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Abstract 
Modular multiplication is the most important part of public key 
cryptography algorithm like RSA and elliptic curve cryptography. 
Residue Number System is an efficient way to speed up these 
applications because of its carry free nature. Efficiency of 
modular multiplication in RNS is depending on effective 
selection of RNS bases. In this work efficient design of RNS 
bases are reported where comparing to the state-of-the-art, the 
proposed RNS bases has enjoyed more efficient arithmetic 
operation and residue/binary to binary/residue conversion. 
Therefore modular multiplication in RNS is implemented with 
more speed. Comparison with the best work in literature shows 
that noticeable improvement in speed has achieved by the 
proposed RNS bases. 
Keywords: Montgomery Modular Multiplication, Residue 
Number System (RNS), modular arithmetic, Elliptic curve 
cryptography (ECC). 

1. Introduction 

Residue Number System (RNS) has achieved more 
attention by researcher in recent years for its ability to 
perform fast arithmetic operation like addition, subtraction 
and multiplication [1]. Computations in RNS are done 
without carry propagation between residues and can run 
concurrently and independently, so it r esults in speed up 
and reducing the complexity of different arithmetic 
components. RNS is an instrumental tool in many 
applications like image processing, public key 
cryptography [2-10] and digital signal processing (DSP) 
[11] which require high speed computations. Modular 
multiplication is the main part of these applications 
especially in cryptography algorithms like RSA [2], [3] 
and elliptic curve cryptography (ECC) [9], [10] which can 
be implemented in RNS systems. 
Moduli selection has important role in efficiency of 
arithmetic operation, forward and reverse conversion 
which are the three main parts of RNS system [12-14]. 
Different moduli sets with efficient reverse converter are 
proposed by researcher. One of the most well-formed 
moduli sets is {2 P

n
P-1, 2 P

n
P, 2 P

n
P+1} which forward converter for 

these moduli can be done with simple process and the best 
reverse converter for this moduli set is reported in [15].  
For applications like cryptography algorithms, more 
dynamic ranges are needed. Therefore five moduli sets are 
presented such as {2 P

n
P, 2 P

2n+1
P-1, 2 P

n/2
P-1, 2 P

n/2
P+1, 2 P

n
P+1} [14] 

and {2 P

n
P, 2 P

n
P-1, 2 P

n
P+1, 2 P

n
P-2 P

(n+1)/2
P+1, 2 P

n
P+2 P

(n+1)/2
P+1} when n is 

odd [16]. Modular multiplication is the main part of 
cryptography algorithms such as RSA [3] and ECC [10]. 
One of the most known algorithms for the modular 
multiplication is Montgomery modular multiplication 
which does not require any division [17]. This algorithm 
can be implemented in RNS using an auxiliary basis [18]. 
Proper selection of RNS bases results in increasing the 
efficiency of modular multiplication. In [19] RNS bases for 
the first and second basis are proposed in the form of 
2 1ik −  and 2 1jk +  respectively where i, j= 1,…, m. The 
main disadvantages of this work are unbalanced moduli 
sets and inefficient multiplicative inverses which yield to 
increasing the delay of reverse converter and inefficiency 
of arithmetic operation. In [2] RNS bases are presented in 
the form of 2 P

k
P-cRiR where 0 ≤ cRiR < 2 P

k/2
P. Hamming weight of 

moduli in this work is equal to three in worse case. As 
discussed in [2], efficient reduction can be achieved by this 
form of moduli. Simple multiplicative inverses are another 
advantage of this work. This report is the fastest RNS 
implementation until now which considered the efficiency 
of arithmetic operation, residue/binary to binary/residue 
conversion. We can enjoy the efficiency of reverse 
conversion and arithmetic operation of moduli set {2 P

n
P, 2 P

n
P-

1, 2 P

n
P+1, 2 P

n
P-2 P

(n+1)/2
P+1, 2 P

n
P+2 P

(n+1)/2
P+1} [16] in the second basis 

of the work reported in [2], in order to realize RNS 
Montgomery multiplication with higher speed. This paper 
presents efficient RNS bases for public key cryptography 
and ECC especially. In first basis, search for moduli set in 
the form of 2 P

k
P-cRiR where 0 ≤ cRiR < 2 P

k/2
P with hamming weight 

equal to three are performed, and in the second basis, 
moduli set {2 P

n
P, 2 P

n
P-1, 2 P

n
P+1, 2 P

n
P-2 P

(n+1)/2
P+1, 2 P

n
P+2 P

(n+1)/2
P+1} [16] 

is used. With these RNS bases, we can utilize the 
advantages of arithmetic unit and efficient forward and 
reverse conversion. Moreover, for the first basis, RNS 
moduli are proposed with variant bit lengths in order to 
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achieve different dynamic ranges especially for ECC, for 
example 192, 256 a nd 320 bits. The results show that 
noticeable improvement of modular multiplication is 
achieved compared to the method proposed in [2]. 
This paper is organized as follows. Section 2 introduces 
RNS and modular multiplication background. The 
proposed RNS bases are detailed in section 3. Comparison 
with other RNS bases is presented in Section 4 and finally 
section 5 concludes the paper. 

2. Related background 

2.1 Overview of RNS 

We consider a s et of integers (p1, p2, …, pm), which is 
called RNS basis with 

1

m

i
i

M p
=

=∏ . The pi’s are pair wise 

relatively prime, where gcd (pi, pj) = 1, for 1 ≤ i, j ≤ m, i ≠ 
j. The RNS representation of an integer [ ]0,X M∈ , is (xR1R, 
xR2R,…, xRmR), i.e. xRiR = X mod pRiR. There are several algorithms 
for the reverse converter which translate residues into its 
equivalent weighted number. The Mixed Radix Conversion 
(MRC) is one of them calculated by: 

(1)  
-1

3 2 1 2 1 1
1

 ...
m

m i
i

X v p v p p v p v
=

= + + + +∏ 

(2) 1 1 2 2 3 -1  ( ( ... )...)m mX v p v p v p v= + + + + 
Where 

2 2

3 3
3

1 1

-1
2 2 1 1

-1 -1
3 3 1 1 2 2

( )

(( ) )

p p

p p p

v x

v x v p

v x v p v p

=

= −

= − −
 

 
And in the general case: 

-1 -1 -1
1 1 2 2 -1 -1((( ) ) ... )

m m m m
m m m mp p p p

v x v p v p v p= − − − −
 

 
1

j
i p

p−  is the multiplicative inverse of pRiR modulus pRjR.  

The other algorithm is Chinese Remainder Theorem (CRT) 
that convert residue number into weighted number X as 
follows: 

(3) 
1

i

m

i i ip
i M

X x N M
=

= ∑  

Where M = pR1RpR2R…pRmR, 
i

i

MM
P

= and 1

i
i i p

N M −=  is 

multiplicative inverse of MRiR modulus pRiR. The CRT is 
implemented in parallel channel followed by a modulus M 
adder which is very large, but MRC is a sequential 
algorithm. For the moduli set with more than four moduli 
set, combination of these two algorithms could be applied 
to achieve higher speed of inverse converter [13-14]. 

2.2 Overview of RNS Montgomery multiplication 

In this section we discuss the calculation of Montgomery 
modular multiplication in RNS introduced in [2]. Consider 
X and Y as two large numbers, BRmR= {pR1R,…,pRmR} and 

B'RmR={p'R1R,…,p'RmR} as two bases. Where 
1

m

i
i

M p
=

=∏  and 

1

m

i
i

M p
=

′ ′=∏  are the products of the elements of the RNS 

bases. The RNS representation of X and Y in these bases is 
equal to (xR1R,…,xRmR) and (yR1R,…,yRmR) in the first basis, and 
(x'R1R,…,x'RmR) and (y'R1R,…,y'RmR) in the second basis. We 
consider T where T < M < M' and gcd(T, M) = gcd(T, M') 
= gcd(M, M') = 1. The term, A×B×M P

-1
P mod T, can be 

calculated by modular multiplication as following: 

RNS Montgomery Multiplication 
1. Consider D as product of A and B in two bases BRmR and 
B'RmR. This means 

i
i i i p

d x y= ×  in the first basis and 

i
i i i p

d x y
′

′ ′ ′= × for i=1,…, m in the auxiliary basis and in 

the general case D = A × B. 
2. Consider 1

P P
Q D T −= ×  which is evaluated just in the 

first basis thus 1

i i
i i p p

q d T −= × . 

3. Representation of Q is extended to auxiliary basis B'RmR. 
4. Consider 1( )

P
R D Q T M −

′= − × ×  which is computed just 

in the auxiliary basis B'RmR. Thus 1( N )
i i

i i i i p p
r d q M −

′ ′
′ ′ ′ ′= − × × . 

5. Representation of R is extended to the first basis BRmR. 
 

3. Proposing RNS bases  

Basic operation for RNS Montgomery multiplication 
consists of two conversions included several products and 
one addition [2]. Hence proper selection of RNS bases 
leads to speed up these operations in each moduli, and 
reverse and forward conversion can be done with more 
speed.  
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3.1 Selecting RNS bases for modular multiplication 

Form of the moduli is very important for the efficiency of 
the modular multiplication, so selecting efficient RNS 
bases is the main purpose of this work in order to achieve 
efficient modular multiplication. In [2], RNS bases are 
presented in the form of 2k-ci where 0 ≤ ci < 2k/2. 
Reduction in moduli 2k-ci is easy and efficient arithmetic 
operation will be achieved comparing to general moduli 
[2]. Simple multiplicative inverses is another advantages of 
the work reported in [2] which result in replacing 
multiplication required in calculation of vi’s in Eq. 2 by  
some simple shift and addition . Cost of reduction in [2] 
for moduli in the form of 2k

ic−  is reported as 2w(ci)+2 
additions of k bit words where w(ci) is the hamming weight 
of ci. 
In order to increase efficiency of arithmetic unit and speed 
of reverse converters, RNS moduli set, {2n, 2n-1, 2n+1, 2n-
2(n+1)/2+1, 2n+2(n+1)/2+1} [16], is used for the second basis. 
For the first basis like the method proposed in [2] the 
exhaustive search for the moduli in the form of 2k-ci where 
0 ≤ ci < 2k/2 is done. Although the first basis has simple 
multiplicative inverses [2], the second basis enjoys more 
efficient arithmetic operation, forward and reverse 
converter.  
Three RNS bases with different dynamic ranges are 
proposed for each basis shown in table 1. Selecting RNS 
moduli sets with various bit lengths leads to having 
different dynamic ranges which is suitable for ECC, for 
example 192, 256 a nd 320 bits. Reverse converter for 
moduli set {2n, 2n-1, 2n+1, 2n-2(n+1)/2+1, 2n+2(n+1)/2+1} [16] 
is designed for odd n, therefore k is considered even in first 
basis and n is considered as k+1 which is shown in table 1. 

Table 1: proposed RNS bases for various dynamic ranges 
RNS bases First basis Bm Auxiliary basis B'm 

The first 5-
moduli 

RNS bases 

264-210-1 , 
264-231-1 , 
264-216-1 , 
264-219-1 , 
264-220-1 . 

265 , 
265-1 , 
265+1 , 

265-233+1 , 
265+233+1 . 

The second 5-
moduli 

RNS bases 

252-210-1 , 
252-231-1 , 
2 P

52
P-2 P

15
P-1 , 

2 P

52
P-2 P

19
P-1 , 

2 P

52
P-2 P

20
P-1 . 

2 P

53 
P, 

2 P

53
P-1 , 

2 P

53
P+1 , 

2 P

53
P-2 P

27
P+1 , 

2 P

53
P+2 P

27
P+1 . 

The third 5-
moduli 

RNS bases 

2 P

40
P-2 P

8
P-1 , 

2 P

40
P-2 P

10
P-1 , 

2 P

40
P-2 P

16
P-1 , 

2 P

40
P-2 P

19
P-1 , 

2 P

40
P-2 P

20
P-1 . 

2 P

41 
P, 

2 P

41
P-1 , 

2 P

41
P+1 , 

2 P

41
P-2 P

21
P+1 , 

2 P

41
P+2 P

21
P+1 . 

 
 
The process of conversion from one basis to another 
needed in line 3 and 5 of modular multiplication algorithm 

prescribed in section 2.2 is shown in figure 1. Delay of 
conversion from first basis to second basis and vice versa 
must be considered in order to achieve overall delay. 
 

 
(A) 

 
(B) 

Fig.1  (A) conversion from first to second basis, (B) conversion from 
second to first basis 

 
3.2 RNS to RNS conversion from first to second 
basis 

As shown in figure 1, RNS to RNS conversion from first to 
second basis includes two steps: RNS to mixed radix 
system (MRS) in first basis and MRS to RNS from first to 
second basis. Eq. 4 shows the delay of these conversions: 
 

(4)     RNS RNS RNS MRS MRS RNSDelay Delay Delay− − −= +           
 

Delay of RNS to MRS based on [2] in first basis is: 
 

(5)     ( )1
1

2, ;1
max 2 ( ) 4

j

m

RNS MRS i j FApj m i ji
Delay w p w c kD

−
−

− = <
=

  = + +    
∑   

     
Where 1

j
i p

p− is multiplicative inverse of pRiR modulus pRjR, 

w(cRjR) is the hamming weight of cRjR, DRFAR is delay of one bit 
full adder and m is the number of moduli in each basis. For 
five moduli set Eq. 5 is reformed to: 
 

(6) ( )4
1

2,5;1
max 2 ( ) 4

j
RNS MRS i j FApj i ji

Delay w p w c kD−
− = <

=

  = + +    
∑ 

 
Delay of RNS to MRS conversion from first to second 
basis with different bit lengths is shown in table 2. Note 
that the moduli in first basis are same with [2]. Therefore 
comparing to [2], same RNS to MRS conversion from first 
to second basis is achieved. 

Table 2: cost of conversion from RNS to MRS with various bit lengths 
Key length Conversion’s Delay from RNS to MRS 

320 5632 DRFA 
256 4836 DRFA 
192 3220 DRFA 

 
After calculation of MRS, conversion of MRS numbers to 
residues in the next basis must be done. Since conversion 
of MRS to residues in second basis can be perform in 
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parallel, hardware implementation for critical moduli in 
second bases which are the moduli 2n+2(n+1)/2+1 and 2n-
2(n+1)/2+1 are done. The proposed hardware implementation 
represented in the following subsection which has delay 

(7)  
1

( 1) / 2

1
( (2 2 1) 3 )

m
n n

MRS RNS FA
i

Delay MA CSA CPA D
−

+
−

=

 = ± + + + 
 
∑ 

 
Where MA (2n±2(n+1)/2+1) is modular adder in modulo 
2n±2(n+1)/2+1, CSA represent carry save adder and CPA is 
carry propagation delay where ripple carry adder is used in 
this design. Based on achieved hardware and delay for 
reduction in moduli 2n±2(n+1)/2+1, MRS to RNS conversion 
in second basis has delay 

(8) 
1

( 1) / 2

1
( (2 2 1) 3 )

m
n n

MRS RNS FA
i

Delay MA CSA CPA D
−

+
−

=

 = ± + + + 
 
∑ 

 
By using modulo m adder [21] and considering 2n delay of 
FA for moduli 2n-2(n+1)/2+1, we have: 

(9)  
4

1
(2 4 ( 3)) (12 28)MRS RNS FA

i
Delay n n n D−

=

= + + + = +∑ 

 
Similarly considering (2n+2) delay of FA for moduli 
2n+2(n+1)/2+1, we have 

(10) 4

1
(2 6 ( 3)) (12 30)MRS RNS FA

i
Delay n n n D−

=

= + + + = +∑  

 
3.2.1 Reduction in modulo 2n-2(n+1)/2+1 

Efficient binary to residue conversion in moduli 2n, 2n-1 
and 2n+1 are proposed by researcher [22] which can be 
employed in MRS to RNS conversion in this work. For the 
calculation of MRS to RNS delay, moduli in the form of 
2n-2(n+1)/2+1 and 2n+2(n+1)/2+1 must be considered. 
Reduction in modulo 2n-2(n+1)/2+1 is based on Eq. 2. Let us 
rewrite it for simplicity. 

(11) 
1 1 2 2 3 1( ( ... )...)

j
i m m p

x v p v p v p v−= + + + +  

 
Where p1, p2,…, pm-1 are moduli in the form of 
2 2 1itk − −  and pj is 2n-2(n+1)/2+1. Therefore Eq. 11 can be 
rewritten as: 
 

(12) 
1

32

( 1)
2

1 2

3 4

2 2 1

(2 2 1)(

(2 2 1)( (2 2 1) ...)...)
n

n

tk

ttk ki

L

v v
x v v

+

− +

+ − − +
= − − + − − +



  

 
Note that n = k+1 in Eq. 12. Considering L as basic 
operation in Eq. 12 result in 

(13)   ( 1)
2

1 1 1

2 2 1

0...0 0...0
n

ni

i i i i
k t

L v v v v
++ + +

− +

= + − −  

            

 (k+1)-bit separation results in 
     (14) ( 1)

2

1 1 2 3 4 5
1 1 1 1 1 2 2 1

n
ni i i i i iL v v v v v v +

+ + + + + − +
= + + − − −  

Where 







1

1
1 1,0

1 1,0 1, 1 1,1
2

1 1, 1 1,1

3
1 1, 1,0

1 1, 1,0 1, 1 1,4
1 1, 1 1, 1

2

0

0...0
0 ...

00 ...

... 0...0
... 0 ..

0...0 ..
i

i

i

i i

i i
k

i i i k i

i i k i

i i k t i
t

i i k t i i k i k
i i k i k t

k t

v v

v v
v v v v

v v v

v v v
v v v v v

v v v

+ +

+ + + − +

+ + − +

+ + − +

+ + − + + − + −

+ + − + − +
− +

=

=  ′ =
= 

=

′′ =

= 


1

5
1 10

it

i iv v

+

+ +=
  
Negative number in modulo 2n-2(n+1)/2+1 can be expressed 
as 

( 1) ( 1)
2 2

( 1)
2

( 1)
2

( 1)/2
2 2 1 2 2 1

( 1)/2

2 2 1

( 1)/2

2 2 1

(2 2 1)

                     =(2 1 ) 2 2

                     = ( 2 2)

n n
n n

n
n

n
n

n n

n n

n

v v

v

v

+ +

+

+

+
− + − +

+

− +

+

− +

− = − + −

− − − +

+ − +

 

Since n is 41, 53 a nd 65 s hown in table 1, the value (-
2(n+1)/2+2) can be computed according to value of n. 
Therefore (-2(n+1)/2+2) is considered as constant r which is 
determined according to n. Thus  

   (15) ( 1)
2

1 5
1 1 1 2 2 1

2 n
ni i i iL v v v v r +

+ + + − +
′ ′′= + + + +  

 
Hardware implementation of Eq. 15 is shown in figure 2. 
In this figure, output of the binary adder S has n+3 bit. In 
order to calculate S in modulo 2n-2(n+1)/2+1, with (n-1)-bit 
separation S1 and S2 are achieved where S1 is n-1 bits LSB 
and S2 is the rest. Therefore 

( 1) / 21 12 2 1n nS S+− +
=  and S2 is 

applied to a combinational circuit that computes 
( 1) / 22 2 2 1n nS +− +

[20], and produce the variable, S3. Finally 
modulo adder are used to calculate the results.  

n-bit CSA

Com. Ckt.

Binary adder

Modular 
adder

1S
3 bit MSB

3S

n-bit CSA

n-bit CSA

1iv +′ 1iv +′′
5

1iv +2r

1 bit LSBn −

1
iv

2S

 
Fig.2  hardware implementation of reduction of L in modulo 2n-2(n+1)/2+1 
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Since L has (k+1) bit, in the next step 
(2 2 1)itk

iL v L′ = + − − ×  must be calculated as follows: 

(16) ( 1)
22 2 1

(2 2 1)i n
n

tk
iL v L +

− +
′ = + − −  

(17) ( 1)
2

1 2 3 4

2 2 1
3  n

niL v L L L L L r +

− +
′ = + + + + + +  

 
Where 

       







1

1
0

0 1
2

1

3
0

0 14
1

1

0

0...0
...

0 ...

... 0...0
... ...

0...0 ...

i

i

i i

i

i

i i

k
k

k

k t
t

k t k k t
k k t

k t

v v

L L
L L L L

L L L

L L L
L L L L L

L L L

−

− − +

− +
− +

=

=  ′ =
= 

=


′′ =
= 



 

 
So Eq. 17 changes to 

(18) ( 1)
2

1

2 2 1
2 n

niL v L L L r +

− +
′ ′ ′′= + + + +    

        
Hardware implementation of L' is similar to figure 2. 
Based on this hardware implementation, the delay and area 
of conversion from MRS to RNS can be calculated as 

(19) 1
( 1) / 2

1
( (2 2 1) 3 )

m
n n

MRS RNS FA
i

Delay MA CSA CPA D
−

+
−

=

 = − + + + 
 
∑  

 (20) 1
( 1) / 2

1
( (2 2 1) 3 )

m
n n

MRS RNS FA
i

Area MA CSA CPA A
−

+
−

=

 = − + + + 
 
∑  

  
Where AFA is area of one bit full adder. 
 

3.2.2 Reduction in modulo 2n+2(n+1)/2+1 

Based on Eq. 12 we have 

(21) 
1

32

( 1)
2

1 2

3 4

2 2 1

(2 2 1)(

(2 2 1)( (2 2 1) ...)...)
n

n

tk

ttk ki

I

v v
x v v

+

+ +

+ − − +
= − − + − − +



  

 
Note that n=k+1 in Eq. 21. Basic operation in Eq. 21 is 
calculation of I which can be done as: 

(22) 
  ( 1)

2

1 1 1

2 2 1

0...0 0...0
n

ni

i i i i
k t

I v v v v
++ + +

+ +

= + − −  

 
 (k+2)-bit separation results in 

(23) ( 1)
2

1 1 2 3 4 5
1 1 1 1 1 2 2 1

n
ni i i i i iI v v v v v v +

+ + + + + + +
= + + − − −  

 
Where 
 

       

1 00i iv v=

  







1
1 1,1 1,0

1 1,1 1,0 1, 1 1,2
2

1 1, 1 1,2

3
1 1, 1 1,0

1 1, 1 1,0 14
1 1, 1 1, 2

4

0...0
00 ...

0000 ...

... 0...0
.. 00

0..0 ..

i

i

i

i

i

i i i
k

i i i i k i

i i k i

i i k t i
t

i i k t i i
i i k i k t

k t

v v v
v v v v v

v v v

v v v
v v v v

v v v

+ + +

+ + + + − +

+ + − +

+ + − + +

+ + − + + +

+ + − + − +
− +

=  ′ =
= 

=


′′ =
= 



, 1 1, 2

5
1 1

..

00

ik i k t

i i

v

v v

− + − +

+ +=
 

Following the same approach that is used in calculation of 
( 1)

22 2 1
n

nv +

− +
− , then ( 1)

22 2 1
n

nv +

+ +
−  can be expressed as 

 
( 1) ( 1)

2 2

( 1)
2

( 1)
2

( 1) / 2
2 2 1 2 2 1

( 1) / 2

2 2 1

( 1) / 2

2 2 1

(2 2 1)

                     =(2 1 ) 2 2

                     = 22
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n
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+
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+
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+
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− − + +
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As mentioned before, n is 41, 53 and 65, so the value of 
(2(n+1)/2+2) can be computed according to value of n. 
Therefore (2(n+1)/2+2) is considered as constant r' which is 
determined according to n. Thus  
 

(24) ( 1)
2

1 5
1 1 1 2 2 1

2 n
ni i i iI v v v v r +

+ + + + +
′ ′′ ′= + + + +  

 
By replacing I in Eq. 21 with (k+2)-bit binary form, 

(2 2 1)itk
iv I+ − − ×  must be calculated. Therefore we 

have: 
(25) ( 1)

22 2 1
(2 2 1)i n

n

tk
iI v I +

+ +
′ = + − −  

(26) ( 1)
2

1 2 3 4

2 2 1
3 n

niI v I I I I I r +

+ +
′ ′= + + + + + +  

 
Where 

       







1

1
1 0

1 0 1 2
2

1 2

3
1 0

1 0 1 24
1 2

2

00

0...0
...

00 ...

... 0...0
... ...

0...0 ...

i

i

i i

i

i

i i

k
k

k

k t
t

k t k k t
k k t

k t

v v

I I I
I I I I I

I I I

I I I
I I I I I

I I I

+

+

− +

− + + − +

+ − +
− +

=

=  ′ =
= 

=


′′ =
= 



 

 
So Eq. 26 changes to 

(27) ( 1)
22 2 1

2 n
niI v I I I r +

+ +
′ ′ ′′ ′= + + + +  

 
Hardware implementation of Eq. 27 is also similar to 
figure 2. Therefore delay of conversion from MRS to RNS 
for moduli, 2n-2(n+1)/2+1 and 2n+2(n+1)/2+1, is equal to:  
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(28) 1
( 1) / 2

1
( (2 2 1) 3 )

m
n n

MRS RNS FA
i

Delay MA CSA CPA D
−

+
−

=

 = ± + + + 
 
∑  

3.3 RNS to RNS conversion from second to first 
basis 

As shown in figure 1, RNS Montgomery modular 
multiplication required conversion from second to first 
basis. The second basis is 5-moduli set, {2n, 2n-1, 2n+1, 2n-
2(n+1)/2+1, 2n+2(n+1)/2+1} [16]. Delay of conversion from 
second to first basis can be calculated as: 
 

(29) 
RNS RNS RNS Weighted Weighted RNSDelay Delay Delay− − −= +  

 
Delay and area of conversion from RNS to weighted 
number for these five moduli set based on [16] is shown in 
the table 3. 

Table 3: Delay and area of reverse conversion in second RNS basis 
 

RNS basis 
Area of Conversion 

from RNS to 
Weighted 

Delay of 
Conversion 
from RNS 

to Weighted 
{2 P

n
P, 2 P

n
P-1, 2 P

n
P+1, 

2 P

n
P-2 P

(n+1)/2
P+1, 

2 P

n
P+2 P

(n+1)/2
P+1} [16] 

(19n)ARFAR+ (7n)ARXORR+ 
(7n)ARANDR+ (2n)ARXNORR+ 

(2n)ARORR+ (4n)ARNOT 

 
(8n+4)DRFA 

 
The forward converter for modulo in the form of 
2 2 1itk − −  where 0 / 2it k< <  is presented in [2]. This 
modulo achieves small hamming weight and simple 
multiplicative inverses. In [2] to calculate the residue 
numbers from MRS in five moduli set based on Eq. 2 the 
following operation must be considered: 

(30) 
1 1 2 2 3 3 4 4 5

2 2 1

( ( ( )))
t jk

j

H

x v p v p v p v p v
− −

= + + + +


  

 
The delay of H is addition of k bit words where w(cRiR) and 
w(c'RjR) are the hamming weight of 2 2 1itk − −  and 
2 2 1jtk − − , respectively. In [2] total delay for m moduli is 
reported as 
 

(31) 1

1,1
max( ( ) 2 ( ) 2)

m

MRS RNS i j FAj mi
Delay w c w c kD

−

− =
=

 ′= + + 
 
∑  

 
For designing forward converter in modulo 2 2 1jtk − −  for 
5k-bit dynamic ranges we have 
 

(32) 
4

4 3 2
4 3 2 1 0

0
2 2 2 2 2ik k k k k

i
i

X x x x x x x
=

= = + + + +∑  

 
Eq. 32 can be rewritten as 
 

(33) 
4 3 2 1 02 (2 (2 (2 ) ) )k k k k

z

X x x x x x= + + + +


  

 
Unlike the calculation needed in Eq. 31, the hamming 
weight of cRiR in calculation of z as the basic operation in Eq. 
33 is equal to zero. Therefore the delay of reduction in 
modulo 2 2 1jtk − −  reported in Eq. 31 for the proposed 
RNS bases is changed to 

 (34) 
1

1
(2 ( ) 2)

m

Weighted RNS j FA
i

Delay w c kD
−

−
=

 ′= + 
 
∑  

 
Therefore for five moduli set, Eq. 32 changes to 

(35) 
4

1
(2 ( ) 2)Weighted RNS j FA

i
Delay w c kD−

=

 ′= + 
 
∑  

 
Total delays from second to first basis for proposed moduli 
sets are shown in table 4. 

Table 4: total cost of conversion from second to first basis 
key length

 
5moduli proposed 

320 2060 DRFA 
256 1676 DRFA 
192 1292 DRFA 

4. Complexity of modular multiplication and 
comparison 

The main aim of this work is increasing the efficiency of 
arithmetic operation. Since the second basis of our 
approach is the moduli set {2 P

n
P, 2 P

n
P-1, 2 P

n
P+1, 2 P

n
P-2 P

(n+1)/2
P+1, 

2 P

n
P+2 P

(n+1)/2
P+1}, reduction in this moduli set can be 

implemented with more simple process (four levels of CSA 
and MA (2 P

n
P±2 P

(n+1)/2
P+1) in worse case). With using the 

moduli set, {2 P

n
P, 2 P

n
P-1, 2 P

n
P+1, 2 P

n
P-2 P

(n+1)/2
P+1, 2 P

n
P+2 P

(n+1)/2
P+1} in 

the second basis, the delay of MRS to RNS conversion is 
implemented with faster hardware. As shown in table 5, the 
proposed RNS bases have achieved noticeable 
improvement in delay of RNS to RNS conversion required 
in the process of RNS Montgomery multiplication. 

Table 5: Comparison delay of different RNS bases for PR256 

RNS bases Total delay Improvement 
(%) 

5moduli bases [2] (11840)DRFA - 
The first 5moduli proposed (8502)DRFA 28% 
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5. Conclusion 
This paper presents five moduli RNS bases in order to 
increase the efficiency of RNS Montgomery multiplication. 
RNS moduli sets with various bit lengths are proposed 
which cover different dynamic ranges for ECC 192, 256 
and 320 bits. Higher speed in RNS to RNS conversion is 
achieved by the proposed RNS bases. Comparison with the 
best RNS bases achieved 28% improvement in delay of 
RNS to RNS conversion in five moduli RNS bases. 
Therefore more efficient modular multiplication is 
achieved by the proposed RNS bases. 
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