
Novel Data Encryption Algorithm

Rajat Goel1, Ripu R Sinha2, O.P. Rishi3

1Central University of Rajasthan, Kishangarh, Rajasthan, India

2School of Computer and System Sciences, Jaipur national University

Jaipur, Rajasthan, India-302025

3Central University of Rajasthan, Kishangarh, Rajasthan, India

Abstract

We always strive to get better algorithms for securing
data. A variety of such algorithms are being used in
cryptography. Manly block and stream ciphers are
available and one of them is International Data
Encryption Algorithm (IDEA), which was regarded
arguably as one of the best for encryption purposes. A
considerable time has elapsed since its advent and
this period has witnessed a wide development in
process approaches and applications. The number of
transactions and exchanges of data has increased
exponentially. Consequently, better and novel attacks
on data evolved. Researchers believe that the security
of the algorithm needs to be improved keeping a
check on the time and space complexity. Within this
research work we are looking for a robust algorithm
known as NDEA which can be applied for securing
modern environment applications.

Keywords: Novel Data Encryption Algorithm
(NDEA), Data Encryption Standard (DES),
International Data Encryption Algorithm (IDEA),
Fiestel Structure

1. Introduction

IDEA is an iterated block cipher algorithm based on
the Fiestel network. It was designed by Xuejia Lai
and James Massey in 1991. Feistel network or Fiestel
cipher is a symmetric structure used in the
construction of block ciphers. It was named after the
German cryptographer Horst Feistel. A Feistel
network is an iterated cipher with an internal function
called a r ound function. Iterated block ciphers are
constructed by repeatedly applying the round
function. The number of rounds varies from
algorithm to algorithm. The general setup of each
round is almost the same. A key schedule is an
algorithm that, given the key, calculates the subkeys
for these rounds. A large number of block ciphers use
the scheme, including the Data Encryption Standard
(DES), IDEA etc. The advantage of Fiestel Cipher is
that the operations of encryption and decryption are
very similar or even identical. This reduces the size of
the code almost by half. The only change required is
a reversal of the key schedule and inversion of their
values. Hence, the Feistel network model scores over
substitution and transposition models as the round
function need not be invertible. A block cipher
encryption algorithm (E) takes plaintext M of a
particular length and key K as an input, and outputs a
corresponding ciphertext of the same length. The
decryption algorithm (E−1) takes the cipher text as an
input together with the key, and yields the original
block of plaintext of the same length such that:

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 561

http://en.wikipedia.org/wiki/Xuejia_Lai
http://en.wikipedia.org/wiki/James_Massey
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Horst_Feistel
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Decryption
http://en.wikipedia.org/wiki/Key_schedule
http://en.wikipedia.org/wiki/Substitution-permutation_network

Lucifer was the first block cipher developed at IBM
in the 1970s. The Data Encryption Standard (DES)
appeared in 1976.

1.1 IDEA

• Key size : 128 bits
• Plaintext Block size : 64 bits
• Rounds: 8.5

It provides high level security not based on keeping
the algorithm a secret, but by keeping the key secret
which makes it suitable for use in a wide range of
applications worldwide. It can be economically
implemented in electronic components (VLSI Chip).

Fig. 1 First 8 rounds of IDEA

Plaintext is divided into four 16-bit sub-blocks: X1,
X2, X3 and X4 (see fig. 1) and identical operations
are performed on the four parts in 8 rounds. The 128-
bit key is split into eight 16-bit blocks, which become
eight subkeys. The first six subkeys are used in round
one, and the remaining two subkeys are used in round
two, similarly each round uses six 16-bit sub-keys for
8 rounds while the last half-round uses four, i.e. a
total of 52 keys. First 6 keys are extracted directly
from the main key. Further groups of keys are created
by rotating the main key left by 25 bits.

The mathematical operations involved in each of the
rounds are:

 Bitwise Exclusive OR (denoted by ⊕).
 Addition modulo 216 (denoted by ⊞).
 Multiplication modulo 216+1 (denoted by ⊙).

After the eight rounds there is a half round (as
illustrated in fig. 2):

Fig. 2 The last half round of IDEA

1.1.1 Algorithm

Bruce Schneier [4] provided a f ourteen-step
algorithm of IDEA. Here are the fourteen steps of a
complete round (multiply means multiplication
modulo 216 + 1, and add means addition modulo 216):

1. Multiply X1 and the first subkey K1.
2. Add X2 and the second subkey K2.
3. Add X3 and the third subkey K3.
4. Multiply X4 and the fourth subkey K4.
5. Bitwise XOR the results of steps 1 and 3.
6. Bitwise XOR the results of steps 2 and 4.
7. Multiply the result of step 5 and the fifth subkey
K5.
8. Add the results of steps 6 and 7.
9. Multiply the result of step 8 and the sixth subkey
K6.
10. Add the results of steps 7 and 9.
11. Bitwise XOR the results of steps 1 and 9.
12. Bitwise XOR the results of steps 3 and 9.
13. Bitwise XOR the results of steps 2 and 10.
14. Bitwise XOR the results of steps 4 and 10.

For every round except the final transformation, a
swap occurs, and the input to the next round is: result
of step 11 k result of step 13 k result of step 12 k
result of step 14, which becomes X1 k X2 k X3 k X4,
the input for the next round. After round 8, a ninth
“half round” final transformation occurs:

After the eighth round, there is a final output
transformation:

(1) Multiply X1 and the first subkey.
(2) Add X2 and the second subkey.
(3) Add X3 and the third subkey.
(4) Multiply X4 and the fourth subkey.

Finally, the four sub-blocks are reattached to produce
the ciphertext.

1.1.2 Decryption

Decryption algorithm is exactly the same. The
subkeys are reversed and slightly different. The
decryption subkeys are either the additive or
multiplicative inverses of the encryption subkeys.
Table 1 shows the encryption subkeys and the
corresponding decryption subkeys.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 562

http://en.wikipedia.org/wiki/File:International_Data_Encryption_Algorithm_InfoBox_Diagram_Output_Trans.png

Table 1: IDEA Encryption and Decryption Subkeys

Round Encryption Subkeys Decryption Subkeys

1st K1
(1) K2

(1) K3
(1)

K4
(1) K5

(1) K6
(1)

K1
(9) - 1 –K2

(9) –K3
(9)

K4
(9) - 1 K5

(8) K6
(8)

2nd K1
(2) K2

(2) K3
(2)

K4
(2) K5

(2) K6
(2)

K1
(8) - 1 –K3

(8) –K2
(8)

 K4
(8) - 1 K5

(7) K6
(7)

3rd K1
(3) K2

(3) K3
(3)

K4
(3) K5

(3) K6
(3)

K1
(7) - 1 –K3

(7) –K2
(7)

 K4
(7) - 1 K5

(6) K6
(6)

4th K1
(4) K2

(4) K3
(4)

K4
(4) K5

(4) K6
(4)

K1
(6) - 1 –K3

(6) –K2
(6)

 K4
(6) - 1 K5

(5) K6
(5)

5th K1
(5) K2

(5) K3
(5)

K4
(5) K5

(5) K6
(5)

K1
(5) - 1 –K3

(5) –K2
(5)

K4
(5) - 1 K5

5(4) K6
(4)

6th K1
(6) K2

(6) K3
(6)

K4
(6) K5

(6) K6
(6)

K1
(4) - 1 –K3

(4) –K2
(4)

K4
(4) - 1 K5

(3) K6
(3)

7th K1
(7) K2

(7) K3
(7)

K4
(7) K5

(7) K6
(7)

K1
(3) - 1 –K3

(3) –K2
(3)

K4
(3) - 1 K5

(2) K6
(2)

8th K1
(8) K2

(8) K3
(8)

K4
(8) K5

(8) K6
(8)

K1
(2) - 1 –K3

(2) –K2
(2)

K4
(2) - 1 K5

(1) K6
(1)

8.5th

K1
(9) K2

(9)

 K3
(9) K4

(9)
K1

(1) - 1 –K2
(1)

 –K3
(1) K4

(1) - 1

Here, K4

(1) denotes the 4th key of the 1st round
K4

(1) - 1 denotes the multiplicative inverse of K4
(1)

–K2
(1) denotes the additive inverse of K2

(1)

1.2 Related Work

IDEA is one of the world’s most secure cryptographic
algorithms but many researchers now consider it
obsolete and feel a n eed to modify it. It has been
emphasized that the modifications should be such that
the algorithm remains efficient i.e. the time and space
complexity should not increase too much, so
increasing the rounds is not an intelligent approach as
per Nick Hoffman [8]. Increasing the plaintext block
size is also not feasible as per [9] because unlike
65,537 i.e. 2^16+1, 2^32+1 is not prime, so IDEA
cannot be scaled up to a 128-bit block size.

Joe Daemen, Rene Govaerts and Joos Vandewalle
[5], Alex Biryukov, Jorge Nakahara Jr, Bart Preneel
[4] and Philip Hawkes [7] have highlighted the need
to change the key schedule of IDEA and they have
found a number of weak keys through different
methods with numbers varying from 251 to 264.

Kelsey, Bruce Schneier and David Wagner [6] have
suggested that the problem of weak keys and key
attacks can be minimized in situations where random
keys and a secure key distribution system are used.

2. NDEA

After an analysis of IDEA, some viable and feasible
changes were made into it and so in this way NDEA
came into being.

2.1 Random Number and the Ordering of the
subkeys:

A random number is generated. The number of keys
required in IDEA is 52, so it is ensured that random
number is in the range 1 to 52. The subkey of that
number becomes the first subkey. System date-time
may also be used to generate the random number as it
will always be unique. It acts as a seed for the random
function. In the original IDEA, as previously
mentioned, the key schedule is static but it becomes
dynamic in the NDEA. Hence, the security increases.
The NDEA Encryption algorithm requires three
inputs – Plaintext, Key and a r andom number as
against only two in the Original IDEA. So even if an
eavesdropper is able to lay his hands on the ciphertext
and the key, he cannot obtain the plaintext. To make
it secure further, the random number can be encoded
by a different encryption algorithm say RSA. This
will add the complexity of the RSA with that of the
IDEA and thus, make cryptanalysis attack even more
difficult. S o at the receiving end, the decryption
process requires the following additional steps: The
key has to be first reshuffled back to the original form
using the random number and then fed into the
decryption algorithm. The random number has to be
applied on the key every time before decryption, as it
is a different number always, to obtain the subkeys in
the correct order. This is illustrated in the operational
diagram Fig.3.

2.2 Operational Diagram

Fig. 3 Operational Diagram

As it is seen in fig. 3, the original key schedule is
shuffled by the introduction of the random number.
The subkey whose serial number is equal to the
random number, becomes the first subkey of the
schedule. Now this new ordered schedule is fed into
the NDEA along with the plaintext and the ciphertext
is generated. While decryptingn the reverse procedure
is followed. The same random number used in

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 563

encryption is applied to the shufflrd key schedule to
get the original schedule. This schedule and
ciphertext are fed into the NDEA to obtain the
plaintext.

2.3 Secure Usage of Keys

Suying Yang, Hongyan Piao, Li Zhang and Xiaobing
Zheng [1] have suggested one method in secure usage
of keys which has been incorporated in NDEA. This
is also in lieu with the Kerkhoff’s Principle.

Keys are kept in a d atabase at a local or a remote
host. The user need not carry or remember his key but
only a s imple key ID. He first needs to validate
himself through a username and a password and after
successful validation, has to enter the ID of the key.
The corresponding key will be available for
encryption. In such a system a user can keep several
keys with different IDs. The security increases
manifold if the sender sends the encrypted data with
the key ID instead of the actual key. An
eavesdropper’s access to the key ID will not raise any
security concern. Off course, sharing of username and
password by the sender and the receiver is a priori.

Table 2: Users

User Id User Name Password

001 ripu rp1234

002 rajat gr7890

Table 3: User Keys

ID User Id key Key Value

1 001 k1 abcd1234efgh5678

2 001 k2 1234abcd5678efgh

3 002 k1 abcdefgh12345678

4 002 k2 12345678abcdefgh

3. Discussion and Results

This section has two parts. The first part compares
IDEA with NDEA and the second analyses the cipher
texts obtained by both the algorithms.

3.1 Comparisons of IDEA and NDEA

 Plaintext : abcd1234
 Key : abcdefgh12345678
 Random number: 8

Table 4: Comparison of time taken

IDEA

NDEA

Cipher Text

101101000110111
010010110100110
001001101010011
100111000000111
0011

011010000001011
011110100111111
010000011100001
111010110100101
1111

Time Taken in
Encryption

1781 ms

1789 ms

Time Taken in
Decryption

1609 ms

1640 ms

 There is not much difference in time taken by the
new IDEA and t he original IDEA for shorter
plaintexts. For longer plaintexts it is variable.

 The time calculated also includes the time for
printing the result.

 The time varies irregularly with different

plaintexts, keys and random numbers. The time
consumed increases and decreases by the size of
input also. Here, in this application the time
calculated also included the time for printing the
result.

3.2 Analysis of cipher text of both the algorithms
by changing plaintext by a single character

Plaintext : abcd1235
Random number: 28
Key: (same as 3.1)

Table 5: Comparison of ciphertext

IDEA

NDEA

Cipher
Text

101101000110111010
010110100110001001
101010011100000101
1110101010

101001100001100011
000101110001101100
100111001000000011
1101001000

It is clearly observed that that changing a single
character in plaintext changes the cipher texts in
NDEA drastically (comparing with the result of 3.1)
keeping the key same. In IDEA the first 22 characters
in both cases (in the example taken) remain the same
but in NDEA change in bit pattern is observed from
the very first bit. The dynamism introduced is due to
the different random numbers generated in both the
cases. There is no appreciable difference in time
taken for decryption and encryption.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 564

Weak keys are those keys with a cer tain value for
which the block cipher exhibits poor level of
encryption. For instance encrypting twice with the
same key yields the plaintext itself. In DES, there are
four such weak keys. IDEA also has such weak keys
whose numbers are found up to 264. The presence of
weak keys have an obvious impact on the security of
the block cipher and this issue as illustrated in [4], [5]
and [7] can also be successfully addressed to by
NDEA. If a weak key is used in NDEA then the
original key schedule will no longer remain the same
as it will be modified by the random number which is
generated differently each time the algorithm is run
and hence, the same key which is weak in IDEA may
not remain so in NDEA.

4. Conclusion and Future Work

NDEA is an algorithm which holds the properties of
the block ciphers and aimed to boost up the security
of various real life applications. In this work we have
tried to incorporate the goodness of IDEA and go
even beyond it by introducing randomness and at the
same time keeping the time and space constraints to a
minimum. Initial experiments show that time taken
for encryption and decryption depends on the length
of the plaintext. An appreciable security enhancement
is observed in the cipher texts obtained by the NDEA
while making slight modification in the plaintext.
This is in lieu with the confusion and diffusion
properties of cryptography. The security can be
further increased by using the key ID approach as the
user need not remember his keys or carry them. In
future intensive analysis is required for its use as an
application. The algorithm may be used in encrypting
an entire document and in e-mail based applications.

5. References:

1. Jia Chen, Dongyue Xue and Xuejia Lai: “An Analysis

of IDEA Security Against Differential Cryptanalysis”
2. Suying Yang, Hongyan Piao, Li Zhang and Xiaobing

Zheng: “An Improved IDEA Algorithm Based on
USB Security Key”, IEEE, 2007

3. Bruce Schneier: “Applied Cryptography”, 2005
4. Alex Biryukov, Jorge Nakahara Jr, Bart Preneel, Joos

Vandewalle: “New Weak-Key Classes of IDEA”, 4th
International Conference, ICICS, 2002

5. Joe Daemen, Rene Govaerts and Joos Vandewalle: “
Weak Keys for IDEA”, Advances in Cryptology, 1993

6. Kelsey, Bruce Schneier, David Wagner, “K ey-
Schedule Cryptanalysis of IDEA, G-DES, GOST,
SAFER, and Triple-DES”, 1997

7. Philip Hawkes, “Differential-Linear Weak Key
Classes of IDEA”, Springer-Verlag, 1998

8. Nick Hoffman, “A Simplified IDEA”, Journal:
Cryptologia, 2007

9. Wikipedia

6. Authors

Rajat Goel is pursuing M.Tech. in Computer Science &

Engineering, with specialization in information
security, from Central University of Rajasthan,
India. He obtained his B.E. degree from
Seedling Academy of Design, Technology and
Management, University of Rajasthan in 2008.
Then for two years he gained a varied

experience in industry and academia. He worked as an IT
professional at IBM India, Chennai. He is an OCA and has
one research paper to his credit. His areas of interest include
database, MIS and cryptography.

Ripu R. Sinha is currently associated as an
Assistant Professor with School of Computer
and System Sciences at Jaipur National
University, Jaipur and pursuing PhD Computer
Science from NIMS University. Prior to joining
JNU Jaipur, he was a SAP Consultant at ERP
Technologies, India. Sinha has an extensive

industrial experience and has participated, presented and
published research papers in conferences at global level and
he is holding diversified knowledge in the field of information
technology management. His expertise and research interest
focuses in the optimization of ERP, Knowledge management
Practices, Cryptography, Cloud computing, Web intelligent
System and Database technology for Industry.

Dr. Om Prakash Rishi was born on August30,
1971, in a small village of Rajasthan
(India). Dr. Rishi completed his secondary
examinations from the board of secondary
education Rajasthan in 1986 and graduation
from University of Rajasthan in 1991. He

earned his First Class M.Tech degree in Computer Science
in 2000 from Birla Institute of Technology, Mesra, Ranchi
(India), and Doctor of Philosophy (PhD) in Computer Science
in March 2009. Dr. Rishi’s academic credentials were
burnished by the years he spent on the faculty of Birla
Institute of Technology, Mesra, Ranchi (India), Banasthali
Vidhyapeeth, Banasthali Rajasthan (India) and c urrently
working with the Central University of Rajasthan (India)
which is one of the most prestigious Universities in India and
established by MHRD, Govt. of India. Dr. Rishi’s area of
interest is Artificial Intelligence, Intelligent Systems, Cloud
Computing and Information Security. He is member of IEEE,
Computer Society of India, and several other National and
International professional bodies.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011
ISSN (Online): 1694-0814
www.IJCSI.org 565

