
A Dynamic Load Balancing Algorithm in Computational
Grid Using Fair Scheduling

U.Karthick Kumar1
1Department of MCA & Software Systems,VLB Janki Ammal Arts and Science College,

Coimbatore,TamilNadu – 641 042,India

Abstract

Grid Computing has emerged as an important new field focusing
on resource sharing. One of the most challenging issues in Grid
Computing is efficient scheduling of tasks. In this paper, we
propose a Load balancing algorithm for fair scheduling, and we
compare it to other scheduling schemes such as the Earliest
Deadline First, Simple Fair Task order, Adjusted Fair Task Order
and Max Min Fair Scheduling for a computational grid. It
addresses the fairness issues by using mean waiting time. It
scheduled the task by using fair completion time and rescheduled
by using mean waiting time of each task to obtain load balance.
This algorithm scheme tries to provide optimal solution so that it
reduces the execution time and expected price for the execution of
all the jobs in the grid system is minimized. The performance of
the proposed algorithm compared with other algorithm by using
simulation.
Keywords: Computational Grid, Scheduling, Load balancing,
Fair scheduling, Mean Waiting Time, Execution Cost

1. Introduction

Grid computing has been increasingly considered as a
promising next-generation computing platform that supports
wide area parallel and distributed computing since its advent
in the mid-1990s [1]. It couples a wide variety of
geographically distributed computational resources such as
PCs, workstations, and clusters, storage systems, data
sources, databases, computational kernels, and special
purpose scientific instruments and presents them as a
unified integrated resource [2].

In computational grids, heterogeneous resources with
different systems in different places are dynamically
available and distributed geographically. The user’s
resource requirements in the grids vary depending on their
goals, time constraints, priorities and budgets. Allocating
their tasks to the appropriate resources in the grids so that
performance requirements are satisfied and costs are subject
to an extraordinarily complicated problem. Allocating the
resources to the proper users so that utilization of resources
and the profits generated are maximized is also an extremely
complex problem. From a computational perspective, it is
impractical to build a centralized resource allocation
mechanism in such a large scale distributed environment
[3].

A computational grid is less expensive than purchasing
more computational resources while obtaining the same
amount of computational power for their computational
tasks. A key characteristic of Grids is resources are shared
among various applications, and therefore, the amount of
resources available to any given application highly varies
over time.

1.1 Dynamic Load Balancing

Load balancing is a technique to enhance resources,
utilizing parallelism, exploiting throughput improvisation,
and to reduce response time through an appropriate
distribution of the application. Load balancing algorithms
can be defined by their implementation of the following
policies [15]

Information policy: It states the workload of a task
information to be collected, when it is to be collected and
from where.

Triggering policy: It determines the appropriate period to
start a load balancing operation.

Resource type policy: It order a resource as server or
receiver of tasks according to its availability status.

Location policy: It uses the results of the resource type
policy to find a suitable partner for a server or receiver.

Selection policy: defines the tasks that should be migrated
from overloaded resources (source) to most idle resources
(receiver).

Load balancing algorithms are defined by two types such as
static and dynamic [16]. Static load balancing algorithms
allocate the tasks of a parallel program to workstations.
Multicomputers with dynamic load balancing allocate or
reallocate resources at runtime based on task information,
which may determine when and whose tasks can be
migrated. In this paper Dynamic Load Balancing Algorithm
is implemented to multicomputers based on resource type
policy.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 123

The remaining section of this paper is organized as follows.
Section 2 explains the related work. Section 3 detailed
Problem formulation, Section 4 explained Fair Scheduling
and Section 5 detailed the Dynamic Load Balancing
Algorithm and section 6 Results and Discussion are detailed
and conclusion and future work is presented in section 7.

2. Related Work

Fair Share scheduling [4] is compared with Simple Fair
Task Order Scheduling (SFTO), Adjusted Fair Task Order
Scheduling (AFTO) and Max-Min Fair Share Scheduling
(MMFS) algorithm are developed and tested with existing
scheduling algorithms. Somasundaram, S. Radhakrishnan
compares Swift Scheduler with First Come First Serve
(FCFS),Shortest Job First (SJF) and with Simple Fair Task
Order (SFTO) based on processing time analysis, cost
analysis and resource utilization[5]. For a multiprocessor
system, the authors in [6] have shown that heuristic schemes
that takes into account both the task deadline and EST better
performs than the EDF, LLF, and MPTF algorithms.
Finally, evaluation of different scheduling mechanisms for
Grid computing is also presented in [7], such as the First
Come First Served (FCFS), the Largest Time First (LTF),
the Largest Cost First (LCF),the Largest Job First (LJF), the
Largest Machine First (LMF), the Smallest Machine First
(SMF), and the Minimum Effective Execution Time
(MEET).

Pal Nilsson and Michal Pioro have discussed Max Min Fair
Allocation for routing problem in a communication Network
[8]. Hans Jorgen Bang, Torbjorn Ekman and David Gesbert
has proposed proportional fair scheduling which addresses
the problem of multi-user diversity scheduling together with
channel prediction[9]. Daphne Lopez, S. V. Kasmir raja has
described and compared Fair Scheduling algorithm with
First Come First Serve (FCFS) and Round Robin(RR)
schemes[10].

Load Balancing is one of the big issues in Grid Computing
[11], [12]. Grosu and Chronopoulos [13], Penmatsa and
Chronopoulos [14] considered static load balancing in a
system with servers and computers where servers balance
load among all computers in a round robin fashion. Qin
Zheng, Chen-Khong Tham, Bharadwaj Veradale to address
the problem of determining which group an arriving job
should be allocated to and how its load can be distributed
among computers in the group to optimize the performance
and also proposed algorithms which guarantee finding a
load distribution over computers in a group that leads to the
minimum response time or computational cost [12].
Saravanakumar E. and Gomathy Prathima, discussing A
novel load balancing algorithm in computational Grid [17].
M.Kamarunisha, S.Ranichandra, T.K.P.Rajagopal, dicuss
about Load balancing Algorithm types and three policies are
Information policy, Triggering Policy, and Selection Policy
in Grid Environment[15][16].

3. Problem Formulation

Let the number of tasks be N that have to be scheduled as
Ti, i=1, 2… N, is the duration of the task when executed on
a processor in million instruction per second (MIPS). Let
number of processors is M and its total computation
capacity C is defined as

Let M is the multiprocessor and its computation capacity of
processor j is defined by cj. The earliest time of task i
started from processor j is the maximum of communication
delay and completion time between ith task and jth processor.
The completion time of task is zero, when no task allocated
to processor j, otherwise it estimated the remaining time that
are already allocated to processor j.

In the fair scheduling algorithm, the demanded computation
rate Xi of a task Ti will play an important role. It estimated
by the computation capacity that the Grid should allocate to
task Ti for it to finish just before its requested deadline

4. Fair Scheduling

The scheduling algorithms do not adequately address
congestion, and they do not take fairness considerations into
account. Fairness [4] is most essential for scheduling of
task. In Fair Scheduling, the tasks are allocated to multiple
processors so that the task with unsatisfied demand get
equal shares of time is as follows:

• Tasks are queued for scheduling according to their
fair completion times.

• The fair completion time of a task is estimated by
its fair task rates using a max-min fair sharing
algorithm.

• The tasks are assigned to processor by increasing
order of fair completion time.

In this algorithm, tasks with a higher order are completed
first which means that tasks are taken a higher priority than
the others which leads to starvation that increases the
completion time of tasks and load balance is not guaranteed.

For this issue we propose a Load Balance (LB) Algorithm to
give uniform load to the resources so that all task are fairly
allocated to processor based on balanced fair rates. The
main objective of this algorithm is to reduce the overall
makespan.

5. Dynamic Load Balancing Algorithm

Dynamic load balancing algorithms make changes to the
distribution of work among workstations at run-time; they

(1)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 124

use current or recent load information when making
distribution decisions. Multicomputers with dynamic load
balancing allocate/reallocate resources at runtime based on a
priori task information, which may determine when and
whose tasks can be migrated. As a result, dynamic load
balancing algorithms can provide a significant improvement
in Performance over other algorithms.

Load balancing should take place when the scheduler
schedules the task to all processors. There are some
particular activities which change the load configuration in
Grid environment. The activities can be categorized as
following:

• Arrival of any new job and queuing of that job to
any particular node.

• Scheduler schedules the job to particular processor.

• Reschedule the jobs if load is not balanced

• Allocate the job to processor when its free.

• Release the processor after it complete the whole
job

Fig.1: An Event Diagram for Dynamic Load Balancing Algorithm

Initialization of algorithm: N number of tasks that have to
be scheduled and workload wi(x) of tasks are submitted to
M number of processors.

Scheduling task: Scheduler allocates number of demanded
tasks to M number of processors based on fair completion
time of each task.

Load Balancing Algorithm: It applied when the processor
task allocation is excessive than the other after scheduling
the task.

Balancing criterion: Rescheduled the task for upper bound
and lower bound processor based on Wt(x).

Termination: This process is repeated until all the
processor is balanced. Finally, obtain the optimal solution
from the above process.

Fig.2 Flow Chart of Algorithm

5.1 Segment of code related to Algorithm

Input: A set of N task and M number of processor with
computational capacity cj.
Output: A schedule of N task
1. Create set of Queues.
2. qsize < N/M.
3. For each queue qi in Q
4. While there are tasks in the queue do,
5. Assign demand rate of the task, Xi
6. k= C/N

Start

Initialization of Algorithm

Scheduling task to processor by FCT

Check Processor is
balanced or not

Rescheduled the task based on Wt(x).

Check Processor is
balanced or not

Stop

Calculate MWT for scheduled task

Return the Schedule

Balanced

Not Balanced

Not Balanced

Balanced

Schedul

Queue DLBA
Grid

Processo

Job
Pool

R
es

ch
ed

ul
in

g
Ta

sk

Job 1

Job 2

Job 3

Job 4

Job 5

Mapping
Job

Job
finished

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 125

7. If Xi< k
8. Assign Xi to ith task as fair rate.
9. Else
10. Assign k to ith task as fair rate.
11. Calculate fair completion time ti(x).
12. End while
13. End Loop
14. Arrange the task in increasing order based on their ti(x)
and submitted to processor.
15. While (Load of any processor is greater than average
load processor) do
16. Calculate mean waiting time for each scheduled task
17. If Zx

y > 0
18 Migrated tasks are determined by using criteria of
processor capacity.
19. Each processor which has least capacity is selected for
migration.
20. End If
20. End While

5.2 Objective Evaluation

The task are scheduled by fair completion time ti(x), which
is obtained by

Here d(xy) is the earliest start time of ith task to jth processor
i=0,1,…N and j=0,1,2,…,c(y) is the computational capacity
of jth processor, w(x) is workload of the task and r(x) is the
fair rate of task computed by Max Min Fair Share approach.

Mean waiting time Wt(x) is given by

Where, W(x) is the constant delay made by the resource
manager to assign to processor and arrival of all files
necessary to run the task on processor.

To find the migration of processor by

Based on mean waiting time task are rescheduled and
allocated to processor. This is continued until all the
processors are equally balanced to reach their minimum
makespan.

5.3 Execution Cost

Our main objective is to reduce makespan and total
execution cost by using load balancing algorithm.
Specifically, we define the following for cost as

• is cost incurred by a customer with
seconds x ,if the expected constant delay is W(x).

• is Mean Waiting time of processor with
seconds x, if the rescheduling load balance
algorithm is l .

• is Total execution cost of using load
balance algorithm.

Cost optimization is defined by

The optimization problem is formulated by

As the primary function of a scheduler is to select a client to
execute their tasks to processors when it is free. A key
benefit of this algorithm is to reschedule the task by using
Wt(x) so that overall execution time and cost is reduced.

6. Result and Discussion

In this section proposed algorithm is simulated against

• Large set of Tasks as 256, 512, 1024, 2048 Million
Instruction (MI).

• Large and varying number of processors as 8, 16,
32, 64 Million Instruction Per Second (MIPS).

Here, cost rate range is taken from 5 – 10 units is randomly
chosen and assigned according to speed of the processor.
Speed of the processor ranges from 0 – 1MIPS are randomly
assigned to M processor. Below table shows the comparison
results of proposed algorithm The work is approximately
gives 45% - 25% less than EDF and 7% - 5% less than
SFTO and AFTO and 5% - 2% less than MMFS for
makespan. Also, LBA approximately show 30% - 25% less
than EDF and 7% - 6% less than SFTO and AFTO 2% - 1%
less than MMFS for Execution cost. The result shows better
performance for Higher Matrix also. The following are the
comparison result of existing and proposed method.

(2)

(3)

(4)

(5)

(6)

(7)

(9)

(10)

(8)

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 126

Table 1: Performance Comparison for 8 processors
Parameters Resource Matrix EDF SFTO AFTO MMFS LBA

Makespan

256 x 8

917.82 447.74 444.39 439.61 418.13

Cost 5506.91 4487.44 4468.54 4446.77 4023.57

Makespan

512 x 8

1121.32 1022.36 1010.09 858.54 836.72

Cost 7849.21 5111.8 5048.45 4292.71 4183.58

Makespan

1024 x 8

1825.33 1651.45 1686.17 1643.32 1599.82

Cost 10951.97 13211.63 11803.21 13180.96 12798.55

Makespan

2048 x 8

3596.42 3280.39 3247.63 3137.59 3095.82

Cost 28174.94 26243.11 25981.06 25100.75 24766.55

0

10000

20000

30000

256 512 1024 2048

Ex
ec

ut
io

n
Co

st

Resource Matrix

Number of processor 8
EDF

SFTO

AFTO

MMFS

LBA

 Fig 3: Performance Comparison for Makespan Fig 4 : Performance Comparison for Execution Cost

Table 2: Performance Comparison for 16 processors
Parameters Resource Matrix EDF SFTO AFTO MMFS LBA

Makespan

256 x 16

1466.72 304 300.65 295087 209

Cost 7332.11 1520 1511.0 1489.33 1045

Makespan

512 x 16

1366.48 553.89 555.37 545.76 483.57

Cost 8664.81 5868.91 5603..75 5508.24 4435.69

Makespan

1024 x 16

1540.27 1309.94 1296.35 1301.81 1231.43

Cost 9241.6 6549.72 6481.77 6519.05 6157.14

Makespan

2048 x 16

3352.67 2742.53 2761.98 2734.4 2641.04

Cost 26468.72 24682.76 27619.81 24652.09 23769.35

 Fig 5: Performance Comparison for Makespan Fig 6: Performance Comparison for Execution Cost

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 127

Table 3: Performance Comparison for 32 processors
Parameters Resource Matrix EDF SFTO AFTO MMFS LBA

Makespan

256 x 32

206.05 183.43 180.08 175.30 114.64

Cost 1648.40 917.15 908.25 886.48 573.22

Makespan

512 x 32

744.80 580.60 577.25 574.27 464.54

Cost 5958.36 5225.43 5216.53 3445.64 2787.23

Makespan

1024 x 32

966.47 912.96 937.07 904.83 863.54

Cost 7731.78 4564.78 7512.53 4534.11 4317.72

Makespan

2048 x 32

1675.05 1427.97 1375.23 1370.11 1262

Cost 18725.38 11851.76 11377.09 11330.99 10359.85

0

5000

10000

15000

20000

256 512 1024 2048

Ex
ec

ut
io

n
Co

st

Resource Matrix

Number of processor 32
EDF

SFTO

AFTO

MMFS

LBA

 Fig 7: Performance Comparison for Makespan Fig 8: Performance Comparison for Execution Cost

Table 4: Performance Comparison for 64 processors
Parameters Resource Matrix EDF SFTO AFTO MMFS LBA

Makespan

256 x 64

305.35 281.93 278.80 273.80 211.45

Cost 2748.13 1691.60 1682.70 1660.93 1268.7

Makespan

512 x 64

966.67 600 596.65 591.87 450

Cost 5800.02 3000 2991.10 2969.33 2700

Makespan

1024 x 64

968.49 978.87 975.52 970.74 795.34

Cost 9810.95 9600.75 9265.85 8500.08 7735.36

Makespan

2048 x 64

1984.98 1630.08 1626.73 1621.95 1330.86

Cost 26879.85 26300.85 26291.95 26270.18 23308.63

0

10000

20000

30000

256 512 1024 2048

E
xe

cu
tio

n
C

os
t

Resource Matrix

Number of processor 64
EDF

SFTO

AFTO

MMFS

LBA

 Fig 9: Performance Comparison for Makespan Fig 10: Performance Comparison for Execution Cost

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 128

7. Conclusion

In this paper we have proposed a Dynamic load
balancing algorithm for the Grid environment that
could be used to implement scheduling in a fair way.
This algorithm has proved the best results in terms of
makespan and Execution Cost In particular the
algorithm allocates the task to the available processors
so that all requesting task get equal amount of time that
satisfied their demand.

 Future work will focus on

• Fair scheduling can be applied to optimization

techniques

• QoS Constrains such as reliability can be used as
performance measure.

Reference
[1] Rajkumar Buyya, David Abramson, and Jonathan

Giddy,” A Case for Economy Grid Architecture for
Service Oriented Grid Computing “.

[2] Foster, I., and Kesselman, C. (editors), “The
Grid:Blueprint for a New Computing Infrastructure”,
Morgan Kaufmann Publishers, USA, 1999.

[3] Wolski, R., Brevik, J., Plank, J., and Bryan, T., “Grid
Resource Allocation and Control Using Computational
Economies, In Grid Computing: Making the Global
Infrastructure a Reality” Berman, F, Fox, G., and Hey,
T. editors, Wiley and Sons, pp. 747--772, 2003.

[4] Doulamis, N.D.; Doulamis, A.D.; Varvarigos, E.A.;
Varvarigou, T.A "Fair Scheduling Algorithms in Grids"
IEEE Transactions on Parallel and Distributed Systems,
Volume18, Issue 11, Nov. 2007 Page(s):1630 – 1648.

[5] K.Somasundaram, S.Radhakrishnan,” Task Resource
Allocation in Grid using Swift Scheduler”, International
Journal of Computers, Communications & Control,
ISSN 1841-9836, E-ISSN 1841-9844 Vol. IV, 2009.

[6] Ramamritham, J.A. Stankovic, and P.-F. Shiah,
“Efficient Scheduling Algorithms for Real-Time
Multiprocessor Systems,”IEEE Trans. Parallel and
Distributed Systems, vol.1, no. 2, pp. 184- 194, Apr.
1990.

[7] Ahmad, Y.-K. Kwok, M.-Y. Wu, and K. Li,
“Experimental Performance Evaluation of Job
Scheduling and Processor Allocation Algorithms for
Grid Computing on metacomputers,” Proc.IEEE 18th
Int’l Parallel and Distributed Processing Symp.
(IPDPS ’04),pp. 170-177, 2004.

[8] Pal Nilsson1 and Michał Pi´oro,” Unsplittable max-min
demand allocation – a routing problem”.

[9] Hans Jorgen Bang, Torbjorn Ekman and David
Gesbert,” A Channel Predictive Proportional Fair
Scheduling Algorithm”.

[10] Daphne Lopez, S. V. Kasmir raja,” A Dynamic Error
Based Fair Scheduling Algorithm For A Computational
Grid”, Journal Of Theoretical And Applied Information
Technology - 2009 JATIT.

[11] Qin Zheng, Chen-Khong Tham, Bharadwaj Veeravalli,”
Dynamic Load Balancing and Pricing in Grid
Computing with Communication Delay,” Journal in
Grid Computing (2008).

[12] Stefan Schamberger,”A Shape Optimizing Load
Distribution Heuristic for Parallel Adaptive FEM
Computations,” Springer-Verlag Berlin Heidelberg
2005.

[13] Grosu, D., Chronopoulos, A.T.” Noncooperative load

balancing in distributed systems”,Journal of Parallel
Distrib. Comput. 65(9), 1022–1034 (2005).

[14] Penmatsa, S., Chronopoulos, A.T.” Job allocation
schemes in computational Grids based on cost
optimization”,In: Proceedings of 19th IEEE
International Parallel and Distributed Processing
Symposium,Denver, (2005).

[15] M.Kamarunisha, S.Ranichandra, T.K.P.Rajagopal,”
Recitation of Load Balancing Algorithms In Grid
Computing Environment Using Policies And Strategies
An Approach,” International Journal of Scientific &
Engineering Research Volume 2, Issue 3, March-
2011

[16] Prabhat Kr.Srivastava, Sonu Gupta, Dheerendra Singh
Yadav,” Improving Performance in Load Balancing
Problem on the Grid Computing System”, International
Journal of Computer Applications (0975 – 8887)
Volume 16– No.1, February 2011.

[17] Saravanakumar E. and Gomathy Prathima,” A novel
load balancing algorithm for computational grid,”
International Journal of Computational Intelligence
Techniques, ISSN: 0976–0466 & E-ISSN: 0976–0474
Volume 1, Issue 1, 2010, PP-20-26

.

U.Karthick Kumar MSc., MCA., M.Phil.,He is a
Post Graduate with M.Phil from Bharathiar
University, Coimbatore.Now, he is working as a
Assistant Professor in VLB Janaki Ammal Arts and
Science College, Coimbatore. He has three years
of experience in research. He presented paper in
International Conference. His Interest areas are
Grid Computing, Mobile Computing and Data
Structures.

IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 5, No 1, September 2011
ISSN (Online): 1694-0814
www.IJCSI.org 129

