

Graph based E-Government web service composition

Hajar Elmaghraoui 1, Imane Zaoui2, Dalila Chiadmi3 and Laila Benhlima4

 1 Department of Computer Science, Mohammad Vth University -Agdal, Mohammadia School of Engineers(EMI)
Rabat, Agdal, Morocco

2 Department of Computer Science, Mohammad Vth University -Agdal, Mohammadia School of Engineers(EMI)
Rabat, Agdal, Morocco

3 Department of Computer Science, Mohammad Vth University -Agdal, Mohammadia School of Engineers(EMI)
Rabat, Agdal, Morocco

4 Department of Computer Science, Mohammad Vth University -Agdal, Mohammadia School of Engineers(EMI)
Rabat, Agdal, Morocco

Abstract
Nowadays, e-government has emerged as a government policy to
improve the quality and efficiency of public administrations. By
exploiting the potential of new information and communication
technologies, government agencies are providing a wide
spectrum of online services. These services are composed of
several web services that comply with well defined processes.
One of the big challenges is the need to optimize the composition
of the elementary web services. In this paper, we present a
solution for optimizing the computation effort in web service
composition. Our method is based on Graph Theory. We model
the semantic relationship between the involved web services
through a directed graph. Then, we compute all shortest paths
using for the first time, an extended version of the Floyd-
Warshall algorithm.
Keywords: Web services composition, optimization, graph
theory; Floyd-Warshall, e-government.

1. Introduction

Many countries around the world are attempting to
strengthen and revitalize the quality and the efficiency of
their public administration and make it more service
oriented. In the last decade, electronic (e-) government has
emerged as a solution to the problems of traditional public
administrations such as high costs, poor quality services
and corruption. According to the European Commission, e-
government is “the use of Information and Communication
Technologies (ICTs), in public administrations combined
with organizational change and new skills in order to
improve public services and democratic processes and
strengthen support to public policies” [1]. Thus, ICT
integration in government operations plays a crucial role in

improving the quality and transparency of public services
in several domains including social programs, healthcares,
tax filling, voting, etc… ICT has then become crucial to a
successful e-Gov program. By deploying public services
via the Internet, communication is made easier for citizens
and businesses, resources are federated, and finally are
sped up substantially. Furthermore, adopting web services
in e-Gov enables government agencies to provide value-
added services through the service composition process.
Web service composition allows flexible creation of new
services by assembling independent and reusable service
components. Traditionally, web services are composed
either in a static or dynamic ways each time a user asks for
a service. These methods are still tedious and very costly.
Thus, one of the big challenges in e-service composition is
optimizing the composition effort. By composing the most
suitable web services with the lowest costs, we will
certainly increase e-government efficiency, reduce
considerably the response time and give more satisfying
responses to users’ queries. In this paper, we propose a
graph based approach for optimizing web service
composition. The approach is based on representing the
web services semantic relationship using a directed graph
built at the time of publishing. This graph is traversed to
find the optimized combination of all component services
that compose targeted services. The solution extends the
Floyd-Warshall algorithm to reconstruct all shortest paths
between all the vertices in the service graph. This
operation is performed at the time of web service
publishing. Indeed, by computing shortest paths before
executing user queries, we optimize the composition time
and costs.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 103

The rest of this paper is organized as follows. In section 2,
we present some related work. Section 3 outlines our
optimization approach .In section 4, we present our web
services model which is based on the graph theory. Section
5 describes our solution for optimizing web service
composition, based on Floyd-Warshall algorithm. We
illustrate our approach in section 6 with an example of
retiring e-services. We conclude in section 7 with ongoing
works.

2. Related Work

Many proposals of web services composition methods
have been presented in recent years. For a detailed survey,
we refer to [2, 3]. In this section, we present a brief
overview of some techniques that deal with automatic web
service composition. We consider only techniques that use
service dependency information, graph models, and
semantics. The simple idea behind dependency is that
whenever a web service receives some input and returns
some output, the output is somehow related or dependent
on the given input. By using a graph model, the behavior
of available web services is represented in terms of their
input-output information, as well as semantic information
about the web data. A graph is a collection of vertices or
'nodes' and a collection of edges that connect pairs of
vertices. A graph may be undirected, meaning that there is
no distinction between the two vertices associated with
each edge, or its edges may be directed from one vertex to
another. A weighted graph is a graph where each edge has
a weight (some real number) associated with it. The
dependency graph is used in finding a composite service to
satisfy a given request.

Most of composition graph-based methods build web
services dependency graphs at runtime. They use a search
algorithm for traversing dependency graphs in order to
compose services. The main difference between these
methods is attributed to how they search the dependency
graph. A*, Dijkstra, Floyd, Forward chaining, backward
chaining and bidirectional search algorithms are examples
of the most common search techniques.

Hashemian et al. [4] store I/O dependencies between
available Web services in their dependency graph, and
then build composite services by applying a graph search
algorithm. In their graph, each service and I/O parameter is
represented as a vertex, service’s input and output are
represented as incoming and outgoing edges, respectively.
The authors consider only the matching and dependencies
between input and output parameters without considering
functional semantics, thus they cannot guarantee that the

generated composite services provides the requested
functionality correctly.

In [5], the authors use the backward chaining method in
combination with depth first search to get the required
services for a composite task. Their solution is rather
abstract and does not clearly discuss execution plan
generation algorithm.

Arpinar et al. [6] present an approach which not only use
graphs for web service composition, but also use semantic
similarity as we present in this work. They consider edges
with weights and deploy a shortest-path dynamic
programming algorithm based on Bellman-Ford’s
algorithm for computing the shortest path. For cost, the
authors consider the execution time of each service and
input/output similarity but they don’t take into
consideration the services’ nonfunctional attributes.

Gekas et al. [7] develop a service composition registry as a
hyperlinked graph network with no size restrictions, and
dynamically analyze its structure to derive useful heuristics
to guide the composition process. Services are represented
in a graph network and this graph is created and explored
during the composition process to find a possible path
from the initial state to a final state. In order to reduce the
time of searching, a set of heuristics is used. But according
to the authors, creating the graph at the time of
composition is very costly in term of computation and
limits the applicability of graph-based approaches to the
problem of web service composition.

Talantikite et al. [8] propose to pre-compute and store a
network of services that are linked by their I/O parameters.
The link is built by using semantic similarity functions
based on ontology. They represent the service network
using a graph structure. Their approach utilizes backward
chaining and depth-first search algorithms to find sub-
graphs that contain services to accomplish the requested
task. They propose a way to select an optimal plan in case
of finding more than one plan. However, they also create
the graph at the time of composition which incurs
substantial overhead.

In this paper, we propose a graph based solution which
creates the graph at the time of publishing and therefore
optimize the composition by reducing the computational
effort at the time of composition. Our approach uses the
Floyd-Warshall algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 104

3. The optimization approach

Conceptually, our problem can be described as follows:
“Given a set of available services, and given a goal, our
aim is to automatically compose an optimal subset of
services to satisfy the goal”. We propose a solution based
on Graph Theory. Our optimization approach consists of
two fundamental pillars: i) representing the semantic
relationships between all available web services using an
oriented graph called SCG (Service Composition Graph),
and ii) Applying a graph search algorithm in order to
compute all shortest paths between all nodes. We store the
algorithm results into a matrix called the Shortest
Predecessor Matrix (SPM). SPM is used to reconstruct the
shortest path which corresponds to an optimal automated
service composition. In order to find the best combination
of web services that meets the user goal, we propose to
extend the Floyd Warshall graph search algorithm.
The SCG and the SPM are built at the time of publishing
and updated each time new services are published or
existing services are changed or removed from the
repository. Thus, we avoid building the graph and applying
the graph search algorithm each time a request for a
service composition is made. By creating the graph and
computing the shortest paths at the time of publishing, we
reduce considerably the computational effort at the time of
composition and thereafter the execution time of
composition.
During the composition runtime, and for each query, we
identify the starting and ending web services (called Vstrat
and Vgoals respectively) into the SCG. Then, we extract
from the SPM matrix the corresponding shortest path
between VStart and Vgoals. Our optimization approach is
summarized in the following process represented in Figure
1.

Fig.1. Optimization process

The details about this process are provided in the next
sections.

4. Modeling web service composition as a
directed weighted graph

In this section, we present the service composition graph
(SCG).

4.1 Defining the service composition graph (SCG)

We start from a local Semantic Web Services repository,
which is populated with OWL-S [9] descriptions (a
popular and well-understood solution to support ontology-
based Semantic Web). We will use the semantic
description of the input and output parameters of the
services to build a Service Composition Graph (SCG).
Thus, building a SCG is based on semantic similarity
between web services. In fact, for a set of web services, we
need to check if two services are to be invoked in sequence
during the composition process. This means that for each
input of the former service, there is some output of the
following service that is equivalent, more, or less general
than the demanded input. In such cases, we can say that
these services are semantically composable.
Formally, the SCG is a directed Graph G= (V,E,W), where
V is the set of vertices representing the web services, E is
the set of edges representing the semantic relationship
between web services, and W is the set of edges’s weights.
To create the SCG, we follow the following procedure:
• For each web service WSi in the repository, create a
vertex Vi in the graph
• If two web services WSi and WSj represented
respectively by vertices Vi and Vj V have a semantic
similarity among their inputs and outputs, then introduce
an edge Vi Vj
• For each edge connecting vertices Vi and Vj,
associate a weight Wij

4.2 Measuring the semantic similarity

Semantic similarity stands for the degree of likeness
between concepts. To compute the semantic similarities
among services, we use subsumption reasoning as
originally proposed by Paolucci et al. [10]. Subsumption
reasoning verifies whether a concept is more general than
another one. Given two web services represented by
vertices Vi and Vj, this reasoning allows computing the
degrees of similarity between the services using the scale:
equivalent, subclass, subsumes and the following rules:

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 105

1-Exact match: If the output parameters of Vi and the
input parameters of Vj are equivalent concepts.
2-Plug-in match: If the output of Vi is a sub-concept of
the input of Vj (Vj subsumes Vi)
3-Subsumes match: If the input of Vj is a sub-concept of
the output of Vi. (Vi subsumes Vj)
4-Fail match: No subsumption nor equivalence relation
between Vi and Vj.
Thus, we associate an edge connecting vertices Vi to Vj if
the degree of similarity between the outputs of Vi and the
inputs of Vj is Exact, PlugIn or Subsumes.

4.3 Weighting the SCG

The weight is a key point of the model. It influences the
choice of composition paths which directly affects the
composition result. We associate to all the edges in the
SCG a weight calculated using the semantic similarity
value S between input and output parameters, and a
function f(QOS) of non-functional properties of services
that are cost, execution time, reliability, availability…etc .
In this paper, we propose three criteria as parameters for
f(QOS) which are: cost, time and availability where:
• Cost: the fee that a requester has to pay for invoking

the service Vi.
• Execution time: measures the expected delay time

between the moment when Vi is invoked and when the
results are received.

• Availability: is the probability that Vi is accessible.

Other non-functional properties can be considered in
computing the weight of the edges, such as reliability,
reputation, security…etc.

We calculate f(QOS) as follows:

f(QOS(Vi))=(α*cost)+(β*execution time)+(µ*availability) (1)

Where α, β and µ are relative factors that can be defined by
the system administrator.
The weight Wij of a given edge Vi Vj is computed as
follows:

Wij = f(QOS(Vi)) + Sij (2)

Where Sij is the semantic similarity value between the
input parameters of Vj and the output parameters of Vj.

5. Optimizing the web service composition

Given a user query which specifies web service’s inputs
and outputs, the composition problem involves
automatically finding a directed acyclic graph of services
from the SCG that can be composed to get the required

service, when a matching service is not found. Our service
composition research aims at reducing the complexity and
time needed to generate and execute a composition. We
also improve its efficiency by selecting the best possible
services available. To achieve these optimization goals, we
compute at the time of publishing all shortest paths
between every pair of vertices in the SCG using the Floyd
all-pairs shortest path which is a dynamic programming
algorithm. Then, for each user query, we identify in the
SCG the start and goal vertices based on semantic
similarities between input and output parameters of the
query and the SCG vertices. Thus, we calculate the
shortest path between the start and goals vertices which
represent the optimal services combination that meet the
user needs.

5.1 Identifying start and goal vertices

Given the weighted directed graph SCG that models the
web services in our repository, and when we receive a user
query that requires service composition, we identify
vertices and edges which represent the input and output
parameters provided by the requester and we update
temporarily the graph as follows:
• A starting node (VSTART) is created and connected with

all vertices (services) that contain at least one input
provided by the requester;

• For each output demanded by the requester, create a
goal node (VGOAL) and connect it with all services
providing this output.

These additional nodes are used to guide the service
composition, which is based on the computation of
minimum cost paths which are the shortest paths from the
start node (representing the inputs) to the goal nodes
(representing the outputs).

5.2 Shortest path issue

The shortest path problem has been widely used in many
fields such as project planning, geographic information
systems and military operations research. The classical
algorithms to solve the shortest path problem are mainly
Floyd algorithm and Dijkstra algorithm. Floyd algorithm is
a multi-source shortest path algorithm, which is mainly
used to calculate the shortest path among all nodes;
whereas Dijkstra algorithm is a single-source shortest path
algorithm, which is an efficient algorithm, used to calculate
the shortest path from a source node to its all places nodes.

In order to reduce the overhead at runtime, we need to
calculate the shortest paths for all the vertex pairs in
advance and store this information for an eventual use
at the time of service composition. Of course, this problem
can be solved by applying Dijkstra’s algorithm, but the

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 106

program will be complex and the computational overhead
will be large to O(N4) [11], where N is the number of
vertices. However, if we use Floyd algorithm, the
computation will be simplified with a time complexity
of O(N3) [11]. Floyd’s algorithm is globally optimal, and
the code is simple, easy to implement, and easy to integrate
with other program modules [12]. In the next section, we
will present a brief description of this algorithm.
Once the user request is received, we define the start node
(VSTART) and the set of goal nodes (VGOAL) introduced in
section 4.1, then we extract from the pre-computed list of
shortest paths (already calculated using the Floyd
algorithm and stored for future use), the shortest paths
from the node (VSTART) to each goal node member of
(VGOAL). This means that paths are found from the
available input parameters, to the desired output
parameters. Thus, we generate partial compositions that
may have common vertices. Since our goal is to generate a
single connected graph, we achieve this by eliminating
duplicate paths by analyzing the intersections of the
extracted paths.

5.3 Overview of Floyd- Warshall algorithm

The Floyd-Warshall algorithm [13] is an efficient Dynamic
Programming [14] algorithm that computes the shortest
paths between every pair of vertices in a weighted and
potentially directed graph. This is arguably the easiest-to-
implement algorithm for computing shortest paths in the
literature [15]. The time complexity of this algorithm
takes O(N3). A single execution of the algorithm will
provide the lengths (summed weights) of the shortest paths
between all pairs of vertices though it does not return
details of the paths themselves. With some modifications
of the algorithm, we create a method to reconstruct the
actual shortest path between any two endpoint vertices.
Path reconstruction runs in O(N) and thus the complexity
of the algorithm is not affected. We describe below Floyd-
Warshall algorithm with path reconstruction.
• Let DIST be a NxN adjacency matrix (N is the

number of vertices), DIST(i,j) representing the length
(or cost) of the shortest path from Vi to Vj. For each
element DIST(i,j) assign a value equal to the cost of
the edge going from Vi to Vj, or an infinity value if
this edge does not exist.

• At each step, for each pair of vertices Vi and Vj, check
if there is an intermediate vertex Vk so that the path
from Vi to Vj through Vk is shorter than the one
already found for Vi and Vj.

• Let NEXT be an N×N matrix that will contain the
final path. The NEXT matrix is updated along with the
DIST matrix such that at completion both tables are
complete and accurate, and any entries which are

infinite in the DIST table will be null in the NEXT
table. The path from Vi to Vj is then the path
from Vi to NEXT(i,j), followed by path from NEXT(i,
j) to Vj.

In the next section, we present briefly the pseudo code of
our Floyd-Warshall algorithm with path reconstruction.

5.4 Pseudo code of Floyd- Warshall with Path
Reconstruction

We assume an input graph of N vertices
weight (i,j) is the weight of the edge from vertex Vi to Vj
: equal to infinity if such an edge does not exist and 0 if
i=j

BEGIN
For i = 1 to N
 For j = 1 to N
 #Initialization of the adjacency matrix
 DIST (i,j) = weight(i,j)
 # Initialization of the predecessor matrix
 If i! =j and there exists an edge from i to j
 Then
 NEXT (i,j) = i
 Else
 NEXT (i,j) = NIL
For k=1 to N # k is the intermediate vertex
 For i=1 to N
 For j=1 to N
check if the path from i to j that goes through k is shorter
than the one already found
 If DIST(i,k) + DIST(k,j) < DIST(i,j)
 Then
 # New shorter path length

 DIST (i,j) = DIST(i,k) + DIST(k,j)
 # The predecessor matrix

 NEXT (i,j)=k

Return DIST # matrix of final distances

// GetPath(i,j) : function for path reconstruction
between two vertices Vi and Vj.

If DIST (i,j) = infinity
Then

Return “no path”
IF NEXT (i,j)= Null
Then

Return “ “ # there is an edge from Vi to Vj, with
no vertices between
Else

Return GetPath(i,NEXT(i,j))+NEXT(i,j)+
GetPath(NEXT(i,j),j)
END.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 107

https://vo.homelinux.org/wiki/code/DynamicProgramming
https://vo.homelinux.org/wiki/code/DynamicProgramming

While the outcomes of our research are generic enough to
be applicable to a wide range of applications, we use the
area of e-government as a case study.

6. Case study

In this section, we illustrate our approach for web services
composition with the example of retiring web services
offered by the RCAR agency (Regime Collectif des
Allocations de Retraite). The agency allows all members to
access the retirement services via its web portal. The portal
www.rcar.ma contains four spaces which are employer
space, member space, recipient space and provider space.
This categorization customizes the agency services
according to different user profiles. All web services are
stored in the repository. We model the relationship
between them using a SCG as we have explained in section
3.

6.1 The retiring SCG

The SCG of the RCAR contains a hundred of web services.
To simplify, we only present in Figure.2, a part of the SCG
of the RCAR agency. Vertices are the web services
described in table 1, edges represent the relationships
between inputs and outputs and the weights represent the
web services costs. Note that for confidentiality issues,
web services and values are purely illustrative.

Table 1: Web services description
 Name Description
V1 GetAuth Allows authenticating users using a

login and password
V2 FillForm Return and fill adequate form for

the demanded service
V3 GetRegister Allows new users to subscribe in

order to get their login and
passwords

V4 SendReq Send the user’s request with the
input data to the RCAR system

V5 FillStatus Allows users to create their status
during the registration process and
to update it.

V6 SendResp The system send the adequate
response to the user’s request

V7 Unsubscribe Allows user to unsubscribe, which
automatically delete his profile and
status

V8 CheckData Checks the user information to get

the adequate response.

Fig.2. The retiring SCG

6.2 Shortest paths using Floyd-Warshall with path
reconstruction

We apply the Floyd-Warshall algorithm with path
reconstruction presented in section 4.4 to compute all
shortest paths between all nodes in the SCG. The
adjacency matrix, which represents the weights between all
pairs of vertices in the SCG, is given bellow (3).

 (3)

The Shortest Predecessor Matrix (SPM) that will be used
to extract all shortest paths, given bellow (4), will be
stored to be manipulated at the time of service
composition. Note that (Vi,Vj) holds a vertex Vk which is
the direct predecessor of Vj on the least cost path between
Vi and Vj

(4)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 108

http://www.rcar.ma/

We note also that in case of adding, deleting or modifying
the services, the SCG will be updated as well as the
adjacency matrix (3) and the Shortest Predecessor Matrix
(SPM) (4). This update guarantees an accurate web service
composition.

6.3 Delivering the retiring e-services based on the
optimized web service composition.

Let us consider a member seeking to get an online
certificate of his membership (VGOAL1), to calculate his
retirement pension (VGOAL2) and to update his profile
information (VGOAL3). All these operations require user
registration and authentication. These inputs are related to
the start node (VSTART). To get his request satisfied, several
web services which are transparent for the user are
involved. These web services are V1: GetAuth, V4:
SendReq, V8:CheckData, and V6:SendResp. As
explained before, the first step of our web service
composition is to identify the root (VSTART) and the
targeted nodes VGOAL1, VGOAL2 and VGOAL3 that answer the
user request. The identification is based on comparing the
inputs and outputs of the existing web services with the
user’s query. The result of this operation is connecting
virtual vertices with a null weight to the SCG. Figure 3
illustrates this stage.

Fig.3. Identifying the START AND GOALS Vertices into the SCG

After identifying the input and output services in the SCG,
which are connected to VSTART and VGOAL1, VGOAL2 and
VGOAL3, the second step of the web service composition is
to extract from the matrix (2), all shortest paths between
VSTART and all VGOALS . The results are given in table 2 and
the optimal sub-graph of services that will meet the user
needs is illustrated by figure 4.

Table 2: Shortest paths for web service composition
VSTART to VGOAL1 V1 V4 V8 V6 VGOAL1

VSTART to VGOAL2 V1 V4 V8 V6 VGOAL2
 VSTART to VGOAL3 V1 V4 VGOAL3

Fig.4. the optimal sub-graph of services that respond to the user request

7. Conclusion and ongoing work

Automatic composition of web services has drawn a great
deal of attention recently. By composition, we mean taking
advantage of currently existing web services to provide a
new service that does not exist on its own. In this paper,
we present a graph based approach for optimizing web
service composition, which takes into consideration the
semantic similarity of services computed using
subsumption reasoning on their inputs and outputs. Our
results include:
• Modeling the web service composition by means of a

directed weighted graph, where the weight calculation
takes into account the non-functional properties of
services and the semantic similarity between them.

• Using Floyd algorithm to compute the shortest paths at
the time of publication, in order to reduce the
complexity and time needed to generate and execute a
web service composition.

 The implementation and evaluation of the solution
proposed in this paper in real systems is the main focus of
our ongoing work. We also intend to evaluate other cost
policies such as reliability, reputation, security…etc.
Our near future work is mainly focusing on addressing
reliability and availability of web services. Indeed, during
the execution of web service composition, if one service
fails or becomes unavailable, a failure recovery mechanism
is needed to ensure that the running process is not
interrupted and the failed service can be replaced quickly
and efficiently.

References

[1] Commission of the European Communities; The Role of e-

Government for Europe’s Future. Brussels, 26.9.2003, COM
(2003)567 final.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 109

[2] A. Alamri et al., “Classification of the state-of-the-art
dynamic web services composition”, In International Journal
of Web and Grid Services , 2006, Vol. 2, pp. 148-166.

[3] J. Rao, X. Su, “A Survey of Automated Web Service
Composition Methods”, In Semantic Web Services and Web
Process Composition (SWSWPC'04), 2004, pp. 43-54.

[4] S. Hashemian, F. Mavaddat, “A graph-based framework for
composition of stateless web services”, In Proceedings of
ECOWS’06, IEEE Computer Society, Washington, DC,
2006, pp. 75–86

[5] R. Aydogan, H. Zirtiloglu, “A graph-based web service
composition technique using ontological information”, 2007,
Vol. 0. Los Alamitos, CA, USA: IEEE Computer Society, pp.
1154–1155.

[6] I.B. Arpinar et al., “Ontology-driven web services
composition platform”. Inf. Syst. E-Business Management,
2005, 3(2):175–199.

[7] J. Gekas, M. Fasli, “Automatic Web Service Composition
Based on Graph Network Analysis Metrics”, In Proceedings
of the International Conference on Ontology, Databases and
Applications of Semantics (ODBASE). Agia Napa, Cyprus,
2005, pp. 1571-1587.

[8] H.N. Talantikite et al., “Semantic annotations for web
services discovery and composition”, Computer Standards
Interfaces,31(6),1108-1117. Elsevier B.V, 2009.

[9] D. Martin et al., “OWL-S: Semantic Markup for Web
Services”, http://www.w3.org/Submission/OWL-S/, 2004.

[10] M. Paolucci et al., “Semantic Matching of Web Services
Capabilities”, In First International Semantic Web
Conference, Sardinia, Italy, 2002, pp. 333-347.

[11] P. Krumins, http://www.catonmat.net/blog/mit-introduction-
to-algorithms-part-twelve.

[12] D. Wei, “An Optimized Floyd Algorithm for the Shortest
Path Problem”, Journal Of Networks, 2010, Vol 5, No 12.

[13] Cormen, T. H. et al, “Introduction to Algorithms”, MIT
Press, 1990.

[14] http://en.wikipedia.org/wiki/Dynamic_programming
[15] https://vo.homelinux.org/wiki/code/FloydWarshall.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 110

http://www.w3.org/Submission/OWL-S/
http://www.catonmat.net/blog/mit-introduction-to-algorithms-part-twelve
http://www.catonmat.net/blog/mit-introduction-to-algorithms-part-twelve

