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Abstract 

 One of the most important stages in medical image analysis is 
objects segmentation. Segmentation results can be heavily affected 
by image quality. Medical images usually present undesired 
properties such as low signal-to-noise (SNR) and contrast-to-noise 
(CNR) ratios, as well as multiple and discontinuous edges. This 
explains why image enhancement takes an important role in the 
segmentation and analysis process result. Our aim in this paper is to 
present a method for medical image segmentation based on the 
fuzzy c-means (FCM) algorithm preceded by a local image contrast 
enhancement procedure. This method can be considered as a kind of 
convolution filter but presents the originality of the adaptive found 
of convolution mask coefficients. The grey level distribution of 
pixels in the neighborhood of the current pixel is considered as 1/r2 
distribution, which was deduced from the Newtonian model, where r 
is a hybrid distance which involves the spatial information and the 
luminance one. Finally, some results are presented in order to show 
the computational performance of this approach. 
Keywords:  Image enhancement, Image segmentation, Magnetic 
resonance imaging, Fuzzy clustering. 

1. Introduction  

 Medical imaging techniques such as, Magnetic 
Resonance Imaging (MRI), Computed Tomography (CT) or 
Ultrasound Imaging (USI) have introduced a formidably 
powerful tool in medicine by providing detailed images of 
internal organs. Quantitative information, like organ size and 
shape, can be extracted from these images in order to support 
activities such as disease diagnosis, monitoring and surgical 
planning (Grossman and McGowan, 1998). However, in 
order to accomplish this, it i s first necessary to identify the 
different tissues and anatomical structures being involved 
(Pham et al, 2000).   Medical images usually present 
characteristics such as low SNR and CNR ratios, due to 
various types of artifacts introduced during the acquisition 
process (imperfection of experimental process, such as 

 
 

magnetic field inhomogeneities for MRI external RF 
interference). High SNR is always desirable because of its 
benefit for image segmentation, visibility of the vessels or 
enhancement of larger structures. Image enhancement is a 
very powerful tool to improve the quality of a degraded 
image. In image processing, a high SNR is also required 
because most of the image segmentation algorithms are very 
sensitive to noise.  Different techniques have been studied to 
improve the SNR of a degraded image.  

Basically there are two classes of approaches to improve 
SNR. One is changing the acquisition methods or improving 
relative equipments, such as averaging multiple acquisitions, 
scanning with large voxels, or upgrading hardware. Another 
one is to post process  image data after acquisition using 
filtering methods. Ideal result of filtering is to remove noise 
while preserving the boundary and the detail structure 
information. The conventional linear spatial smoothing 
method usually averages the brightness of the neighbors of a 
pixel and takes the result as the smoothed value of this pixel, 
(also called low-pass filtering; isotropic diffusion). This 
method downgrades   noise, but also blurs edges and damages 
fine structures. This effect can be reduced by using non-linear 
filters. A smoothing method proposed by (Perona  and Malik, 
1990) using anisotropic diffusion model has been  shown to 
possibly overcome the drawbacks of conventional linear 
spatial smoothing method. In this paper we present a method 
for detection of multiple sclerosis lesions in multispectral MR 
using the FCM algorithm which is an unsupervised pixel 
classification technique based on iterative approximation to 
local minima of global objective function preceded by a local 
image contrast enhancement procedure called the Newtonian 
Operator (NO) inspired from (Perona and Malik, 1990) and 
the Newton‘s law of gravitation. 
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2. Background 

2.1 Multiple sclerosis data 

Multiple sclerosis is a progressive disease with lesions 
evolving over time. Lesions appear in the central nervous 
system: encephalon, especially the white matter, spinal cord 

and optic nerves. MRI scans make possible the diagnosis 
confirmation at the beginning of multiple sclerosis. Moreover, 
MRI scans also make possible to follow-up a patient with 
multiple sclerosis evolving over time. The need of brain MRI 
as a more specific and more sensitive outcome measure in

 

                          
                               (a)                                          (b)                                            (c)                                               (d) 

                          
                                  (e)                                         (f)                                               (g)                                           (h) 

Fig.1. MS lesion evolution over one year's time. (a) The large round white spot in the right frontal region is a relatively new lesion. It enlarges very rapidly over 
the next weeks. (b)  (c)  (d)  With time, the lesion enlarges, there is a "halo" of white (high) signal which surrounds the lesion). (c)  (d)  (e) This probably 

represents the edema which forms in reaction to the acute damage. (f) (g) At the end, the lesion has nearly disappeared, with another lesions appearing. There is 
a large variety of lesion sizes, ranging from a tiny spot, to the huge lesion.

monitoring multiple sclerosis patients and in testing new 
therapies is generally accepted. The choice of MRI 
techniques for multiple sclerosis lesions (MSL) is not 
defined as an evidence for physicians. Quantitative 
measurements, such as the surface or intensity variation of 
lesions or segmentation of evolving lesions, are important. 
To this end, image segmentation techniques are required. 
This operation consists in partionning the MRI image into 
anatomic tissues, fluids and other structures. This suggests 
the importance of adequate image pre-processing 
techniques before image interpretations. To study multiple 
sclerosis lesions in time series, it is possible to threshold or 
to study the image intensity, to segment lesions 
independently at each time point. We can also subtract two 
successive images to find intensity changes. Different 
methods have been proposed for automated  a nd semi 
automated detection of MSL with varying degrees of 
automation and operator interaction approches. The 
geometry-driven methods use the overall shape of an object 
to separate it from its surroundings in the image (Lötjönen 

et al, 1999; Zeng et al, 1999; Gonzalez et al, 2000; Xu et al, 
2000; McInerney and Terzopoulos, 1996). The intensity-
driven methods fit appropriate intensity models to the data, 
often explicitly taking imaging artefacts into account, such 
as the partial volume effect (Nagao and Matsuyama, 1979; 
Santago and Gage, 1993; Laidlaw et al, 1998) and the 
intensity inhomogeneity present in MR images (Wells, 
1996, Held et al, 1997; Guillemaud and Brady, 1997). 
These methods can be categorized into classical, statistical,  
fuzzy and neural network. An exhaustive review of these 
classification methods is beyond the scope of this paper but 
we refer the interested reader to (Pal, R. and Pal, S. K., 
1993; Suri et al, 2002; Pham et al, 2000).   

  2.2 Method     

The method used for lesion segmentation is shown in    
(Fig. 2).                  
  
                 MRI brain images   
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   Final segmentation 
  

Fig.2. Block diagram illustrating the MS lesions segmentation 

 
 
At first, the images are preprocessed to increase the 
contrast between CSF and lesions. The segmentation field 
is narrowed by extracting the intracranial contents of the 
brain using a binary mask. Then the images are segmented 
using the Fuzzy c-means (FCM) algorithm. 
 

2.3 Preprocessing of images  

Image enhancement process increases the relative 
intensity level of the wanted structures in the image and 
improves their detection sensitivity. In this work, a new 
method for filtering MR images with spatially varying 
noise levels is presented. 

This method can be considered as a member of 
convolution filters set but presents the originality of the 
adaptive found of convolution mask coefficients. The grey 
level distribution of pixels in the neighborhood of the 
current pixel is considered as 1/r2 distribution, which was 
deduced from the Newtonian model, where r is a hybrid 
distance which involves the spatial information and the 
luminance one. A neighborhood operation takes the values 
of pixels in the neighborhood of a point, performs some 
operations with them, and writes the results back on to the 
point. The grey level intensities inside the neighborhood 
window, can be calculated using the  following formula:   
(Ouremchi et al, 2000)                        

𝐹⃗ = 𝐺 𝑚1𝑚2
𝑟2

𝑢�⃗                                                                               (1) 

                          Effect of mass on FGRAV                              
Attract with a force of 

 
 
                                             F 
                                             r                          

Attract with a force of 
                                              
                                          
                                             
                                            2F 
                                             r   
                                               

 
                          Effect of distance on FGRAV 
                              Attract with a force of

 

                                          F/4 
                                           
                                           2r 

 
Attract with a force of

 

 
                                            4F   

                                           ½ r 
 

Fig.3. Illustration of the proportionalities expressed by Newton's universal 
law of gravitation 

F is the magnitude of the gravitational force between the  
two point masses,                             

• G is the gravitational constant,  
• m1 is the mass of the first point mass,  
• m2 is the mass of the second point mass,  
• r is the distance between the two point masses. 

If we consider the grey level intensities in a 
neighborhood window as information particles, there is an   
interaction force among these particles. The proportionally 
expressed by Newton’s universal law of gravitation is 
represented graphically by Fig. 3. We can see that the force 
of gravity is proportional to the product of the two masses 
and inversely proportional to the square of the distance of 
separation.  

In the proposed method, m1 and m2 represents the 
values of pixels. G the gravitational constant  is replaced by 
the constant k.    

𝐹𝚤��⃗ = 𝑘
𝑔𝑖𝑔𝑗
𝑟𝑖𝑗
2 𝑢�⃗                                                                 (2) 

                                             g 

                                                                        

                                                               F j      gj 

Pre-processing of brain images 
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contents 
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Fig.4 3D   Enhancing representation  

 

   𝑟𝑖𝑗 = 𝑑𝑖𝑗2 + ∆𝑔𝑖𝑗2                                                             (3)  

Where  𝑟𝑖𝑗   is the hybrid distance between the centers of the 
two pixels neighbors « i », « j ». (𝑥𝑖 ,𝑦𝑖), �𝑥𝑗  ,𝑦𝑗�  are the 
spatial coordinates respectively of the pixels i, j in the x, y 
directions and g  at  (𝑥,𝑦) is related to the brightness of 
the image at that point. 𝑔(𝑥𝑖 ,𝑦𝑖) is the characteristic feature 
function (e.g. gray level) with 

  𝑑𝑖𝑗 
2 = �𝑥𝑖 − 𝑥𝑗�

2 + �𝑦𝑖 –𝑦𝑗�
2

                                              (4) 
 
  ∆𝑔𝑖𝑗 = 𝑔𝑗 − 𝑔𝑖                                                                (5) 
 
The parameter k is a constant positive. If we consider the 
luminance information, the projection of the interactions 
force in the direction (𝑔𝑖 ,𝑔)  is given by the following 
equation 
 

𝑅𝚤𝚥�����⃗ = 𝑘 ∑
𝑔𝑖𝑔𝑗
𝑟𝑖𝑗
2𝑗 sin𝜃𝑖𝑗 𝑢𝚥���⃗                                                     (6) 

sin𝜃𝑖𝑗 =
∆𝑔𝑖𝑗
𝑟𝑖𝑗

                                                                      (7) 

We can write 𝑅𝑖𝑗 as 
 

𝑅𝑖𝑗 = 𝑘 ∑
𝑔𝑖𝑔𝑗 ∆𝑔𝑖𝑗

�∆𝑔𝑖𝑗
2 +𝑑𝑖𝑗

2 �
3 2�𝑗                                                       (8) 

 or also as     

𝑅𝑖𝑗 =  𝑔𝑖Γ                                                                          (9)                            

where 
Γ = 𝑘 ∑

𝑔𝑗△𝑔𝑖𝑗

�△𝑔𝑖𝑗
2 +𝑑𝑖𝑗

2 �
3/2𝑗                                                        (10) 

which is the field of the grey levels 𝑔𝑗  of the pixel «j» 
neighbor of the central pixel« i» with a grey level 𝑔𝑖. The 
grey level varies according to the second law of Newton, 
𝑔(𝑡) = 𝑔0 + 1

2
Γ𝑡2                                                     (11)                                                    

where   𝑔0  is the grey level value at t=o and   𝑔(𝑡)  is the 
grey level value at the instant t . 
The central pixel «i» with the grey level   𝑔0  at t=o 
becomes 𝑔𝑖(𝑡) at the instant t. Its value is given by the 
equation       

𝑔𝑖(𝑡) = 𝑔0 + 1
2
𝑘 �∑

𝑔𝑗△𝑔𝑖𝑗

�△𝑔𝑖𝑗
2 +𝑑𝑖𝑗

2 �
3/2𝑗 � 𝑡2                           (12)  

The variation of 𝑔𝑖(𝑡) is a parabola, the grey level of 
the pixel «i» can increase if Δ𝑔𝑖𝑗 > 0, decrease if Δ𝑔𝑖𝑗 <
0 or stay unchanged if Δ𝑔𝑖𝑗 = 0. We adapt this equation for 
enhancing the contrast by temporal sampling and fixing 
rate. The processes could be iterative. That is,           
𝑔𝑖(𝑡 + 1) = 𝑔𝑖(𝑡) + 1

2
𝑘 ∑

𝑔𝑗△𝑔𝑖𝑗

�△𝑔𝑖𝑗
2 +𝑑𝑖𝑗

2 �
3/2𝑗                           (13) 

𝑔𝑖(𝑡 + 1) = 𝑔𝑖(𝑡) + 1
2
𝑘𝑆𝑖𝑗                                              (14) 

𝑆𝑖𝑗 = ∑ 𝑔𝑗Δ𝑔𝑖𝑗

�Δ𝑔𝑖𝑗
2 +𝑑𝑖𝑗

2 �
3/2𝑗                                                         (15) 

  ijS  could be a gradient or Laplacian operator   similar to 
that proposed by (Rosenfeld and Kak, 2002). A  much more 
successful application of the Laplacian was proposed by 
(Marr and Hildreth, 1980). This approach first smoothes the 
image by convolving it with a two dimensional Gaussian 
function of a given standard deviation σ defined by          

ℎ(𝑥,𝑦) = 1
�2𝜋𝜎2

𝑒−
𝑥2+𝑦2

2𝜎2                                                  (16) 

 
The standard deviation σ is proportional to the size of the 
neighbourhood on which the filter operates.  

The operator possesses useful property: the evaluation 
of the Laplacian and the convolution commute 
∇(𝑓(𝑥,𝑦) ∗ ℎ(𝑥,𝑦,𝜎)) = 𝑓(𝑥,𝑦) ∗ ∇ℎ(𝑥,𝑦)                  (17) 

   
f(x,y) represents the image intensity at a point   (x, y). 

If we examine the expression of ijS  obtained by the 
proposed method, the distribution h(.) is in ”1/r” and is 
given by  

ℎ(∆𝑓𝑖𝑗) = 1

�∆𝑓𝑖𝑗
2+𝑑𝑖𝑗

2 �
1/2                                              (18) 

We see that it corresponds to (17)
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                 (a)                                                            (b)                                          (c)                                       (d) 

Fig.5. Contrast enhancement preprocessing (a) Axial slice of original PD weighted image with a resolution of 3mm; (b) the enhanced image with the proposed 
method , the Newtonian operator; (c) Axial slice of original PD  weighted image with resolution of 2mm (d) the enhanced image with the proposed method.  

         
                          (a)                                                          (b)      (c) 

     
                        (d)                                                      (e)                                                        (f) 

Fig.6. Results from the proposed method (Newtonian operator) contrast enhancement preprocessing  compared to (a) Sagittal  slice of original T2 weighted 
image; (b), (c) the enhanced image with the proposed  method(k=0.3)and(k=1); (d) Result from Nagao filter; (e) Result from Kuwahara filter; (f) Result from 

Tomita/Tsuji filter

2.4 Fuzzy segmentation method 

The goal of traditional clustering is to assign each data 

point to one cluster. In contrast, in fuzzy clustering, the 
data points can belong to more than one cluster. The 
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membership of a point is thus shared among various 
clusters. This creates the concept of fuzzy boundaries 
which differs from the traditional concept of well-defined 
boundaries. In this section, we give a b rief overview of 
Fuzzy C-Means algorithm (FCM) which is one of the most 
widely used in fuzzy clustering. This technique was 
originally introduced by (J. Bezdek in 1981). 

Let { }nxxX ,........1=  be a finite data set and c≥2 an 

integer and let Rc×n denotes the set of all real c×n matrices. 
A fuzzy c-partition of X is represented by a m atrix U= 
[ ikµ ] ∈ Rc×n with respect to some given criterion.  

𝜇𝑖𝑘 ∈ [0,1]      1 ≤ 𝑖 ≤ 𝑐;      1 ≤ 𝑘 ≤ 𝑛 

∑ 𝜇𝑖𝑘 = 1 ;   1 ≤ 𝑘 ≤ 𝑛𝑐
𝑖 =1

                    
 

∑ 𝜇𝑖𝑘𝑛
𝑘=1 > 0 ; 1 ≤ 𝑖 ≤ 𝑐                                               (19) 

U can be used to describe the cluster structure of X by 
interpreting 𝜇𝑖𝑘  as the degree of membership of 𝑥𝑘  to 
cluster «i». FCM is formulated as the minimization of the 
following objective function: 

𝐽𝑚(𝑈,𝑉:𝑋) = ∑ ∑ (𝜇𝑖𝑘𝑐
𝑖=1

𝑛
𝑘=1 )𝑚‖𝑥𝑘 − 𝑣𝑖‖𝐴2                    (20) 

where m ∈  [1 +∞] is a weighting exponent called the 
fuzzifier, V= (v1, v2,…..vc) is the vector of the cluster 
centers, ‖𝑥‖𝐴 = √𝑥𝑇𝐴𝑥  is any product norm where A is  
any positive  definite matrix . 

 
                      (a)                                                  (b)                                              (c)                                             (d) 
     

  
                     (e)                                               (f)                                                    (g)                                               (h) 

Fig.7. (a) Axial slice of original T2 weighted image; (b) result of the proposed method (Newtonian operator) k=0.5; (c) Nagao filter; (d) Kuwahara filter; (e) 
result of the proposed method (Newtonian operator) k=1; (f) extraction of the intracranial contents from the enhanced image (b) by the Newtonian operator; (g) 

Fuzzy segmentation of the original image; (h) Fuzzy segmentation of the preprocessed image by the Newtonian operator. 

 
FCM Theorem (Bezdek, 1981). 

(U, V) may minimize mJ  only if      

𝜇𝑖𝑘 = �∑ �‖𝑥𝑘−𝑣𝑖‖𝐴
�𝑥𝑘−𝑣𝑗�𝐴

�
2

𝑚−1𝑐
𝑗=1 �

−1

                                   (21)                                                      

𝑣𝑖 = ∑ (𝜇𝑖𝑘)𝑚.𝑥𝑘
𝑛
𝑘=1
∑ (𝜇𝑖𝑘)𝑚𝑛
𝑘=1

                                                            (22) 

The FCM consists of iterations alternating between 
Eqs (21) and (22) from an arbitrary partition till the 
iteration process converges. The final stage of the FCM 
clustering is to interpret the membership function, by 
classifying a v oxel to the cluster with the largest 
membership. 
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The following algorithm uses an histogram based gray-
level fuzzification. The FCM only operates on the 
histogram and consequently is faster than the conventional 
version (Bezdek, 1981) which processes the whole data set. 
The algorithm is outlined in the following steps: 
 

〈 FCM1〉 Fix the number of clusters c, 2≤c≤L where L 
is the number of grey levels and the threshold value ε  

〈FCM2〉  Find the number of occurrences H (l) of the  
level l=0, 1,..., L-1  

〈FCM3〉   initialise the membership degrees such that 

� 𝜇𝑖𝑙
𝐶

𝐼=1
= 1; 𝑙… 𝐿 − 1 

〈FCM4〉  Compute the new centroids                

𝑣𝑖 =
∑ (𝜇𝑖𝑙)𝑚.𝐻(𝑙). 𝑙𝐿−1
𝑙=0

∑ (𝜇𝑖𝑘)𝑚.𝐻(𝑙)𝐿−1
𝑙=0

 

〈FCM5〉  update the memberships ilil to µµ ~
                   

𝜇𝚤𝑙� = �∑ �‖𝑙−𝑣𝑖‖
�𝑙−𝑣𝑗�

�
2

𝑚−1𝑐
𝑗=1 �

−1

 

〈FCM6〉  
Compute U (l+1) 

𝐸 = ‖𝑈𝑙+1 − 𝑈𝑙‖   

    If 
        𝐸 > 𝜀  
𝜇𝑖𝑙 ← 𝜇�𝑖𝑙  

Go to 〈FCM4〉 

〈FCM7〉 Defuzzification process 

3. Results 

In this section we present some results on real MRI 
brain images using the method   introduced to enhance 
tissues and to segment MS lesions. Quantification based on 
T2 and PD weighted image is considered to be the primary 
image based marker of MS lesions (Udupa et al, 1997). 
These two images show the lesions as hyper signal regions. 
In (Fig. 1) an example of axial slices of T2 weighted and in 
(Fig. 5) axial slices of PD weighed images are shown. In 
patient with MS lesions (Fig. 1), the lesions appear as 
brighter objects. The preprocessing result is illustrated in 
(Fig 5), (Fig. 6), and (Fig.7). One may note that the MS 
lesions in T2 weighted images are more visible (Fig. 7e). 
Shown in        ( Fig 5a), (Fig 5c), we note also the effect of 
the resolution in PD weighted images with respectively a 
3mm resolution and with a 2mm resolution. We clearly see 
that the separability between the tissues is increased. The 
intracranial contents (Fig. 7f) are extracted using a binary 
mask which eliminates the generated noise outside the 

brain space and accelerates the segmentation process. The 
fuzzy segmentation is illustrated in (Fig.7h). This 
segmentation conserves all regions of interest and 
undesirable structures are reduced. The major criterion for 
performance evaluation is whether the method can indicate 
interesting or important regions in the image. A 
segmentation method can, therefore, be declared successful 
if it can identify the most important lesions. The final result 
is obtained using anatomical knowledge. Different window 
sizes ranging from 5x5 to 25x25 (Table 2) are tested to 
locally enhance the slices. There is no method to 
automatically find the adequate window size. We have 
compared the proposed method with different algorithms 
known in the literature (Kuwahara, 1976; Tomita and S. 
Tsuji, 1997; Nagao and Matsuyama, 1979) to show its 
performance. The Kuwahara filter is an edge-preserving 
filter based on local area flattening. The Kuwahara filter 
removes detail in high-contrast regions while protecting 
shape boundaries in low-contrast regions. Therefore, it 
helps to maintain a roughly uniform level of abstraction 
across the image while providing an overall painting-style 
look. The Kuwahara filter is unstable in the presence of 
noise. Several extensions and modifications have been 
proposed (Papari et al, 2007) to improve the original 
Kuwahara filter. (Tomita and Tsuji, 1997) proposed a 
variance-based filter. They obtained the mean and variance 
in five (2m+ 1) x (2m+ 1) windows, which placed the pixel 
being filtered at the four corners or the center, and defined 
the filter output to be the mean of that window which had 
the smallest variance. This filter is based on the idea that 
each pixel belongs to one of a number of internally 
homogeneous regions, and that one of the five windows 
will lies completely or mainly within the region to which 
the pixel belongs. That window should have minimum 
variance, and its mean is then an estimate of the mean 
intensity for the region. The filter is readily extended to 
more than five windows. The Nagao filter computes mean 
and variance for 9 different operator masks. The central 
pixel is assigned the average value of the sub window with 
the smallest variance. 

In denoising or enhancing applications, the 
performance is often measured using quantitative 
performance measures such as peak signal-to-noise ratio 
(PSNR), SNR as well as in terms of visual quality of the 
images.  The PSNR  is more easily defined via the mean 
squared error (MSE) which for two mxn monochrome 
images I and  𝐼  (where one of the images is considered a 
noisy approximation of the other) is defined as: 

𝑀𝑆𝐸 =
1

𝑚 ×  𝑛
� ��𝐼(𝑖, 𝑗) − �𝐼 (𝑖, 𝑗)��

2
𝑛−1

𝑗=0

𝑚−1

𝑖=0

                  (23) 
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The PSNR can be defined as follows: 
 

𝑃𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔10 �
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
�                                                    (24) 

 

MAXI is the maximum possible pixel value of the image. 
When the pixels are represented using 8 bi ts/ sample, this 
gives 255. More generally, when samples are represented 
with B bits per sample, MAXI is 2B−1.  

3.1 PSNR Comparisons 

We have tested the various denoising methods for a set 
of 8-bit grayscale images with different sizes (512 x512), 
(256 x256) noise-free and corrupted by simulated additive 
noise at different power levels, which corresponds to 
different PSNR decibel values. The denoising process has 
been performed over different noise realizations. The 
PSNR values for the three compared methods for different 
levels of noise show the efficiency of the Newtonian 
Operator (NO). Table I summarizes some of the 
experimental results. 
   Many of the current techniques assume the noise model 
to be Gaussian. In reality, this assumption may not always 
hold true due to the varied nature and sources of noise. An 

ideal denoising procedure requires a priori knowledge of 
the noise, whereas a practical procedure may not have the 
required information about the variance of the noise or the 
noise model. Thus, most of the algorithms assume known 
variance of the noise and the noise model to compare the 
performance with different algorithms. MRI noise is known 
to follow a Rician density (Hákon Gudbjartsson et al, 1995), 
which can be fairly approximated by a G aussian 
distribution. Noise with different variance values is added 
in the natural images to test the performance of the 
algorithm. 

3.2 Visual Quality 

 There is no consensual objective way to judge the visual 
quality of a d enoised image. Two important criteria are 
widely used: the visibility of processing artifacts and the 
conservation of image edges. The image quality and 
diagnostic value of MRI of the human brain are primarily 
determined by the spatial resolution, SNR, and tissue 
contrast. Because these entities are interdependent, their 
simultaneous improvement is not simple or straightforward. 
For example, reduction of the image voxel volume leads to 
a proportional decrease in SNR. 
 

 

Table 1. Comparison of the Proposed Method Newtonian Operator (NO) with the Kuwahara, Nagao, Tomita Filters with Different Image Sizes and Different 
Values of the Parameter k 

                  
                image  ( 512X512)  

 
                     image     ( 256X256)   

Method PSNR(dB) PSNR(dB) 

K 
Newtonian Operator 

1 0.8 0.5 1 0.8 0.5 
       30.40 31.99 34.83 24.44                               26.37   30.42 

 Kuwahara Filter                                                          26.94                                                          22.63 
Tomita filter 31.04 28.39                            
 Nagao filter 30.33                            26.91 

 

Table 2. Influence of k on the output of the proposed operator .PSNR values (dB) obtained for different windows sizes and for different k.Test image (256x256) 
and output of the proposed operator for k = 1; 0.5; 0.4, 0.2, 0.1 respectively. 

   k=1 K=0.5 K=0.4 K=0.2 K=0.1 
    5x5 24.99 29.25 30.22 31.98 32.56 
    7x7 24.95 29.20 30.17 31.92 32.50 
25x25 22.87 25.74 26.25 27.06 27.28 

         

                Table 3. Computation Time Of Various Denoising Techniques. 
 
         Method 

                                                             Unit of Time[s] 

              image   ( 512x512)                                                image (256x256) 

K       1          0.8          0.5      1           0.8          0.5 
 
Newtonian Operator          36.77 38.70 

           
39.35 

           
11.76                               

           
19.56  

           
16.08 

Kuwahara Filter                                                           25.46 6.20 
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Nagao Filter 39.81 10.19 
Tomita/Tsuji Filter                                                           33.00                8.40 

                 
  

Furthermore, excellent tissue contrast between gray 
matter (GM) and white matter (WM), the two main tissue 
components of the human brain, can be readily achieved by 
sensitizing the MRI acquisition technique to tissue 
relaxation times T1 and T2, but not without substantial loss 
in SNR.  

3.3. Computation Time 

It is also interesting to evaluate the various denoising 
methods from a practical point of view: the computation 
time. Due to the complexity of the calculations, the 
proposed algorithm needs more computation time than the 
algorithms used for comparaison (table 3). In the presented 
example a window of size 7x7 pixels has been used. 

4. Conclusion 

We have presented a n ovel enhancing method for 
medical images, namely the Newtonian operator (NO). The 
method integrates the spatial information and the 

luminance one to preprocess medical images. In order to 
evaluate the performance of the Newtonian operator (NO), 
we have conducted several experiments on 2D medical 
images. The experimental results have shown that our 
novel method is capable of producing greater noise 
reduction and enhancing the images without over-
smoothing the edges, as compared to other edge-preserving 
noise reduction methods. Additionally, the application of 
the post processing tasks — segmentation and feature 
extraction (lesions detection) — on the filtered images has 
demonstrated that the method is an adequate pre-processing 
technique for improving the quality of segmentation and 
facilitating the feature extraction.  More sophisticated post 
processing is envisaged in order to measure precisely the 
lesion area. Our current research aims to quantify the 
sensitivity of the algorithm to the parameter k as well as the 
effect of neighboring. We expect to make the classification 
more robust to noise and inhomogeneities. We shall pay 
more attention to visual effect.  We will mainly focus on 
how to make the algorithm faster. 
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