arabic text.
 Aesthetics: to achieve a balance and harmony between

the blocks of letters in the same word.
 legibility: to create a void for positioning diacritics.

 Emphasis: related to the elongation sound of glyph
extended.

4.5 Justification

Justification of Latin text:
Justification of Latin text causes the white space between

the words and the letters, to vary, affecting the glyphs, as well
as hyphenation; so that, the text fills the entire length of the
line between the margins. The amount of the spacing varies
between a minimal value and a maximal value when it is not
possible to justify the text.

Problems related to the justification of Latin text, especially
a justification of the kind made by an electronic publishing
system, without correction by a human operator, are potentially
quite noticeable. The most significant problems raise are:
hyphenation, rivers of white, widows and orphans, and the
hollow lines, which occur across blocks of text [16].
Hyphenation: Hyphenation permits division of a word at the
end of line in order to have a better visual appearance within a
text. A typographical rule requires no more than three
consecutive hyphenations. Avoiding too much hyphenation in a
text ensures greater fluidity of reading. There are many tools
for word hyphenation, like neural networks and dictionaries,
which are used to find possible hyphenation points in all words
of a given language [17].

Two algorithms are used for optimizing the division of
lines: Greedy algorithm and Optimum fit.
Greedy algorithm: This algorithm consists basically of
putting as many words on a line can as possible. Then, the
system repeats the same on the next line, and so on. The
process is repeated until there are no more words in the
paragraph. The greedy algorithm is a line-by-line process,
where each line is handled individually. This algorithm is very
simple and fast, and puts the list of words to be broken into a
minimum number of lines. It is used by many electronic
publishing systems, such as Open Office and Microsoft Word
[18].
Optimum fit algorithm: it was employed for the first time by
D. Knuth in TEX. The paragraph-based algorithm uses a
dynamic programming to optimize one function called the
aesthetic cost function that is defined in follow. This algorithm
is based on a model paragraph by an acyclic graph, where the
first node is the beginning of the paragraph. In the beginning of
paragraph, the algorithm creates an active node, the second
node shows possible cuts, at a distance acceptable to form a
line potential. This distance is defined as follows: we define
badness from the width of inter-margins and the sum of the
widths of boxes and glues component line. Each candidate line
is associated with a value of Demerits, which is the coast in the
acyclic graph where the arcs are formed with consecutive
nodes [18].
Justification of Arabic text:

Unlike Latin justification tools, Arabic tools are:
 Kashida, where letters are stretched, are viewed as tools

to elongate words (see Fig. 12, Chawki font).

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 266

Fig. 12. Stretched glyphs

 Ligatures, where letters are superposed on one another,
are viewed as tools to contraction words.

 Allographs, where one letter’s glyph is substituted by
another (see Fig. 13).

Fig. 13. Allographs of some letters

 Moving the final letter, in order to contract the last word
in the line (see Fig. 14).

Fig. 14. Moving the final letter

 Reduction of last letter (see Fig. 15).

Fig. 15. Reduction of letter

 Accumulation of words (see Fig. 16).

Fig. 16. Accumulation of words

 Writing in the margin (see Fig. 17).

Fig. 17. Writing in margin

However, In the Arabic script, hyphenation is no longer
allowed.

The optimum fit algorithm has been adapted to Arabic’s
needs by taking into consideration the existence of allographic
variants provided by the jalt table in OpenType format [18].
Synthesis:

In the Arabic script, which is cursive, a word can be
stretched by the Kashida to cover more space, and can be
forced by the use of the ligatures [15]. These mechanisms can
influence the sizing and the positioning of the Arabic diacritics
[8].
 The justification plays an important role in the

positioning of diacritics, which is not true in Latin.
 The first adaptation of the optimum fit algorithm to

Arabic was made by ignoring diacritics.

5. Design of Diacritical Marks

The design of Latin diacritics has three challenges:
 be harmonious with the base glyph;
 collocation with other diacritics on same base glyph;
 respect the baseline and interline.
In Arabic, the design of diacritics has a supplemental

challenge: it must to be harmonized with the diacritics of
neighboring glyphs and ligatures, and fill the space. There are

also aesthetic diacritics whose positions depend on other
diacritics. The relationship between interactive diacritics and
the mechanisms of multilevel and justification require resizing
and repositioning of diacritics in an influenced word. Below,
we present the main issues of design diacritics [4] and the
specific problems to Arabic.

5.1 Latin case

Asymmetry: Balance is defined as an equanimity resulting
from the review of an image in relation to ideas of the visible
structure [19]. That is the grouping of entities in a design
required on the report of their weight in a configuration of a
visual picture. Balance generally is of two kinds: symmetrical
and asymmetrical. The symmetrical balance, or formal
balance, take place when the weight of a graphic composition
is one and the same divided on every side of an invisible
central axis that can be vertical or horizontal. The
asymmetrical balance, or informal balance, exists when the
weight of the graphic composition is not spread equally
surrounding a central axis [19]. The size and weight of a Latin
diacritic must be balanced with the base glyph [4]. The
horizontal alignment of a diacritical glyph should be such that
there is balance between the diacritic and base glyph. To
symmetrically balance, a diacritic simply align the center of
the bounding box of the diacritic with the base glyph [2] [4]. If
either one is asymmetrical other means must be turned to
account.
If the base glyph is symmetrical, Optical alignment is a tool to
adjust the horizontal displacement of a base glyph or diacritic
to focus on the diacritic glyph and maintain basic balance.
Among the solutions, one is to align the optical center of the
glyph with the mathematical center of space [4]. The optical
center is estimated by the center of the contour (see Fig. 18).

Fig. 18. Symmetrical base glyphs

If the base glyph is asymmetrical, the diacritic may connect to
the following base glyph. The optical alignment is not always
used and other solutions are offered by new technologies, such
as OpenType.
Harmonization: When the diacritics are sufficiently
harmonized with the corresponding base glyph, there are
sometimes problems with neighboring base glyphs. For
example, the tilde may touch the neighboring base glyph "U"
(see Fig. 19).

Fig. 19. Conflict of diacritics with other glyphs

One solution is to draw the diacritic specific to each base
glyph, reducing the size of diacritics. Another solution is to use
kerning [2] [4].

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 267

Vertical space: In some fonts, the diacritics are aligned on a
line parallel to the baseline. In other fonts, the distance
between the diacritic and its base glyph is variable.
Multiple diacritics: Multiple diacritics can cause many
problems with the baseline, with other glyphs, or amongst
other diacritics. Different techniques are used to solve this
problem including: drawing a glyph with all the diacritics
together [4].

5.2 Specific issues to Arabic case

Additionally, Arabic diacritics’ role is to fill space in a word
where there are specific diacritics, or they may be added for
aesthetic reasons. The principal mechanisms to create space in
the Arabic word are: to use the Kashida, to adjust the glyph,
and to modify the interconnection between glyphs. The space
can be filled by following the steps below:

(1) Put dots and/or Shadda at the center of space.
(2) Resize the diacritic Fatha or Fathatan proportionally

with space.
(3) Reposition the resized diacritic.
(4) Reposition the other diacritics.
(5) Place aesthetic and explanatory diacritics in the space.
Diacritics tend to reflect characteristics common to many

glyphs, acting according to their function in a language.
The concept of symmetry in Arabic design is related to the

linear writing where extensions are used to balance the masses
of other glyphs.
Word as mass: The process of composing characters, above
the line, affects the aesthetics of Arabic writing. So we have to
study the space in words in relation to the sequence of their
characters.
Relationship between characters: The relationship between
characters of the word is based on (see Fig.20):
 Identicalness: when many of the glyphs involved in the

forms, or in the forms of their parts are the same.
 Similarity: when letters require manual rules to be

joining.
 Harmony: when most of the characters appear on the

baseline.
 Contrast: when conflict is present between straight

characters, horizontals and rounds characters.

Fig. 20. Relationship between characters

Priority to a language’s diacritics: Diacritics lead to a
repetition of common characteristics among many letters.
They must not come into conflict with the diacritics of
neighboring base glyphs.
Additional role of aesthetic diacritics: Aesthetic diacritics
must be positioned to maintain symmetry and harmony in
relation to a language’s diacritics (see Fig. 21).

Fig. 21. Arabic diacritics’ roles

6. Rendering of diacritics

The factors mentioned above must be taken together in
order to properly render Arabic diacritics. There are tow
category of fonts: dumb fonts and smart fonts. The first
category is characterized by simple sequential positioning,
while the second include the complex positioning data. We
will survey the various possibilities offered by the second
category and their limitations in trying to represent Arabic
writing properly.

6.1 Diacritics positioning processing

The non smart fonts are very limited to positioning properly
the diacritics. The diacritics placement processing is designed
to be used with such font format. To place one or more
diacritics, this processing uses a diacritic’s bounding box, the
base glyph's bounding box, and a diacritic data (see Fig. 22).
When the processing receives the information that the mark is
to be placed over the base glyph, it looks up the orientation for
this mark in tables. Based on this information, the processing
calls a pair of functions, H and V, for properly positioning the
mark [20].

Fig. 22. A diacritics positioning processing

To extend a processing which operates under the same
architecture to be as Arabic diacritics positioning processing,
the following issues must be taken into account:
 Ability to calculate the horizontal and vertical position of

diacritic glyph relative to the base glyph and the
neighboring base glyphs.

 Ability to calculate the horizontal and vertical position of
diacritic glyph relative to the diacritics of neighboring base
glyphs.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 268

 Ability to substitute the diacritic variant if a Kashida or a
ligature takes place.

 Ability to keep the contextual form of the basic glyph.

6.2 Rendering processing with smart font

 There are many smart fonts, such as: OpenType, Graphite,
and AAT, all based on Unicode. We have chosen the
OpenType, as it is the most common. OpenType is a font
format developed jointly by Adobe and Microsoft. It is an
extension of the TrueType font format, adding support for
PostScript font data. It is organized by script, language
system, feature, and lookup. The notion of script denotes a
collection of glyphs used to represent one or more languages
in written form. A language system changes the functions or
appearance of glyphs in a script to represent a given language
by defining features which are typographic rules for using
glyphs [21]. A feature groups the rules stocked in the font that
the engine rendering execute in three phase:
Substitution phase: corresponds to GSUB table, which have
charge to ligatures, contextual forms, vertical rotation,
conversion to small caps, Indic glyphs rearrangement, etc. The
principal substitutions offers are [22]:
 Single substitution: permits alternating from one glyph

to another.
 Multiple substitutions: permits changing one glyph by a

others.
 Alternate substitution: provides having a series of

alternates for each glyph.
 Ligature substitution: permits alternating a string of

glyphs with another glyph.
 Contextual substitution: assigns substituting a string of

glyphs by another string of glyphs.
Position phase: corresponds to GPOS table, which manages
the positioning of glyphs. We can put any diacritic on any
base glyph [22]. Diacritics are distributed into various classes
in conformity with their behavior. Each base glyph has
attachment points in a diacritic class [21] [22]. The principal
lookups offers are:
 Single adjustment: enables replacing the metrics of a

specific character.
 Pair adjustment: authorize substituting the metrics of a

specific pair of glyphs.
 Cursive attachment: permits forcing adjacent glyphs to

join at specific dots.
 Mark to base: assigns how diacritics are placed over

base glyphs.
 Mark to ligature: allows how diacritics are positioned

over a ligature and may have various places at which the
same type of mark may be positioned.

 Mark to Mark: provides how many diacritics are placed
over base glyph.

Justification phase: corresponds to JSTF table, which gives
the composition software means to increase or reduce the
width of certain words to get the best spaces between words,
in an attempt to justify a text [21].

Kashida, ligature, and allograph can be managed by GSUB
and GPOS. Positioning and resizing diacritics over them can
also be created by these tables.

6.3 Diacritics and GPOS

There are three lookups in GPOS table that threat a diacritical
positioning. But before exploring them, let’s see the structure
of each lookup.
Lookups Structure: In OpenType, each lookup contains the
followed elements [21]:

 LookupType: determines the type of lookup.
 LookupFlag: determines the series of flags.
 Coverage table: specifies all the glyphs are concerned

by a substitution or positioning operation.
In OpenType, glyphs are divided into four types: base

glyphs, diacritics; ligatures, and components of ligatures.
We can restrict the application of a lookup in some classes

by Lookupflag.
 MarkToBase Attachment lookup: is based on the followed
principle: Each mark has an anchor point and associated with
a class of diacritics. Every base glyph has many attachment
points as there are classes of diacritical. This lookup contains a
subtable MarkBasePos that composed on [21]:

 coverage table for marks;
 coverage table for base glyph;
 coordinates of the attachment points of marks;
 coordinates of the attachment points of base glyph.

MarkToLigature Attachment Positioning Subtable:
prescribes ligatures composed of many components that can
each define an attachment point for each class of marks. We
find [21]:

 Coverage table for ligatures;
 Coverage table for marks;
 The attachment points for each component of each

ligature.
MarkToMark Attachment Positioning Subtable: has same
structure as the MarkToLigature Attachment Positioning
Subtable, except that for marks we are tow tables coverage for
marks and same for coordinates [21].

6.4 Synthesis

The various issues of diacritics in new technologies can be
summarized in the following items:

 There is no relation of positioning diacritics (one to
one) during justification;

 Diacritics and ligatures;
 Diacritics and diacritics above same base glyph.

7. Proposed Solution

There is no composition system which takes into account
the insertion of Kashida or respecting the multilevel with
position and size variation of diacritics. There is no algorithm
or system to approximate space or to fill it. In this section, we

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 269

present our proposed solution to approximate the void and to
fill it by repositioning and resizing diacritical marks.

7.1 Positioning diacritics in Arabic fonts

To illustrate rendering of Arabic diacritics, we present some
fonts showing their treatment of positioning diacritics.
 Traditional Arabic:

 Times new roman:

 Scheherazade:

 Lateef:

Commentary:
 Most of Arabic fonts are mono-lines.
 Some of them raise a problem during the construction

of ligatures with diacritics.
 Some of them offer more than one position for

diacritics.
 The different Arabic fonts do not offer a mechanism for

resizing diacritics.
 The different Arabic fonts do not offer a mechanism to

fill space by diacritics.

7.2 Font

In this section, our calligraphic proposals are based on
Chawki1 samples, amchak [23].

In order to determine the factors that influence specifically
on the position and size of a diacritical mark, we have
classified the base glyphs according to their heights and
widths.

We note that:
 In isolated case, the position of the diacritical mark is

associated with the width and height of the base glyph,
i.e. these two factors determines the mass of the base
glyph and they link with the space which corresponds
to it. And with the white that precede it and/or succeed
it. The size of diacritic is default if the base glyph is
none stretched, and vice versa.

 In cursive forms, the position and the size of diacritics
depends on the mass of its base glyph, and on those
neighboring base glyphs and positions of their
diacritics. The situation becomes more complicated if

1Mohamed Chawki (1828-1887), a great calligrapher Turk and famous in

the history of Arabic calligraphy, was certified in calligraphy at the age of 13
years.

the multilevel takes place. We limit the study to case of
single level.

 Only Fatha and Fathatan can be elongated.
We adopt that the size of Fatha and Fathatan, in depend on

mass of base glyph and the mass of neighbors base glyphs.
In cursive forms, the size of the diacritic depends on the size

and height of its base glyph, and on those neighboring base
glyphs and positions and sizes of their diacritics [23].
Determine diacritics position: To take a usual distance
between diacritics and base glyph requires classification of
base glyphs according to their heights.
Determine diacritics size: There are three variants, related to
its size, for Fatha and Fathatan: normal, medium and large.
However, there is one for each of the others (see Fig.23).

Fig. 23. Position and size of diacritics in isolated form

Some classifications must be taken in the preparation of the
font, for that we:

 Classify letters according to their mass, in each form.
 Classify letters according to their possible stretch, in

each form.
 Determine, in default size, some variant positions for

each diacritic, following the mass of each glyph.
 Determine, for Fatha and Fathatan, some variant

sizes, following each stretched letter class.
 Determine the pairs of glyphs where there resizing

Fatha.
 Determine the positions of the diacritics of these

pairs and the possible alternatives.

7.3 Algorithm

The proposed algorithm aims to provide a mechanism to
position Arabic diacritics with the proper size to fill space that
is influenced by the effects of the justification and the ligature.
In this algorithm, we have adopted two principles: First,
change the positions and dimensions of diacritics, related to the
mass of the base glyph, to the mass of the followed glyph, and
to the difference of those heights. Second, consider ligatures as
a result of a series of basic glyphs which each has a diacritic of
its own [24].

The algorithm:
- In the first phase:
(1) Put the suitable position diacritic, with

the default size, for the first glyph of
word.

- In the phase n, where n ≥ 2 as long as writing the word
has not been completed:
(1) Put the suitable position diacritic, with

the default size, for the current glyph.
(2) If the diacritic of the preceding glyph

is Fatha or Fathatan, reposition and
resize it and reposition the diacritic of
current glyph according to fill space,

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 270

else reposition the diacritic according
to fill space.

- In the final phase:
(1) If the diacritic of the last character is

Fatha or Fathatan, call the alternative
diacritic related to its mass.

The chose of suitable, position and size, diacritic will be a
processing of substitution in tables offered by font.

Following the text graphic context (illustration, handbook,
lecture note, book, masterpiece…), the user would choose
between activate/deactivate calligraphic treatments (ligature,
Kashida, allograph, etc.). However, the user, or writer, needs to
be qualified in order to decide the suitable convention. This
chosen convention will influence the strategy adopted in the
justification processing. In calligraphy, there is no priority
strategy. The publishing system should be able to invoke, or re-
invoke, the positioning and sizing of diacritics, after running
the composition and justification processing.

7.4 Results

The algorithm has been applied on an Arabic font, developed
in OpenType format, and we have a result example shown in
Fig. 24. The obtained results indicate that OpenType is limited
by:
 Substitution: The using of the Kashida by substitution

glyph, to extend, by an extended variant, must be done
after a good choice of location in where to put it. The
Kashida was adapted in [18] considering it to be part of
the extended glyph.

 Reorganization: There was only one of two options:
o Ignore the ligatures: Then, two cases have in place:

not aware of multilevel, which gives incomplete
results; or split the ligatures to glyphs, but it affects
the rendering engine.

o Takes the ligature into account: However, with
reorganization and a change in the order of diacritics
and base glyphs to form the ligatures with their
diacritics.

Fig. 24. Resizing Fatha

8. Conclusion

In this paper, the problem of elongation of diacritical marks
is treated by simplifying the contexts of elongation of the
marks in a context of neighborhood in two successive letters.
But this is not the case; there are diverse contexts which control
the choice of the size of a diacritical mark, also a context of
neighborhood contains often more than two successive letters.
The proposed algorithm allows stretching out the size of a
diacritic, but without offering a mechanism neither to insert
aesthetic objects nor to offer a tool to straighten the positions of
the nearby diacritical marks. The problem must be studied in a

more systematic approach by basing itself on a study
concerning the choice of the sizes of diacritical marks and their
positions. The positioning and resizing of Arabic diacritics is
related to the effects of writing in cursive, multilevel ligature
and justification by the Kashida. These factors depend on
Arabic calligraphic styles; each one is controlled by its own
rules. Consequently, the Arabic script must be treated as a set
of styles in the electronic publishing systems.

The text composition systems underspecified the
complicated positioning of diacritics when compared to
ligation. Diacritics positioning can be lost when diacritics are
repositioned over glyphs in cursive attachment. Remember that
attachment is a cursive smart font feature that allows the
attachment and positioning of glyphs and determines how to
find the connecting dot of the neighboring glyphs; it is not just
a simple alignment of letters on the baseline. Another level of
complication is when a paragraph is justified. A font cannot
predict the mechanism implemented by the composition engine
to justify the lines, for example. The part of the engine that
handles paragraphs may create elongated glyphs by Kashida,
cause substitution of alternate glyphs, or permit
activations/deactivations of ligatures. Each part of the system
must contribute in its own way to the final visual rendering,
and we must know, above all, the tasks involved in each
component.

References

[1] B. V. Venkata Krishna Sastry, “Enhanced Font Features for Future
Multilingual Digital Typography with Sound-Script-Language Attribute
Integration”, TUGboat, Volume 24, Number 3, 2003.

[2] M. Solomon, “The art of typography”, Art Direction Book Company,
Revised edition, 1995.

[3] J. C. Wells, “Orthographic diacritics and multilingual computing”,
Language problems & language planning, ISSN, Volume 24, Number 3,
2000, pp. 249-272.

[4] J. Victor Gaultney, “Problems of diacritic design for Latin script text
faces”, http://www.sil.org/, 2008.

[5] A. Holkner, “Global multiple objective line breaking”, Honours Thesis,
Melbourne, 2006.

[6] http://www.typographie.org/, 2009.
[7] V.Atansiu, “Le phénomène calligraphique à l’époque du sultanat

mamluk”, PhD. Thesis, Paris, 2003.
[8] M. Hssini, A. Lazrek and Mohamed J. E. Benatia, “Diacritical signs in

Arabic e-document”, CSPA08, The 4th International Conference on
Computer Science Practice in Arabic, Doha, Qatar, 2008 (in Arabic).

[9] P. Andries, “Introduction à Unicode et à l’ISO 10646”, Document
numérique, Volume 6, 2002.

[10] G. Richard, “Unicode demystified”, Addison Wesley, 2002.
[11] The Unicode Standard, http://unicode.org.
[12] Rachid Zghibi, “Le codage informatique de l'écriture arabe”, Document

numérique, Volume 6, 2002.
[13] M. S. Mahmoud, “Teach Yourself Arabic calligraphy”, IbnSina, Cairo,

2000.
[14] H. Albaghdadi, “Korassat alkhat”, Dar Alqalam, Beirut, 1980.
[15] Mohamed Jamal Eddine Benatia, Mohamed Elyaakoubi, Azzeddine

Lazrek, “Arabic text justification”, TUGboat, Volume 27, Number 2, pp.
137-146, 2006.

[16] Justification,
http://a1.esa-angers.educagri.fr/informa/web_pao/index_p.htm.

[17] P. Smrž and P. Sojka, “Word Hy-phen-a-tion by Neural Networks”,
FIMU-RS-96-04, 1996, http://www.fi.muni.cz/reports/files/older/FIMU-
RS-96-04.pdf.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011
ISSN (Online): 1694-0814
www.IJCSI.org 271

[18] M. Elyaakoubi, A. Lazrek, “Justify just or just justify”, The Journal of
Electronic Publishing, Volume 12, Number 2, 2009.

[19] Charlott et Peter Fiell, “Graphic design for the 21st century”, Taschen,
Köln, 2003.

[20] M. Breiner, “Diacritics positioning system for digital typography”,
http://www.freshpatents.com/, 2009.

[21] Y. Haralambus, “Fontes et codage”, O’Reilly, Paris, 2004.
[22] Microsoft typography, http://www.microsoft.com/typography/otspec/.
[23] M. Chawki, “Amchak Chawki”, International commission for the

preservation of Islamic culture, Istanbul, 1999.
[24] M. Hssini, A. Lazrek, Mohamed Jamal Eddine Benatia, “Arabic digital

typography design and connect characters issues”, 5th International
Conference on Computer Science Practice in Arabic, pp. 19-31, Rabat,
Morocco, 2009 (in Arabic).

Mohamed Hssini is a Ph.D. student in Department of
Computer Science at Cadi Ayyad University. He is a member
of multilingual scientific e-document processing team. His
current main research interest is multilingual typography,
especially the publishing of Arabic e-documents while
observing the strict rules of Arabic calligraphy.

Azzeddine Lazrek is full Professor in Computer Science at
Cadi Ayyad University in Marrakesh. He holds a PhD degree
in Computer Science from Lorraine Polytechnic National
Institute in France since 1988, in addition to a State Doctorate
Morocco since 2002. Prof. Lazrek works on Communication
multilingual multimedia e-documents in the digital area. His
areas of interest include: multimedia information processing
and its applications, particularly, electronic publishing, digital
typography, Arabic processing and the history of science. He
is in charge of the research team Information Systems and
Communication Networks and the research group Multilingual
scientific e-document processing. He is an Invited Expert at
W3C. He leads a multilingual e-document composition project
with other international organizations.

