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Abstract 

A Stream cipher which is not based on LFSR’s for creating 
random bit patterns is just like the Sylar Encryption System 
which use Jacobi symbols for generation of pseudo-random 
bit sequences. There is no restriction on t he size of the 
secrete key which is shared, so there is no need of rewriting 
the code in case of block ciphers and other stream, there is 
need to change the size of the key for enhanced protection. 
Sylar Encryption System gives a near possible 
mathematically proven security as in case of one–Time Pads. 
Sylar encryption gives the advantage of computing multiple 
keys of the pseudo-random pad at the same time and thus 
support parallelism which most stream ciphers do not support. 
So computers which have multiple cores in the main memory 
can be used more efficiently and thereby contribute in 
increasing in the speed of encryption and decryption. 
 
Keywords: Jacobi Symbols, Legendre Symbol, LFSR, 
encryption. 

1. Introduction 

Jacobi sequences are harder to predict than Legendre 
sequences, let Q  be a polynomial with the  s ecurity 
parameter value 1, the Legendre generator taken as 
input (seed) a randomly chosen k -bit prime p  and a  
uniformly chosen k -bits number a . It produces as 
output the Legendre sequence modulo p with starting 
point a and length )(kp  where Legendre symbols are 
translated into bits such that -1 responds to a 1-bit, 
while 1 corresponds to a 0-bit. This sequence will be 
denote ),( apL . Similarly, Jacobi generator P  and 
Q   be polynomials then with security parameter value 
1, the Jacobi generator taken as input )(kQ  randomly 
chosen k -bit prime )1(p  ….. )(kp  and )(kQ  
uniformly chosen k -bit number )(.),........1( kaa . Let 

a  be chosen, such that a  is congruent to )(ia  
modulo )(ip  for )(....1 kQi = . The generator 
produces as output the Jacobi sequence modulo n with 
starting point a  and length P, where Jacobi symbol are 
translated into bits as above. The sequence will be 
called ),( anJ , and its ith element will be called 

))(,( ianJ . Yao Kr [1] has proved that, if given a 
prefix of the output from a pseudorandom bit generator, 
it is still hard to predict the next bit. Then output from 
the generator cannot be distinguished from truly 
random sequences by any feasible algorithm [2]-[8]. 
Thus, informally taking, all we have to do in order to 
prove the strength of our generator is to show hard 
problem. This can also stated using Levin’s concept of 
isolation consider some prefix of the output from the 
generator as a function of the seed. Then we would like 
the bit following the prefix to be isolated from the 
prefix itself. In general, we can think of a 
pseudorandom bit generator  a s a probabilistic 
algorithm which takes input are chosen from a finite  
set X, where {xm} is a family of finite element  and m 
as a security parameter. The output G(x) is a bit string 
use ith bit is denoted by G(xi). We now have the 
following more formal definition of next bit-security. 
Thus generator G is said to be strongly unpredictable, if 
for all polynomials P and probabilistic circuits C holds 
only for finite m.   
The Jacobi symbol is a generalization of the Legendre 
symbol. It is theoretical interest in modular arithmetic 
and other branches of number  theory, but its main use 
in computational number theory, especially primarily 
testing and integer factorization; these in turn are 
important in cryptography. 

Let 








p
a  represent the Legendre symbol, defined for 

all integers a  and all odd primes p by  
 

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011 
ISSN (Online): 1694-0814 
www.IJCSI.org 542



2

0 ( mod )
1 0 ( mod )

some int eger ( mod )
1  

  if  a   p
  if  a    p    anda

p   x, a x p
  if  there  is no such x 

≡
+ ≠  =   ≡  
−

               (1) 

 
Following the normal convention for the empty 
product. For any integer a and any positive odd integer 
n the Jacobi symbol the product of the Legendre 
symbols corresponding to the prime factors of n 
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These facts, even the reciprocity laws, are  s traight 
forward deduction from the definition of the Jacobi 
symbol and the corresponding properties of the 
Legendre Symbol. But Jacobi symbols are defined 
when the numerator (upper argument) is an integer and 
the denominator (lower argument) is a positive odd 
integer. 
If n is (an odd) prime, then the Jacobi symbol 








n
a  is 

also a Legendre symbol. 
 
If  
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The law of quadratic reciprocity: 
 
 If m and n are odd positive integers, then 
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and its supliments 
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Like the Legendre symbol, 
 
If 
 
 )(mod       1 nresiduenonquadraticisathen

n
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If a is a quadratic residue (mod n) then  
 

1=

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n
a                                                                    (4) 

 
But, unlike the Legendre symbol if 1=








n
a  then a may 

or may not be a quadratic residue (mod n). 
 
This is because for a  to be a residue (mod n) it has to be 
a residue modulo every prime that divides n, but the 
Jacobi symbol will equal one if for example a  is a non-
residue for exactly two primes which divides n. 
 
This formula lead to an efficient algorithm for 
calculating the Jacobi symbol, analogous to the 

Euclidean algorithm for finding GCD of two numbers. 
The ‘numerator’ is reduced modulo the ‘denominator’ 
using rule (2). Any multiples of 2 are pulled out using 
rule (4) and calculated using rule (8). The symbol is 
flipped using rule (6), and the algorithm recourses.  Until 
the ‘numerator’ is 1 (by rule (4)) or 2 (by rule (8)), or the 
‘numerator’ equals the ‘denominator’ (by rule (3)).  
 
The Legendre symbol 
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
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p
a  is only defined for odd 

prime p. It obeys the same rule as the Jacobi symbol i.e 
reciprocity and the supplementary formulas for 
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2  and multiplicatively of the ‘numerator’. 

Let us consider 9907 is prime and calculate 
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Using the Legendre symbol: 
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Using the Jacobi symbol 
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2. Proposed Work 

Both the communicating parties have a s hared secret 
key. This key (p) can be arbitrarily long without any 
fixed size and has no restriction whether the number 
should be a prime number or not. An initialization vector 
(IV) is also sent in plain text so as make the bit sequence 
more random. This secret key [9]-[12] is then truncated 
by fixed number of bits. This truncated secret key (a) is 
then multiplied with the first half of the IV and added to 
second half of the IV modulo (p). The end result (a) is 
used as the seed of the random bit generator. For 
encryption of nth bit the Jacobi symbol (a + (n-1)/p) is 
calculated and is XOR-ed with the corresponding bit at 
receiver’s end the same process is repeated and the 
message is recovered from the encryption.   
 
Unlike other stream and block cipher there is no 
restriction on the size of the of the of the secret key 
which is shared, so there is no need of rewriting the code 
in case we have to change the size of the key for 
enhanced protection; Sylar encryption system gives a 
near possible mathematically proven security as in case 
of One-Tme pads. Sylar encryption gives the advantage 
of computing multiple keys of the pseudo-random pad at 
the same-time and thus support parallelism which most 
stream ciphers do not support. So computers which have 
multiple cores in the main memory can be used more 

efficiently and thereby contribute in increasing in the 
speed of encryption and decryption. 

3. Pseudo-Code 

P:= Secret_key ; 
 
a׳:= Truncate (p>>100) //binary division done 100 times 
over the secret shared key written in binary 
 
Size= (log (IV)/2 
 
a׳:= a׳ * (IV’s Most significant size bits)  
//IV is initialization vector 
 
a := a׳  + (IV’s Least  significant size bits)  
            //This value a is used as th seed for this session 
    for i=1 
 
if stream exists 
        do   
J:= Jacobi (a+i-1),  p); 
Xor  (plaintext bit (i) , J) ;  
//encrypt if sender, decrypt if receiver  
          i:=i+1; 
          else exit 
 
UPseudo code for Jacobi symbol : 
 
Jacobi (a,b)  ( If (b<=0 or (b mod 2)==0) return(0); 
       J=1; 
       If (a<0)  
         { a= -a ; 
            If ((b Mod 4== 3)   j = -j; } 
 
 Do while  (a!=0) { 
 
 Do while  (( a Mod 2 ) == 0)  
 {    //Process factors of 2: 
       Jacobi (2,b) = -1 if (b=3, 5 (mod 8)) 
       a = a/2 
       
 If (( b Mod 8) =3 or (b Mod 8) == 5)  j = -j ;} 
// Quadratic reciprocity: Jacobi (a,b) = - Jacobi (b,a) if 
a=3, b=3 (mod 4) 
Interchange (a,b) ; 
 
If ((a Mod 4) == 3 and (b Mod 4) == 3) j = -j; 
           a = a Mod b;}     
       
 If (b == 1)   (return (j)} 
           else return (0) ; } 
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4. Conclusions 

The difference between the two calculations is that when 
the Legendre symbol is used the ‘numerator’ has to be 
factored into prime powers before the symbol is flipped. 
This makes the calculation using the Legendre symbol 
significantly slower than the one using the Jacobi 
symbol, as there is hard to know polynomial time 
algorithm for factoring integers.  I n fact, this is why 
Jacobi introduced the symbol.   
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