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Abstract 

We always strive to get better algorithms for securing 
data. A variety of such algorithms are being used in 
cryptography. Manly block and stream ciphers are 
available and one of them is International Data 
Encryption Algorithm (IDEA), which was regarded 
arguably as one of the best for encryption purposes. A 
considerable time has elapsed since its advent and 
this period has witnessed a wide development in 
process approaches and applications. The number of 
transactions and exchanges of data has increased 
exponentially. Consequently, better and novel attacks 
on data evolved. Researchers believe that the security 
of the algorithm needs to be improved keeping a 
check on the time and space complexity. Within this 
research work we are looking for a robust algorithm 
known as NDEA which can be applied for securing 
modern environment applications. 
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1. Introduction 

IDEA is an iterated block cipher algorithm based on 
the Fiestel network. It was designed by Xuejia Lai 
and James Massey in 1991. Feistel network or Fiestel 
cipher is a symmetric structure used in the 
construction of block ciphers. It was named after the 
German cryptographer Horst Feistel. A Feistel 
network is an iterated cipher with an internal function 
called a r ound function. Iterated block ciphers are 
constructed by repeatedly applying the round 
function. The number of rounds varies from 
algorithm to algorithm. The general setup of each 
round is almost the same. A key schedule is an 
algorithm that, given the key, calculates the subkeys 
for these rounds. A large number of block ciphers use 
the scheme, including the Data Encryption Standard 
(DES), IDEA etc. The advantage of Fiestel Cipher is 
that the operations of encryption and decryption are 
very similar or even identical. This reduces the size of 
the code almost by half. The only change required is 
a reversal of the key schedule and inversion of their 
values.  Hence, the Feistel network model scores over 
substitution and transposition models as the round 
function need not be invertible. A block cipher 
encryption algorithm (E) takes plaintext M of a 
particular length and key K as an input, and outputs a 
corresponding ciphertext of the same length. The 
decryption algorithm (E−1) takes the cipher text as an 
input together with the key, and yields the original 
block of plaintext of the same length such that:  
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Lucifer was the first block cipher developed at IBM 
in the 1970s. The Data Encryption Standard (DES) 
appeared in 1976.   

1.1 IDEA 

• Key size   : 128 bits 
• Plaintext Block size : 64 bits 
• Rounds: 8.5 

It provides high level security not based on keeping 
the algorithm a secret, but by keeping the key secret 
which makes it suitable for use in a wide range of 
applications worldwide. It can be economically 
implemented in electronic components (VLSI Chip). 
 
 

 
 
 

 

 

 

 

Fig. 1 First 8 rounds of IDEA 

Plaintext is divided into four 16-bit sub-blocks: X1, 
X2, X3 and X4 (see fig. 1) and identical operations 
are performed on the four parts in 8 rounds. The 128-
bit key is split into eight 16-bit blocks, which become 
eight subkeys. The first six subkeys are used in round 
one, and the remaining two subkeys are used in round 
two, similarly each round uses six 16-bit sub-keys for 
8 rounds while the last half-round uses four, i.e. a 
total of 52 keys. First 6 keys are extracted directly 
from the main key. Further groups of keys are created 
by rotating the main key left by 25 bits.  

The mathematical operations involved in each of the 
rounds are:  

 Bitwise Exclusive OR (denoted by ⊕). 
 Addition modulo 216 (denoted by ⊞). 
 Multiplication modulo 216+1 (denoted by ⊙). 

After the eight rounds there is a half round (as 
illustrated in fig. 2): 

 

Fig. 2 The last half round of IDEA 
 
1.1.1 Algorithm  

Bruce Schneier [4] provided a f ourteen-step 
algorithm of IDEA. Here are the fourteen steps of a 
complete round (multiply means multiplication 
modulo 216 + 1, and add means addition modulo 216):  

1. Multiply X1 and the first subkey K1. 
2. Add X2 and the second subkey K2. 
3. Add X3 and the third subkey K3. 
4. Multiply X4 and the fourth subkey K4. 
5. Bitwise XOR the results of steps 1 and 3. 
6. Bitwise XOR the results of steps 2 and 4. 
7. Multiply the result of step 5 and the fifth subkey 
K5. 
8. Add the results of steps 6 and 7. 
9. Multiply the result of step 8 and the sixth subkey 
K6. 
10. Add the results of steps 7 and 9. 
11. Bitwise XOR the results of steps 1 and 9. 
12. Bitwise XOR the results of steps 3 and 9. 
13. Bitwise XOR the results of steps 2 and 10. 
14. Bitwise XOR the results of steps 4 and 10. 
 
For every round except the final transformation, a 
swap occurs, and the input to the next round is: result 
of step 11 k  result of step 13 k result of step 12 k  
result of step 14, which becomes X1 k X2 k X3 k X4, 
the input for the next round. After round 8, a ninth 
“half round” final transformation occurs: 

After the eighth round, there is a final output 
transformation: 

(1)  Multiply X1 and the first subkey.  
(2)  Add X2 and the second subkey.  
(3)  Add X3 and the third subkey.  
(4)  Multiply X4 and the fourth subkey.  

Finally, the four sub-blocks are reattached to produce 
the ciphertext.  

1.1.2  Decryption 
 
Decryption algorithm is exactly the same. The 
subkeys are reversed and slightly different. The 
decryption subkeys are either the additive or 
multiplicative inverses of the encryption subkeys. 
Table 1 shows the encryption subkeys and the 
corresponding decryption subkeys. 
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Table 1: IDEA Encryption and Decryption Subkeys 
 

Round  Encryption Subkeys  Decryption Subkeys  

1st  K1
(1) K2

(1) K3
(1)  

K4
(1) K5

(1) K6
(1)  

K1
(9) - 1 –K2

(9) –K3
(9)  

K4
(9) - 1 K5

(8) K6
(8)  

2nd  K1
(2) K2

(2) K3
(2)  

K4
(2) K5

(2) K6
(2)  

K1
(8) - 1 –K3

(8) –K2
(8) 

 K4
(8) - 1 K5

(7) K6
(7)  

3rd  K1
(3) K2

(3) K3
(3)  

K4
(3) K5

(3) K6
(3)  

K1
(7) - 1 –K3

(7) –K2
(7) 

 K4
(7) - 1 K5

(6) K6
(6)  

4th  K1
(4) K2

(4) K3
(4)  

K4
(4) K5

(4) K6
(4)  

K1
(6) - 1 –K3

(6) –K2
(6) 

 K4
(6) - 1 K5

(5) K6
(5)  

5th  K1
(5) K2

(5) K3
(5)  

K4
(5) K5

(5) K6
(5)  

K1
(5) - 1 –K3

(5) –K2
(5)  

K4
(5) - 1 K5

5(4) K6
(4)  

6th  K1
(6) K2

(6) K3
(6)  

K4
(6) K5

(6) K6
(6)  

K1
(4) - 1 –K3

(4) –K2
(4)  

K4
(4) - 1 K5

(3) K6
(3)  

7th  K1
(7) K2

(7) K3
(7)  

K4
(7) K5

(7) K6
(7)  

K1
(3) - 1 –K3

(3) –K2
(3)  

K4
(3) - 1 K5

(2) K6
(2)  

8th  K1
(8) K2

(8) K3
(8)  

K4
(8) K5

(8) K6
(8)  

K1
(2) - 1 –K3

(2) –K2
(2)  

K4
(2) - 1 K5

(1) K6
(1)  

8.5th 
 
 

K1
(9) K2

(9) 

 K3
(9) K4

(9)  
K1

(1) - 1 –K2
(1) 

 –K3
(1) K4

(1) - 1  

 
Here, K4

(1) denotes the 4th key of the 1st round  
K4

(1) - 1 denotes the multiplicative inverse of K4
(1) 

–K2
(1) denotes the additive inverse of K2

(1)   

1.2   Related Work 

IDEA is one of the world’s most secure cryptographic 
algorithms but many researchers now consider it 
obsolete and feel a n eed to modify it. It has been 
emphasized that the modifications should be such that 
the algorithm remains efficient i.e. the time and space 
complexity should not increase too much, so 
increasing the rounds is not an intelligent approach as 
per Nick Hoffman [8]. Increasing the plaintext block 
size is also not feasible as per [9] because unlike 
65,537 i.e. 2^16+1, 2^32+1 is not prime, so IDEA 
cannot be scaled up to a 128-bit block size.  

Joe Daemen, Rene Govaerts and Joos Vandewalle 
[5], Alex Biryukov, Jorge Nakahara Jr, Bart Preneel 
[4] and Philip Hawkes [7] have highlighted the need 
to change the key schedule of IDEA and they have 
found a number of weak keys through different 
methods with numbers varying from 251 to 264.  

Kelsey, Bruce Schneier and David Wagner [6] have 
suggested that the problem of weak keys and key 
attacks can be minimized in situations where random 
keys and a secure key distribution system are used. 

2. NDEA 

After an analysis of IDEA, some viable and feasible 
changes were made into it and so in this way NDEA 
came into being.  

2.1 Random Number and the Ordering of the 
subkeys: 

A random number is generated. The number of keys 
required in IDEA is 52, so it is ensured that random 
number is in the range 1 to 52. The subkey of that 
number becomes the first subkey. System date-time 
may also be used to generate the random number as it 
will always be unique. It acts as a seed for the random 
function. In the original IDEA, as previously 
mentioned, the key schedule is static but it becomes 
dynamic in the NDEA. Hence, the security increases. 
The NDEA Encryption algorithm requires three 
inputs – Plaintext, Key and a r andom number as 
against only two in the Original IDEA. So even if an 
eavesdropper is able to lay his hands on the ciphertext 
and the key, he cannot obtain the plaintext. To make 
it secure further, the random number can be encoded 
by a different encryption algorithm say RSA. This 
will add the complexity of the RSA with that of the 
IDEA and thus, make cryptanalysis attack even more 
difficult.  S o at the receiving end, the decryption 
process requires the following additional steps: The 
key has to be first reshuffled back to the original form 
using the random number and then fed into the 
decryption algorithm.  The random number has to be 
applied on the key every time before decryption, as it 
is a different number always, to obtain the subkeys in 
the correct order. This is illustrated in the operational 
diagram Fig.3. 

2.2   Operational Diagram 
 

 
Fig. 3 Operational Diagram 

 
As it is seen in fig. 3, the original key schedule is 
shuffled by the introduction of the random number. 
The subkey whose serial number is equal to the 
random number, becomes the first subkey of the 
schedule.  Now this new ordered schedule is fed into 
the NDEA along with the plaintext and the ciphertext 
is generated. While decryptingn the reverse procedure 
is followed. The same random number used in 
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encryption is applied to the shufflrd key schedule to 
get the original schedule. This schedule and 
ciphertext are fed into the NDEA to obtain the 
plaintext.  
 
2.3 Secure Usage of Keys  
 
Suying Yang, Hongyan Piao, Li Zhang and Xiaobing 
Zheng [1] have suggested one method in secure usage 
of keys which has been incorporated in NDEA.  This 
is also in lieu with the Kerkhoff’s Principle.  

Keys are kept in a d atabase at a local or a remote 
host. The user need not carry or remember his key but 
only a s imple key ID. He first needs to validate 
himself through a username and a password and after 
successful validation, has to enter the ID of the key. 
The corresponding key will be available for 
encryption. In such a system a user can keep several 
keys with different IDs. The security increases 
manifold if the sender sends the encrypted data with 
the key ID instead of the actual key. An 
eavesdropper’s access to the key ID will not raise any 
security concern. Off course, sharing of username and 
password by the sender and the receiver is a priori.    

Table 2: Users 

User Id User Name Password 

 
001 ripu rp1234 

002 rajat gr7890 

Table 3: User Keys 

ID User Id key Key Value 

1 001 k1 abcd1234efgh5678 

2 001 k2 1234abcd5678efgh 

3 002 k1 abcdefgh12345678 

4 002 k2 12345678abcdefgh 
 
3.  Discussion and Results  
 
This section has two parts. The first part compares 
IDEA with NDEA and the second analyses the cipher 
texts obtained by both the algorithms.  

 

3.1 Comparisons of IDEA and NDEA 

 Plaintext           :  abcd1234 
 Key                   :  abcdefgh12345678  
 Random number:  8 

 

 
 

Table 4: Comparison of time taken 
 

 
  
  

 
IDEA 

 
NDEA 

Cipher Text 

101101000110111
010010110100110
001001101010011
100111000000111
0011 

011010000001011
011110100111111
010000011100001
111010110100101
1111 

Time Taken in 
Encryption 

 
1781 ms 

 
1789 ms 

Time Taken in 
Decryption 

 
1609 ms  

 
1640 ms  

 There is not much difference in time taken by the 
new IDEA and     t he original IDEA for shorter 
plaintexts. For longer plaintexts it is variable. 
 

 The time calculated also includes the time for 
printing the result.  

 
 The time varies irregularly with different 

plaintexts, keys and random numbers. The time 
consumed increases and decreases by the size of 
input also. Here, in this application the time 
calculated also included the time for printing the 
result.  

 
3.2 Analysis of cipher text of both the algorithms 
by changing plaintext by a single character 

 
Plaintext           :  abcd1235 
Random number:  28 
Key:  (same as 3.1)  
 

Table 5: Comparison of ciphertext 
 

  
IDEA 

 

 
NDEA 

 
 
Cipher 
Text 
 

101101000110111010
010110100110001001
101010011100000101
1110101010 
 

101001100001100011
000101110001101100
100111001000000011
1101001000 
 

 
It is clearly observed that that changing a single 
character in plaintext changes the cipher texts in 
NDEA drastically (comparing with the result of 3.1) 
keeping the key same. In IDEA the first 22 characters 
in both cases (in the example taken) remain the same 
but in NDEA change in bit pattern is observed from 
the very first bit. The dynamism introduced is due to 
the different random numbers generated in both the 
cases. There is no appreciable difference in time 
taken for decryption and encryption.  
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Weak keys are those keys with a cer tain value for 
which the block cipher exhibits poor level of 
encryption.  For instance encrypting twice with the 
same key yields the plaintext itself.  In DES, there are 
four such weak keys. IDEA also has such weak keys 
whose numbers are found up to 264. The presence of 
weak keys have an obvious impact on the security of 
the block cipher and this issue as illustrated in [4], [5] 
and [7] can also be successfully addressed to by 
NDEA. If a weak key is used in NDEA then the 
original key schedule will no longer remain the same 
as it will be modified by the random number which is 
generated differently each time the algorithm is run 
and hence, the same key which is weak in IDEA may 
not remain so in NDEA.  
 
4. Conclusion and Future Work 
 
NDEA is an algorithm which holds the properties of 
the block ciphers and aimed to boost up the security 
of various real life applications. In this work we have 
tried to incorporate the goodness of IDEA and go 
even beyond it by introducing randomness and at the 
same time keeping the time and space constraints to a 
minimum. Initial experiments show that time taken 
for encryption and decryption depends on the length 
of the plaintext. An appreciable security enhancement 
is observed in the cipher texts obtained by the NDEA 
while making slight modification in the plaintext. 
This is in lieu with the confusion and diffusion 
properties of cryptography. The security can be 
further increased by using the key ID approach as the 
user need not remember his keys or carry them. In 
future intensive analysis is required for its use as an 
application. The algorithm may be used in encrypting 
an entire document and in e-mail based applications.  
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