
Jacobi Symbol Are Harder To Predict Than Legendre Symbol In
Sylar Encryption System

Rajesh Kumar Sinha1 and Tanwir Uddin Haider2

 1 Department of Mathematics, National Institute of Technology, Patna
Bihar, India

2 Department of Computer Science, National Institute of Technology, Patna
Bihar, India

Abstract

A Stream cipher which is not based on LFSR’s for creating
random bit patterns is just like the Sylar Encryption System
which use Jacobi symbols for generation of pseudo-random
bit sequences. There is no restriction on t he size of the
secrete key which is shared, so there is no need of rewriting
the code in case of block ciphers and other stream, there is
need to change the size of the key for enhanced protection.
Sylar Encryption System gives a near possible
mathematically proven security as in case of one–Time Pads.
Sylar encryption gives the advantage of computing multiple
keys of the pseudo-random pad at the same time and thus
support parallelism which most stream ciphers do not support.
So computers which have multiple cores in the main memory
can be used more efficiently and thereby contribute in
increasing in the speed of encryption and decryption.

Keywords: Jacobi Symbols, Legendre Symbol, LFSR,
encryption.

1. Introduction

Jacobi sequences are harder to predict than Legendre
sequences, let Q be a polynomial with the s ecurity
parameter value 1, the Legendre generator taken as
input (seed) a randomly chosen k -bit prime p and a
uniformly chosen k -bits number a . It produces as
output the Legendre sequence modulo p with starting
point a and length)(kp where Legendre symbols are
translated into bits such that -1 responds to a 1-bit,
while 1 corresponds to a 0-bit. This sequence will be
denote),(apL . Similarly, Jacobi generator P and
Q be polynomials then with security parameter value
1, the Jacobi generator taken as input)(kQ randomly
chosen k -bit prime)1(p …..)(kp and)(kQ
uniformly chosen k -bit number)(.),........1(kaa . Let

a be chosen, such that a is congruent to)(ia
modulo)(ip for)(....1 kQi = . The generator
produces as output the Jacobi sequence modulo n with
starting point a and length P, where Jacobi symbol are
translated into bits as above. The sequence will be
called),(anJ , and its ith element will be called

))(,(ianJ . Yao Kr [1] has proved that, if given a
prefix of the output from a pseudorandom bit generator,
it is still hard to predict the next bit. Then output from
the generator cannot be distinguished from truly
random sequences by any feasible algorithm [2]-[8].
Thus, informally taking, all we have to do in order to
prove the strength of our generator is to show hard
problem. This can also stated using Levin’s concept of
isolation consider some prefix of the output from the
generator as a function of the seed. Then we would like
the bit following the prefix to be isolated from the
prefix itself. In general, we can think of a
pseudorandom bit generator a s a probabilistic
algorithm which takes input are chosen from a finite
set X, where {xm} is a family of finite element and m
as a security parameter. The output G(x) is a bit string
use ith bit is denoted by G(xi). We now have the
following more formal definition of next bit-security.
Thus generator G is said to be strongly unpredictable, if
for all polynomials P and probabilistic circuits C holds
only for finite m.
The Jacobi symbol is a generalization of the Legendre
symbol. It is theoretical interest in modular arithmetic
and other branches of number theory, but its main use
in computational number theory, especially primarily
testing and integer factorization; these in turn are
important in cryptography.

Let








p
a represent the Legendre symbol, defined for

all integers a and all odd primes p by

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 542

2

0 (mod)
1 0 (mod)

some int eger (mod)
1

 if a p
 if a p anda

p x, a x p
 if there is no such x

≡
+ ≠  =   ≡  
−

 (1)

Following the normal convention for the empty
product. For any integer a and any positive odd integer
n the Jacobi symbol the product of the Legendre
symbols corresponding to the prime factors of n

,
121

321

k

kp
a

p
a

p
a

p
a

n
a

αααα

































=






 (2)

These facts, even the reciprocity laws, are s traight
forward deduction from the definition of the Jacobi
symbol and the corresponding properties of the
Legendre Symbol. But Jacobi symbols are defined
when the numerator (upper argument) is an integer and
the denominator (lower argument) is a positive odd
integer.
If n is (an odd) prime, then the Jacobi symbol 








n
a is

also a Legendre symbol.

If

(mod) a ba b n then
n n

   ≡ =   
   

 (5)





=±
≠

=







1),gcd(1
1),gcd(0

naif
naif

n
a (6)

)0 (1 ,
2

or
n
aso

n
b

n
a

n
ab

=




















=






 (7)

)0 (1 , 2 or
n
aso

m
a

m
a

mn
a

=




















=






 (8)

The law of quadratic reciprocity:

 If m and n are odd positive integers, then

1 1
2 2

 1(mod 4) 1(mod 4)
(1)

 3(mod 4)

m n

n if n or m
mm n

n m n if n m
m

− −

   ≡ ≡      = − =    
     − ≡ ≡   

 (9)
and its supliments





≡−
≡

=−=





 − −

)4(mod3 1
)4(mod1 1

)1(1 2
1

nif
nif

n

n
 (10)





≡−
≡

=−=





 −

)8(mod5,3 1
)8(mod7,1 1

)1(2 8
12

nif
nif

n

n
 (11)

Like the Legendre symbol,

If

)(mod 1 nresiduenonquadraticisathen

n
a

−−=





 (3)

If a is a quadratic residue (mod n) then

1=







n
a (4)

But, unlike the Legendre symbol if 1=








n
a then a may

or may not be a quadratic residue (mod n).

This is because for a to be a residue (mod n) it has to be
a residue modulo every prime that divides n, but the
Jacobi symbol will equal one if for example a is a non-
residue for exactly two primes which divides n.

This formula lead to an efficient algorithm for
calculating the Jacobi symbol, analogous to the

Euclidean algorithm for finding GCD of two numbers.
The ‘numerator’ is reduced modulo the ‘denominator’
using rule (2). Any multiples of 2 are pulled out using
rule (4) and calculated using rule (8). The symbol is
flipped using rule (6), and the algorithm recourses. Until
the ‘numerator’ is 1 (by rule (4)) or 2 (by rule (8)), or the
‘numerator’ equals the ‘denominator’ (by rule (3)).

The Legendre symbol









p
a is only defined for odd

prime p. It obeys the same rule as the Jacobi symbol i.e
reciprocity and the supplementary formulas for








 −
p
1 and









p
2 and multiplicatively of the ‘numerator’.

Let us consider 9907 is prime and calculate 







9907
1001 .

Using the Legendre symbol:





















=








9907
13

9907
11

9907
7

9907
1001 (12)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 543

1
7
2

7
9907

9907
7

−=





−=






−=






 (13)

1
7
4

7
11

11
7

11
9907

9907
11

=





=






=






−=






−=






 (14)

1
13
1

13
9907

9907
13

=





−=






−=






 (15)

1
9907
1001

−=





 (16)

Using the Jacobi symbol







=













=






=






=








1001
449

1001
449

1001
2

1001
898

1001
9907

9907
1001







=






=






=






=






=

37
103

103
37

103
449

449
103

449
1001

1
29
2

29
4

29
8

29
37

37
29

−=












=






=






=






= (17)

2. Proposed Work

Both the communicating parties have a s hared secret
key. This key (p) can be arbitrarily long without any
fixed size and has no restriction whether the number
should be a prime number or not. An initialization vector
(IV) is also sent in plain text so as make the bit sequence
more random. This secret key [9]-[12] is then truncated
by fixed number of bits. This truncated secret key (a) is
then multiplied with the first half of the IV and added to
second half of the IV modulo (p). The end result (a) is
used as the seed of the random bit generator. For
encryption of nth bit the Jacobi symbol (a + (n-1)/p) is
calculated and is XOR-ed with the corresponding bit at
receiver’s end the same process is repeated and the
message is recovered from the encryption.

Unlike other stream and block cipher there is no
restriction on the size of the of the of the secret key
which is shared, so there is no need of rewriting the code
in case we have to change the size of the key for
enhanced protection; Sylar encryption system gives a
near possible mathematically proven security as in case
of One-Tme pads. Sylar encryption gives the advantage
of computing multiple keys of the pseudo-random pad at
the same-time and thus support parallelism which most
stream ciphers do not support. So computers which have
multiple cores in the main memory can be used more

efficiently and thereby contribute in increasing in the
speed of encryption and decryption.

3. Pseudo-Code

P:= Secret_key ;

a׳:= Truncate (p>>100) //binary division done 100 times
over the secret shared key written in binary

Size= (log (IV)/2

a׳:= a׳ * (IV’s Most significant size bits)
//IV is initialization vector

a := a׳ + (IV’s Least significant size bits)
 //This value a is used as th seed for this session
 for i=1

if stream exists
 do
J:= Jacobi (a+i-1), p);
Xor (plaintext bit (i) , J) ;
//encrypt if sender, decrypt if receiver
 i:=i+1;
 else exit

UPseudo code for Jacobi symbol :

Jacobi (a,b) (If (b<=0 or (b mod 2)==0) return(0);
 J=1;
 If (a<0)
 { a= -a ;
 If ((b Mod 4== 3) j = -j; }

 Do while (a!=0) {

 Do while ((a Mod 2) == 0)
 { //Process factors of 2:
 Jacobi (2,b) = -1 if (b=3, 5 (mod 8))
 a = a/2

 If ((b Mod 8) =3 or (b Mod 8) == 5) j = -j ;}
// Quadratic reciprocity: Jacobi (a,b) = - Jacobi (b,a) if
a=3, b=3 (mod 4)
Interchange (a,b) ;

If ((a Mod 4) == 3 and (b Mod 4) == 3) j = -j;
 a = a Mod b;}

 If (b == 1) (return (j)}
 else return (0) ; }

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 544

4. Conclusions

The difference between the two calculations is that when
the Legendre symbol is used the ‘numerator’ has to be
factored into prime powers before the symbol is flipped.
This makes the calculation using the Legendre symbol
significantly slower than the one using the Jacobi
symbol, as there is hard to know polynomial time
algorithm for factoring integers. I n fact, this is why
Jacobi introduced the symbol.

References
[1] A division less form of the Schur Berlekamp-Massey

algorithm by Christopher J.Zarowski.
[2] Cryptographic secure Pseudo-Random bits generation by

Pascal Junod.
[3] Colomb,S. Shift Register sequences, Aegean Park Press,

1982.
[4] Elaine Barker and John Kelsey, “Recommendation for

Random Number Generation Using Deterministic
Random Bit Generators”, NIST Special Publication 800-
90. Revised March 2007.

[5] H. Gilbert and M. Minier, “New results on the
pseudorandomness of some block cipher constructions”,
In M. Matsui (Ed.) Fast Software Encryption - FSE
2001, Lecture Notes in Computer Science 2355,
Springer-Verlag, 2002, 248–266.

[6] M.Grangetto, E. Magli and G. Olmo, “Multimedia
selective encryption by means of randomized arithmetic
coding”, IEEE Transactions on M ultimedia, vol. 8, no.
5, 2006.

[7] Md.Tanwir Uddin Haider & Rajesh Kumar Sinha et.
al.IJCSE Vol. 02, No. 09, 2010, 2836-2837.

[8] Massey,J. “Shift Register synthesis and bch decoding”
IEEE Transactions on Information Theory, Vol. 15. No.,
pp 122-127, 1969.

[9] Menezeset al. Handbook of Applied Cryptography.
[10] Modified Berlekamp-Massey algorithm for

approximating the k-error linear complexity of Binary
sequences by Alexandra Alecu and Ana Salagean.

[11] Schneier Bruce, Applied Cryptography, 2nd edition,
Addison Wiley, New York 1996.

[12] Lidl R and Niederreriter H. Encyclopedia of
Mathematics and its Applications, vol.20, Cambridge
University Press,(1996)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 545

